
MATH 461 LECTURE NOTE
WEEK 11

DAESUNG KIM

1. INDEPENDENT RANDOM VARIABLES (SEC 6.2)

Definition
Two random variables X and Y are independent if for any sets A and B

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

It is equivalent to the following:
(i) F (a, b) = FX(a)FY (b) for all a, b ∈ R;

(ii) (Discrete case) p(x, y) = pX(x)pY (y) for all x, y ∈ R;
(iii) (Discrete case) p(x, y) = h(x)g(y) for all x, y ∈ R, for some h and g;
(iv) (Jointly continuous case) f(x, y) = fX(x)fY (y) for all x, y ∈ R;
(v) (Jointly continuous case) f(x, y) = h(x)g(y) for all x, y ∈ R, for some h and g.

Otherwise, we say that X and Y are dependent.

Remark 1. Let E,F be events on a sample space S. Recall that E,F are independent if P(E ∪ F ) =
P(E)P(F ). Define

X = IE =

{
1, E occurs,
0, otherwise,

Y = IF =

{
1, F occurs,
0, otherwise.

Then, X and Y are independent if and only if E and F are independent.

Example 2. If the joint density function of X and Y is

f(x, y) =

{
6e−2xe−3y, 0 < x < ∞, 0 < y < ∞
0, otherwise,

are the random variables independent? Find the marginal densities fX and fY .

Example 3. If the joint density function of X and Y is

f(x, y) =

{
24xy, 0 < x < 1, 0 < y < 1, 0 < x+ y < 1

0, otherwise,

are the random variables independent? Find the marginal densities fX and fY .

Example 4. Two points are selected randomly on a line of length L so as to be on opposite sides of the
midpoint of the line. In other words, the two points X and Y are independent random variables such that
X is uniformly distributed over (0, L/2) and Y is uniformly distributed over (L/2, L). Find the probability
that the distance between the two points is greater than L/3.

Definition
Random variables X1, X2, · · · , Xn are independent if, for any sets A1, A2, · · · , An

P(X1 ∈ A1, X2 ∈ A2, · · · , Xn ∈ An) = P(X1 ∈ A1)P(X2 ∈ A2) · · ·P(Xn ∈ An).

If the random variables are jointly continuous, it is equivalent to

f(x1, x2, · · · , xn) = fX1
(x1)fX2

(x2) · · · fXn
(xn)
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for all x1, x2, · · · , xn.

Example 5. If X1, X2, X3 are independent random variables that are uniformly distributed over (0, 1),
compute the probability that the largest of the three is greater than the sum of the other two.

Remark 6. Let X1, X2, X3, X4 be independent uniform random variables on [0, 1]. Define X(i) be the i-th
smallest random variable between X1, X2, X3, X4 for i = 1, 2, 3, 4. Let Y = X(2) and Z = 1−X(3), then one
can see that the joint density of Y and Z is

f(y, z) =

{
24yz, 0 < y < 1, 0 < z < 1, 0 < y + z < 1,

0, otherwise.

Further examples.

Example 7. Suppose that the number of people who enter a post office on a given day is a Poisson random
variable with parameter λ. Each person who enters the post office is a male with probability p and a female
with probability 1−p. Show that the number of males and females entering the post office are independent
Poisson random variables with respective parameters λp and λ(1− p).

Example 8. Buffon’s needle problem A table is ruled with equidistant parallel lines a distance D apart. A
needle of length L, where L < D, is randomly thrown on the table. What is the probability that the needle
will intersect one of the lines (the other possibility being that the needle will be completely contained in the
strip between two lines)? Let us determine the position of the needle by specifying

(i) the distance X from the middle point of the needle to the nearest parallel line and
(ii) the angle θ between the needle and the projected line of length X .

2. SUMS OF INDEPENDENT RANDOM VARIABLES (SEC 6.3)

In this section, we consider the sum of two independent random variables X and Y . If X and Y are
jointly continuous and independent, then the joint density is f(x, y) = fX(x)fY (y) where fX and fY are the
densities for X and Y respectively. Then, the cdf of X + Y is

FX+Y (t) = P(X + Y ≤ t) =

∫∫
x+y≤t

fX(x)fY (y) dxdy =

∫
R
FX(t− y)fY (y) dy.

The cdf of X + Y is called the convolution of FX and FY . Taking derivative with respect to t, we get

fX+Y (t) =

∫
R
fX(t− y)fY (y) dy.

Example 9. If X and Y are independent uniform random variables on (0, 1), find the density of X + Y .

Sum of independent random variables
Suppose X and Y are independent. Let Z = X + Y .

(i) If X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2), then Z ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
(ii) If X ∼ Γ(s, λ) and Y ∼ Γ(t, λ), then Z ∼ Γ(s+ t, λ).

