Homework 10

Math 461: Probability Theory, Spring 2022
Daesung Kim
Due date: Apr 22, 2022

Instruction

1. Each problem is worth 10 points and only five randomly chosen problems will be graded.
2. Convert a photocopy of your solutions to one single pdf file and upload it on Moodle.
3. Please indicate whom you worked with, it will not affect your grade in any way.
4. If X and Y are independent and identically distributed with mean μ and variance σ^{2}, find $\mathbb{E}\left[(X-Y)^{2}\right]$.
5. If $\mathbb{E}[X]=1$ and $\operatorname{Var}(X)=4$, find (a) $\mathbb{E}\left[(2+X)^{2}\right]$ and (b) $\operatorname{Var}(4+2 X)$.
6. The random variables X and Y have a joint density function given by

$$
f(x, y)= \begin{cases}2 e^{-2 x} / x & \text { if } 0<x<\infty, 0<y<x \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Cov}(X, Y)$.
4. A total of n balls, numbered 1 through n, are put into n urns, also numbered 1 through n in such a way that ball i is equally likely to go into any of the urns $1,2, \ldots, i$. Find
(a) the expected number of urns that are empty;
(b) the probability that none of the urns is empty.
5. Consider n independent flips of a coin having probability p of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if $n=5$ and the outcome is HHTHT, then there are 3 changeovers. Find the expected number of changeovers.
6. A group of 20 people consisting of 10 married couples is randomly arranged into 10 pairs of 2 each. Compute the mean and variance of the number of married couples that are paired together.
7. Let X_{1}, X_{2}, \ldots be independent random variables with common mean μ and common variance σ^{2}. Set $Y_{n}=$ $X_{n}+X_{n+1}+X_{n+2}, n \geqslant 1$. For $j \geqslant 0$, find $\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right)$.
8. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-x / y-y} / y & \text { if } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\mathbb{E}\left(X^{2} \mid Y=y\right)$.
9. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-y} / y & \text { if } 0<x<y, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\mathbb{E}\left(X^{3} \mid Y=y\right)$.
10. The number of people who enter an elevator on the ground floor is a Geometric random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all of its passengers.

