Practice Problems for Final
MATH 3215, Spring 2024

1. Let $X_{1}, X_{2}, \cdots, X_{7}$ be an i.i.d. sequence of Poisson random variables with parameter $\lambda=2$. Let $W=\sum_{i=1}^{7} X_{i}$. Find the MGF of W. How is W distributed? Find the probabilities $\mathbb{P}(W=6)$ and $\mathbb{P}\left(W=5 \mid X_{1}=2\right)$.

$$
\begin{aligned}
M_{w}(t) & =M_{x_{1}(t) \cdot M_{x_{2}}(t) \cdots M_{x_{7}}(t) \quad \text { (by independence) }}=\left(M_{x_{1}}(t)\right)^{7} \quad \text { (because identically distributed) } \\
& \left.=\left(e^{2\left(e^{t}-1\right)}\right)^{7} \quad \text { (because } \quad x_{1} \sim P_{0 i s}(2)\right) \\
& =e^{14\left(e^{t}-1\right)}
\end{aligned}
$$

Thus, $w \sim \operatorname{Pois}(14)$.

$$
\begin{aligned}
& \mathbb{P}(w=6)=e^{-14} \frac{14^{6}}{6!} \\
& \mathbb{P}\left(w=5\left(x_{1}=2\right)=\frac{\mathbb{P}\left(w=5, x_{1}=2\right)}{\mathbb{P}\left(x_{1}=2\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } U=x_{2}+\cdots+x_{7}=\frac{\mathbb{P}\left(x_{2}+\cdots+x_{7}=3, x_{1}=2\right)}{\mathbb{P}\left(x_{1}=2\right)} \\
& \text { then }
\end{aligned}
$$

then $\left.=\frac{\mathbb{P}\left(U P_{\text {is }}(12)\right.}{\text { and }}=3\right) \mathbb{P}\left(x_{1}=2\right)$
$P\left(x_{1}=2\right)$
U is index of X_{1}

$$
=P(U=3)=e^{-12} \frac{12^{3}}{3!}
$$

2. Suppose $X \sim N(1,4)$ and $Y \sim N(2,12)$ are independent normal random variables. Let $W=X+Y$. Find the MGF of W. Find the probability $\mathbb{P}(3 \leq W \leq 9)$.

$$
\begin{aligned}
M_{W}(t) & =M_{X}(t) \cdot M_{Y}(t) \quad(\text { by Independence }) \\
& =e^{\mu_{t}+\frac{\sigma_{1}^{2} t^{2}}{2}} e^{\mu_{2} t \frac{\sigma_{2}^{2} t^{2}}{2}} \quad\left(\mu_{1}=1, \sigma_{1}^{2}=4, \mu_{2}=2, \sigma_{2}^{2}=12\right) \\
& =e^{3 t+\frac{16}{2} \cdot t^{2}}
\end{aligned}
$$

i.e. $\quad W \sim N(3,16)$

$$
\begin{aligned}
\mathbb{P}(3 \leqslant w \leqslant 9) & =\mathbb{P}\left(\frac{3-3}{4} \leqslant \frac{w-3}{4} \leqslant \frac{9-3}{4}\right) \\
& =\mathbb{P}(0 \leqslant z \leqslant 1.5) \text { (here } z \sim N(8,1)) \\
& =\Phi(1.5)-\frac{1}{2}
\end{aligned}
$$

3. An instructor has 50 exams that will be graded in sequence. The times required to grade the 50 exams are independent, with a common distribution that has mean 20 minutes and standard deviation 4 minutes. Approximate the probability that the instructor will grade at least 25 of the exams in the first 450 minutes of work.

Let x_{i} be the time required to grade the i-th exam paper.

