Homework 8

Math 461: Probability Theory, Spring 2022
Daesung Kim
Due date: Apr 1, 2022

Instruction

1. Each problem is worth 10 points and only five randomly chosen problems will be graded.
2. Convert a photocopy of your solutions to one single pdf file and upload it on Moodle.
3. Please indicate whom you worked with, it will not affect your grade in any way.
4. (a) Let X be the Gamma random variable with $\lambda>0$ and $\alpha>0$. Show that $\operatorname{Var}(X)=\frac{\alpha}{\lambda^{2}}$.
(b) Let Y be the exponential random variable with parameter $\lambda>0$. Show that

$$
\mathbb{E} Y^{k}=\frac{k!}{\lambda^{k}} \quad k=1,2, \cdots
$$

2. Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let X_{i} equal 1 if the i-th ball selected is white, and let it equal 0 otherwise. Give the joint probability mass function of
(a) X_{1}, X_{2};
(b) X_{1}, X_{2}, X_{3}.
3. Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X_{1} be the number of failures preceding the first success, and let X_{2} be the number of failures between the first two successes. Find the joint mass function of X_{1} and X_{2}.
4. The joint probability density function of X and Y is given by

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right), 0<x<1,0<y<2
$$

and 0 otherwise.
(a) Verify that this is indeed a joint density function.
(b) Compute the density function of X.
(c) Find $\mathbb{P}(X>Y)$.
(d) Find $\mathbb{P}(Y>1 \mid X<1 / 2)$.
(e) Find $\mathbb{E} X$.
(f) Find $\mathbb{E} Y$.
5. Let X, Y be jointly distributed with density function $f(x, y)=e^{-(x+y)}$ for $0 \leqslant x<\infty, 0 \leqslant y<\infty$. Find (a) $\mathbb{P}(X<Y)$ and (b) $\mathbb{P}(X<a)$ for $a \in \mathbb{R}$.
6. A man and a woman agree to meet at a certain location about 12:30PM. If the man arrives at a time uniformly distributed between $12: 15$ and $12: 45$, and if the woman independently arrives at a time uniformly distributed between 12:00 and 1PM, find the probability that the first to arrive waits no longer than 5 minutes. What is the probability that the man arrives first?
7. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}x e^{-(x+y)}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Determine whether X and Y are independent.
8. The joint density function of X and Y is $f(x, y)= \begin{cases}x+y & \text { if } 0<x<1,0<y<1, \\ 0 & \text { otherwise } .\end{cases}$
(a) Are X and Y independent?
(b) Find the density function of X.
(c) Find $\mathbb{P}(X+Y<1)$.
(d) Find $\mathbb{E} X$.
(e) Find $\operatorname{Var}(X)$.
9. Let X and Y be jointly distributed with density function

$$
f(x, y)= \begin{cases}12 x y(1-x), & 0<x<1,0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent?
(b) Find $\mathbb{E} X$.
(c) Find $\mathbb{E} Y$.
(d) Find $\operatorname{Var}(X)$.
(e) Find $\operatorname{Var}(Y)$.
10. If X_{1} and X_{2} are independent exponential random variables with respective parameters λ_{1} and λ_{2}, find the distribution of $Z=X_{1} / X_{2}$. Also compute $\mathbb{P}\left(X_{1}<X_{2}\right)$.

