## Math 3215: Intro to Probability and Statistics

## Exam 2 Solution, Summer 2023

1. Let $X$ and $Y$ be two discrete random variables with joint pmf

$$
f_{X, Y}(1,1)=f_{X, Y}(2,1)=\frac{1}{8}, \quad f_{X, Y}(1,2)=\frac{1}{4}, \quad f_{X, Y}(2,2)=\frac{1}{2} .
$$

(a) (5 points) Find $\mathbb{E}[X Y]$.
(b) (5 points) Find the conditional expectation of $X$ given $Y=1$.
(c) (5 points) Find the conditional expectation $\mathbb{E}[X \mid Y]$.

## Solution:

(a) $\mathbb{E}[X Y]=1 / 8+2 / 8+2 / 4+2=23 / 8$.
(b) Since $f_{X \mid Y}(x \mid 1)=1 / 2$ for $x=1,2, \mathbb{E}[X \mid Y=1]=3 / 2$.
(c) Similarly, $\mathbb{E}[X \mid Y=2]=1 / 3+4 / 3=5 / 3$. Thus, $\mathbb{E}[X \mid Y]=3 / 2$ with probability $\mathbb{P}(Y=1)=1 / 4$ and $\mathbb{E}[X \mid Y]=5 / 3$ with probability $\mathbb{P}(Y=2)=3 / 4$.
2. Let X and Y be continuous random variables with joint probabilitydensity function

$$
f(x, y)=\frac{x}{5}+c y
$$

for $0<x<1$ and $1<y<5$, and otherwise 0 .
(a) (5 points) Find the constant $c$.
(b) (5 points) Find the marginal pdfs of $X$ and $Y$.
(c) (5 points) Are they independent?

## Solution:

(a) Since $\int_{0}^{1} \int_{1}^{5}\left(\frac{x}{5}+c y\right) d y d x=\frac{4}{10}+12 c=1, c=\frac{1}{20}$.
(b) $f_{X}(x)=\int_{1}^{5}\left(\frac{x}{5}+\frac{y}{20}\right) d y=\frac{4 x+3}{5}$ and $f_{Y}(y)=\int_{0}^{1}\left(\frac{x}{5}+\frac{y}{20}\right) d x=\frac{y+2}{20}$.
(c) They are dependent.
3. Let $X$ be a random variable with cdf given by

$$
F_{X}(x)=1-e^{-e^{x}}
$$

for $-\infty<x<\infty$. Let $Y=e^{X}$.
(a) (7 points) Find the pdf of $X$.
(b) (8 points) Find the cdf and pdf of $Y$.

## Solution:

(a) $f_{X}(x)=e^{x-e^{x}}$
(b) For $t>0, F_{Y}(t)=\mathbb{P}(Y \leq t)=\mathbb{P}\left(e^{X} \leq t\right)=\mathbb{P}(X \leq \log t)=1-e^{-e^{\log t}}=1-e^{-t}$ and $f_{Y}(t)=e^{-t}$. Since $Y>0, F_{Y}(t)=0=f_{Y}(t)$ for $t \leq 0$.
4. Let $X$ be a uniform random variable on $(-1,1)$ and $Y=|X|$.
(a) (5 points) Find the pdf of $Y$.
(b) $(5$ points) Compute $\operatorname{Cov}(X, Y)$.
(c) (5 points) Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right), \mathbb{P}\left(Y \leq \frac{1}{2}\right)$, and $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$.

## Solution:

(a) If $a \geq 1$, then $F_{Y}(a)=\mathbb{P}(Y \leq a)=1$. If $a \leq 0$, then $F_{Y}(a)=\mathbb{P}(Y \leq a)=0$. For $a \in(0,1)$,

$$
F_{Y}(a)=\mathbb{P}(Y \leq a)=\mathbb{P}(-a \leq X \leq a)=a .
$$

By differentiating $F_{Y}$ with respect to $a$, we get

$$
f_{Y}(a)= \begin{cases}1, & a \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

(b) Since $\mathbb{E}[X Y]=\mathbb{E}[X|X|]=0, \mathbb{E}[X]=0$, and $\mathbb{E}[Y]=\frac{1}{2}$, we have

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0
$$

(c) $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)=\mathbb{P}\left(-\frac{1}{2} \leq X \leq \frac{1}{2}\right)=\frac{1}{2}, \mathbb{P}\left(X \leq \frac{1}{2}\right)=\frac{3}{4}$, and $\mathbb{P}\left(Y \leq \frac{1}{2}\right) \mathbb{P}\left(-\frac{1}{2} \leq X \leq \frac{1}{2}\right)=\frac{1}{2}$.
5. Let $(X, Y)$ have a bivariate normal distribution with common mean 24 , common standard deviation $2 \sqrt{3}$, and correlation coefficient 0.5 . That is, $\mu_{X}=\mu_{Y}=24, \sigma_{X}=\sigma_{Y}=2 \sqrt{3}$, and $\rho=0.5$.
(a) (7 points) Find the expectation of the variance of $X+Y$.
(b) (8 points) Using the tables, find the conditional probability $\mathbb{P}(X \geq 24.75 \mid Y=12)$.

## Solution:

(a) $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=24+24=48$ and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=12+12+2$. $0.5 \cdot 12=36$.
(b) Since $X \left\lvert\, Y=12 \sim N\left(\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right),\left(1-\rho^{2}\right) \sigma_{X}^{2}\right)=N(18,9)\right., \mathbb{P}(X \geq 24.75 \mid Y=12)=\mathbb{P}(Z \geq 2.25)=$ $1-\mathbb{P}(Z<2.25)=1-0.9878=0.0122$.
6. Let $X$ be a normal random variable with mean 5 and variance 4, that is, $X \sim N(5,4)$
(a) (5 points) Find $\mathbb{E}\left[(3 X-2)^{2}\right]$.
(b) (5 points) Using the tables, find $\mathbb{P}(X \leq 3.5)$.

## Solution:

(a) $\mathbb{E}\left[(3 X-2)^{2}\right]=9 \mathbb{E}\left[X^{2}\right]-12 \mathbb{E}[X]+4=9(4+25)-12 \cdot 5+4=205$.
(b) Since $(X-5) / 2 \sim N(0,1), \mathbb{P}(X \leq 3.5)=\mathbb{P}(Z \leq-1.5 / 2)=\mathbb{P}(Z \leq-0.75)=\mathbb{P}(Z \geq 0.75) \approx 1-0.7734=$ 0.2266 .
7. Let $X, Y$ be independent exponential random variables with parameters $\lambda_{X}=1$ and $\lambda_{Y}=2$, that is, their marginal pdfs are $f_{X}(t)=e^{-t}$ and $f_{Y}(t)=2 e^{-2 t}$ for $t \geq 0$.
(a) (7 points) Let $Z=\max \{X, Y\}$. Find $\mathbb{P}(Z \leq 6)$.
(b) (8 points) Let $W=\min \{X, Y\}$. Find the $c d f$ and the pdf of $W$.

## Solution:

(a) $\mathbb{P}(Z \leq 6)=\mathbb{P}(X \leq 6, Y \leq 6)=(1-\mathbb{P}(X>6))(1-\mathbb{P}(Y>6))=\left(1-e^{-6}\right)\left(1-e^{-12}\right)$
(b) $F_{W}(t)=\mathbb{P}(W \leq t)=1-\mathbb{P}(W>t)=1-\mathbb{P}(X>t, Y>t)=1-e^{-t} e^{-2 t}=1-e^{-3 t}$ and $f_{W}(t)=3 e^{-3 t}$ for $t \geq 0$.