Then $x_{1}, x_{2}, \cdots, x_{50} \sim i . i . d$ with $\mu=20, \sigma=4$,
\mathbb{P} (At least 25 exams graded in 450 min)
$=\mathbb{P}($ Time to grade 25 exams $\leqslant 450 \mathrm{~min})$
$=\mathbb{P}\left(x_{1}+\cdots+x_{25} \leqslant 450\right)$
B_{4} the CLT, for $\bar{x}=\frac{1}{25}\left(x_{1}+\cdots+x_{25}\right)$,

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{x}-20}{4 / 5} \text { is approximately } \quad N(0,1) \text {. }
$$

Thus,

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}+\cdots+x_{25} \leqslant 450\right)=\mathbb{P}\left(\bar{x} \leqq \frac{450}{25}\right) \\
= & \mathbb{P}\left(\frac{\bar{x}-20}{4 / 5} \leqslant \frac{18-20}{4 / 5}\right) \\
\approx & \mathbb{P}\left(z \leqslant-\frac{5}{2}\right)=1-\Phi(2.5)
\end{aligned}
$$

4. A certain type of electrical motors is defective with probability $1 / 100$. Pick 1000 motors and let X be the number of defective ones among these 1000 motors.
(a) What is the probability that among the 1000 motors 13 or less are defective, i.e., what is $\mathbb{P}(X \leq 13)$.
(b) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 1000 mortors 13 or less are defective. Use the corresponding tables (and $\sqrt{\frac{99}{10}} \approx 3.15$) to find an approximate value for thai probability
(a): Let X be the number of defective ones among 1000 motes. Assuming Independence, $x \sim \operatorname{Bin}\left(1000, \frac{1}{100}\right)$ $P(x \leqslant 13)=\sum_{k=0}^{131}\binom{1000}{k}\left(\frac{1}{100}\right)^{k}\left(\frac{99}{100}\right)^{1000-k}$
(b) $\mathbb{P}(x \leqslant 13)=\mathbb{P}(0 \leqslant x \leqslant 13)$

$$
=\mathbb{P}(-0.5<x<13.5)
$$

half -unit correction
By CLT,

$$
\frac{x-n p}{\sqrt{n \rho(1-p)}}=\frac{x-10}{\sqrt{\frac{99}{60}}} \approx N(0,1)
$$

$$
\begin{aligned}
\mathbb{P}(x \leqslant 13) & =\mathbb{P}\left(\frac{-10.5}{\sqrt{99 / 10}}<\frac{x-10}{\sqrt{99 / 10}}<\frac{3.5}{\sqrt{59 / 10}}\right) \\
& \approx \mathbb{P}\left({ }^{\downarrow}<z<\downarrow\right)=\cdots
\end{aligned}
$$

5. A fair die will be rolled 720 times independently.
(a) What is the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively? That is, what is $\mathbb{P}(135 \leq X \leq 150)$? Write down the probability without using the tables and approximations.
(b) Using a normal approximation, without mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
(c) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
(a) $x=$ the number 6 will app
Then, $\quad x \sim \operatorname{Bin}\left(720, \frac{1}{6}\right)$

$$
P(135 \leqslant x \leqslant 150)=\sum_{k=135}^{150}\binom{720}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{720-k}
$$

(b) By the CLT, $\frac{x-n p}{\sqrt{n p q}}=\frac{x-120}{\sqrt{100}} \approx N(0,1)$
$\mathbb{P}(135 \leqslant x \leqslant 150)=\mathbb{P}\left(\frac{135-120}{10} \leqslant \frac{x-120}{10} \leqslant \frac{150-120}{10}\right)$

$$
\begin{aligned}
& \approx \mathbb{P}(1.5 \leqslant z \leqslant \\
& =\Phi(3)-\Phi(1.5)
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
\mathbb{P}(135 \leqslant x \leqslant 150) & =\mathbb{P}(134.5<x<150.5) \\
& \approx \mathbb{P}(1.45<z<3.05) \\
& =\Phi(3.05)-\Phi(1.45)
\end{aligned}
$$

6. If X is a random variable with mean 33 and variance 16 , use Chebyshev's inequality to find
(a) A lower bound for $\mathbb{P}(23<X<43)$.
(b) An upper bound for $\mathbb{P}(|X-33| \geq 14)$.