(iii) If X ∼ Bin(n, p) and Y ∼ Bin(m, p), then Z ∼ Bin(n+m, p).
(iv) If X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), then Z ∼ Poisson(λ1 + λ2).
(v) If X ∼ NegBin(r, p) and Y ∼ NegBin(s, p), then Z ∼ NegBin(r + s, p).

Example 10. If X ∼ N(0, 1
2 ) and Y ∼ N(0, 1

2 ) are independent, then what is fX+Y (t)?

Example 11. If X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), then what is P(X + Y = n)?

Further examples.

Example 12. The gross weekly sales at a certain restaurant is a normal random variable with mean $2200
and standard deviation $230. What is the probability that the total gross sales over the next 2 weeks exceeds
$5000?

Example 13. Let X ∼ U(0, 1) and Y ∼ Exp(1) be independent. Find the distribution of Z = X + Y .
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3. CONDITIONAL DISTRIBUTION (SEC 6.4-6)

Suppose X and Y are discrete with the joint pmf p(x, y), that is P(X = x, Y = y) = p(x, y). Let y satisfy
pY (y) =

∑
x p(x, y) > 0. The conditional pmf of X given Y = y is defined by

pX|Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

p(x, y)

pY (y)
.

Note that if X and Y are independent, then pX|Y (x|y) = pX(x). The conditional cdf of X given Y = y is

FX|Y (t|y) = P(X ≤ t|Y = y) =
∑
x≤t

pX|Y (x|y).

Example 14. If X and Y are independent Poisson random variables with respective parameters λ1 and λ2,
calculate the conditional distribution of X given that X + Y = n.

Suppose X and Y are jointly continuous with joint density f(x, y). For y with fY (y) > 0, the conditional
density of X given Y = y is defined by

fX|Y (x|y) =
f(x, y)

fY (y)
.

If X and Y are independent, then fX|Y (x|y) = fX(x). Then, the conditional probability and the conditional
cdf of X given Y = y can be written as

P(X ∈ A|Y = y) =

∫
A

fX|Y (x|y) dx

FX|Y (t|y) = P(X ≤ t|Y = y) =

∫ t

−∞
fX|Y (x|y) dx.

Example 15. Suppose that the joint density of X and Y is given by

f(x, y) =

{
e
− x

y e−y

y , 0 < x, y < ∞,

0, otherwise.

Find fX|Y (x|y) and P(X > 1|Y = y).

Bivariate normal random variable. Jointly continuous random variables X and Y are bivariate normal if
their density is given by

f(x, y) =
1

2πσXσY

√
1− ρ2

e
− 1

2(1−ρ2)

(
(
x−µX
σX

)2+(
y−µY
σY

)2−2ρ
(x−µX )(y−µY )

σXσY

)

where σX , σY > 0, ρ ∈ (−1, 1), and µX , µY ∈ R. We denote by(
X
Y

)
∼ N

((
µX

µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

Proposition 16. (i) X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ

2
Y ). In particular, E[X] = µX , E[Y ] = µY ,

Var(X) = σ2
X , and Var(Y ) = σ2

Y .
(ii) The random variable X given Y = y is normal with mean µX + ρσX

σY
(y − µY ) and variance σ2

X(1− ρ2).

Proof. Let x = x−µX

σX
and y = y−µY

σY
, then

f(x, y) =
1

2πσXσY

√
1− ρ2

e
− 1

2(1−ρ2)
(x2+y2−2ρxy)

=
1

2πσXσY

√
1− ρ2

e
− 1

2(1−ρ2)
(x−ρy)2

e−
1
2y

2

.
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Since ∫
R
e
− 1

2(1−ρ2)
(x−ρy)2

dx =

∫
R
e
− 1

2σ2
X

(1−ρ2)

(
x−

(
µX+ρ

σX
σY

(y−µY )
))2

dx

=

∫
R
e
− 1

2σ2
X

(1−ρ2)
x2

dx

=
√
2πσ2

X(1− ρ2),

we have

fY (y) =

∫
R
f(x, y) dx =

1√
2πσ2

Y

e−
1
2y

2

=
1√
2πσ2

Y

e
− (y−µY )2

2σ2
Y

and so Y ∼ N(µY , σ
2
Y ). The same argument for X yields X ∼ N(µX , σ2

X). A direct computation leads to

fX|Y (x|y) =
f(x, y)

fY (y)
=

1√
2πσ2

X(1− ρ2)
e
− 1

2σ2
X

(1−ρ2)

(
x−

(
µX+ρ

σX
σY

(y−µY )
))2

as desired. □

Remark 17. The parameter ρ represents how X and Y correlated.

Joint distribution of maximum and minimum. Let X1, X2, · · · , Xn be independent jointly continuous ran-
dom variables with the common cdf F (t). Let U = max{X1, X2, · · · , Xn} and V = min{X1, X2, · · · , Xn}.

Proposition 18. The joint density of U and V is

fU,V (u, v) = n(n− 1)(F (u)− F (v))n−2f(u)f(v).
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