$$
\begin{aligned}
& \mu=33 \\
& \sigma^{2}=16
\end{aligned}
$$

(a):

$$
\text { (a): } \quad \begin{aligned}
\mathbb{P}(23<x<43) & =\mathbb{P}(|x-33|<10) \\
& =1-\mathbb{P}(|x-33| \geqslant 10) \\
& \geqslant 1-\frac{\sigma^{2}}{10^{2}} \quad \text { (Chebysheu) } \\
& =\frac{84}{100} \cdot \frac{\sigma}{}^{14^{2}}=\left(\frac{2}{7}\right)^{2}=\frac{4}{49}
\end{aligned}
$$

7. Let \bar{X} be the mean of a random sample of size $n=15$ from a distribution with mean $\mu=80$ and variance $\sigma^{2}=60$. Use Chebvshev's inequality to find a lower bound for $\mathbb{P}(75<\bar{X}<85)$.

$$
\begin{aligned}
& \mathbb{E}[\bar{x}]=\mu=80 \quad \text { Var }(\bar{x})=\frac{\sigma^{2}}{n}=\frac{60}{15}=4 \\
& \mathbb{P}(75<\bar{x}<85) \\
& =\mathbb{P}((\bar{x}-\mu \mid<5) \\
& =1-\mathbb{P}(\mid \bar{x}-\mu 1 \geqslant 5) \\
& \geqslant 4-\frac{\operatorname{Var}(\bar{x})}{5^{2}}=1-\frac{4}{25}=\frac{21}{25}
\end{aligned}
$$

$$
x_{1}, x_{2}, \cdots, x_{10}
$$

8. Let $W_{1}<W_{2}<\cdots<W_{10}$ be the order statistics of n independent observations from a $U(0,1)$ distribution.
(a) Find the PDF of W_{1} and W_{10}.
(b) Find $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{10}\right]$.
(a):

$$
\begin{aligned}
F_{w_{1}}(t) & =\mathbb{P}\left(w_{1} \leqslant t\right)=1-\mathbb{P}\left(w_{1}>t\right)=1-\left(\mathbb{P}\left(x_{1}>t\right)\right)^{10} \\
& =1-(1-t)^{10} \quad \text { for } \quad 0<t<1 \\
f_{w_{1}}(t) & =\left\{\begin{array}{cc}
10(1-t)^{9} & \text { for } \quad 0<t<1 \\
0 & \text { othercisce }
\end{array}\right. \\
F_{w_{10}}(t) & =\mathbb{P}\left(w_{10} \leqslant t\right)=\left(\mathbb{P}\left(x_{1} \leqslant t\right)\right)^{10} \\
& =\begin{array}{ll}
t^{10} & \text { for } \quad 0<t<1
\end{array} \\
f_{w_{10}}(t) & = \begin{cases}0 t^{9} & \text { for } 0<t<1 \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

(b):

$$
\begin{aligned}
\mathbb{E}\left[W_{1}\right] & =\int_{0}^{1} t^{10}(1-t)^{9} d t=\int_{0}^{1} 10 t^{9}(1-t) d t \\
& =\left[t^{10}-\frac{10}{11} t^{11}\right]_{0}^{1}=\frac{1}{11} \\
\mathbb{E}\left[W_{10}\right] & =\int_{0}^{1} t \cdot 10 \cdot t^{9} d t=\left[\frac{10}{11} t^{11}\right]_{0}^{1}=\frac{10}{11}
\end{aligned}
$$

9. Let $Y_{1}<Y_{2}<\cdots<Y_{5}$ be the order statistics of a random sample of size 5 from a distribution with PDF $f(x)=e^{-x}$ for $0<x<\infty$.
(a) Find the PDF of Y_{3}.

$$
x \sim \operatorname{Exp}(1)
$$

(b) Find the PDF of $U=e^{-Y_{3}}$.

$$
\begin{aligned}
& F_{Y_{3}}(t)=\mathbb{P}\left(Y_{3} \leqslant t\right) \\
& =\mathbb{P}\left(Y_{5} \leqslant t\right)+\mathbb{P}\left(Y_{4} \leqslant t<Y_{5}\right)+\mathbb{P}\left(Y_{3} \leqslant t<Y_{4}\right) \\
& =(\mathbb{P}(x \leqslant t))^{5}+\binom{5}{1}(\mathbb{P}(x \leqslant t))^{4} \mathbb{P}(x>t) \\
& +\binom{5}{2}(\mathbb{P}(x \leqslant t))^{3} \mathbb{P}(x>t)^{2} \\
& =\left(1-e^{-t}\right)^{5}+5\left(1-e^{-t}\right)^{4} e^{-t}+10\left(1-e^{-t}\right)^{3} e^{-2 t} \\
& f_{Y_{3}}(t)=5\left(1-e^{-t}\right)^{4} \cdot e^{-t}+20\left(1-e^{-t}\right)^{3} \cdot e^{-2 t}-5\left(1-e^{-t}\right)^{4} \cdot e^{-t} \\
& +30\left(1-e^{-t}\right)^{2} e^{-3 t}-20\left(1-e^{-t}\right)^{3} e^{-2 t} \\
& =30\left(1-e^{-t}\right)^{2} e^{-3 t} \quad \text { for } \quad t>0 \\
& F_{U}(t)=\mathbb{P}(U \leqslant t)=\mathbb{P}\left(e^{-Y_{3}} \leqslant t\right) \\
& =\mathbb{P}\left(-Y_{3} \leqslant \ln t\right) \\
& =\mathbb{P}\left(Y_{3}>-\ln t\right)=1-\mathbb{P}\left(Y_{3} \leqslant-\ln t\right)=1-F_{Y_{2}}(\ln t) \\
& f_{U}(t)=-f_{Y_{3}}(-\ln t) \cdot\left(-\frac{1}{t}\right) \\
& =30\left(1-e^{-(-\ln t)}\right)^{2} e^{-3(-\ln t)} \cdot \frac{1}{t} \\
& =30(1-t)^{2} t^{3} \cdot \frac{1}{t}=30 t^{2}(1-t)^{2} .
\end{aligned}
$$

10. Suppose that X is a discrete random variable with pmf

$$
f(x)=\frac{2+\theta(2-x)}{6}, \quad x=1,2,3
$$

where the unknown parameter θ belongs to the parameter space $\Omega=\{-1,0,1\}$. Suppose further that a random sample $X_{1}, X_{2}, X_{3}, X_{4}$ is taken from this distribution, and the four observed values are $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $(3,2,3,1)$. Find the maximum likelihood estimate of θ.

Likelihood function

$$
\begin{aligned}
& =\text { joint PMF }=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) f\left(x_{4}\right) \\
& =\left(\frac{2+\theta(2-3)}{6}\right)\left(\frac{2+\theta(2-2)}{6}\right)\left(\frac{2+\theta(2-3)}{6}\right)\left(\frac{2+\theta(2-1)}{6}\right)
\end{aligned}
$$

$$
=\frac{1}{6^{4}} \cdot(2-\theta)^{2} \cdot 2 \cdot(2+\theta)
$$

Let $g(\theta)=(2-\theta)^{2} \cdot(2+\theta)$
Maximize $g(\theta)$ in $\theta \in\{-1,0,1\}$

$$
\begin{aligned}
& g(-1)=9 \\
& g(0)=8 \\
& g(1)=3
\end{aligned} \quad \therefore \hat{\theta}=-1 \& M L E .
$$

11. A random sample of size 16 from the normal distribution $N(\mu, 25)$ yielded $\bar{X}=73.8$. Find a 95% confidence interval for μ.

$$
\begin{aligned}
& {\left[\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right] } \\
= & {[73.8-\underbrace{\left.1.96 \cdot \frac{5}{\sqrt{16}}, 73.8+1.96-\frac{5}{\sqrt{16}}\right]}_{=2.45}} \\
= & {[71.35,76.25] . }
\end{aligned}
$$

