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The dissertation consists of two research topics.
The first research direction is to study stability of functional and geometric inequalities. Stability problem is

to estimate the deficit of a functional or geometric inequality in terms of the distance from the class of optimizers
or a functional that identifies the optimizers. In particular, we investigate the logarithmic Sobolev inequality, the
Beckner–Hirschman inequality (the entropic uncertainty principle), and isoperimetric type inequalities for the
expected lifetime of Brownian motion.

In Chapter 3, we derive several types of stability estimates of the logarithmic Sobolev inequality in terms of the
Wasserstein distance, Lp distances, and the Kolmogorov distance. We consider the spaces of probability measures
satisfying different conditions on the second moments, the lower bounds of the density, and some integrability of
the density. To obtain these results, we employ the optimal transport technique, Fourier analysis, and probability
theoretic approach. In Chapter 4, we construct an example to understand the conditions on the space and the
distance under which stability of the logarithmic Sobolev inequality does not hold. As an application, we show that
stability of the Beckner–Hirschman inequality does not hold for the normalized Lp distance with some weighted
measures in Chapter 5.

In Chapter 6, we study quantitative improvements of the inequalities for the expected lifetime of Brownian
motion, which state that the Lp-norms of the expected lifetime in a bounded domain for 1 ≤ p ≤ ∞, are maximized
when the region is a ball with the same volume. Since the inequalities also hold for a general class of Lévy processes,
it is interesting to see if the quantitative improvement can be extended to general Lévy processes. We discuss the
related open problems in that direction.

The second topic of the thesis is a stochastic representation of fractional integrals and nonlocal operators. In
Chapter 7, we extend the Hardy–Littlewood–Sobolev inequality to symmetric Markov semigroups. To this end,
we construct a stochastic representation of the fractional integral using the background radiation process. The
inequality follows from a new inequality for the fractional Littlewood–Paley square function. In Chapter 8, we
prove the Hardy–Stein identity for non-symmetric pure jump Lévy processes and the Lp boundedness of a certain
class of Fourier multiplier operators arising from non-symmetric pure jump Lévy processes. The proof is based
on Itô’s formula for general jump processes and the symmetrization of Lévy processes.
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Chapter 1

Introduction

The thesis consists of two parts. The first subject of this thesis is stability of functional and geometric inequalities.
The second subject is the Littlewood–Paley inequality and its applications.

1.1 Stability of functional and geometric inequalities

We present some terminology regarding stability problems, introduced by Carlen [41]. Consider nonnegative
functionals G and H defined on a class of admissible functions or sets X . A functional or geometric inequality
can be written as

G(u) ≥ H(u) (1.1.1)

for all u ∈ X . The inequality is called sharp if for each λ > 1 there exists uλ ∈ X such that G(uλ) < λH(uλ). It is
called optimal if there exists u0 ∈ X such that G(u0) = H(u0). Such u0 is called an optimizer. The deficit is defined
by δ(u) = G(u) −H(u) ≥ 0. Once the class of optimizers X0 is characterized, a natural question is to measure the
deviation of u from the class of optimizers when δ(u) gets close to 0. Let d : X × X → [0,∞) be a distance defined
on X . We say the inequality is d-stable in X if for any sequence {uk} in X , δ(uk) → 0 as k → ∞ implies

lim
k→∞

d(uk, X0) = lim
k→∞

inf
v∈X0

d(uk, v) = 0. (1.1.2)

In particular, a stability estimate or a quantitative improvement of the inequality is a lower bound of the deficit in
terms of the distance

δ(u) ≥ Φ(d(u, X0)) (1.1.3)

for all u and for some modulus of continuity Φ. Sometimes, instead of a distance, we consider a nonnegative
functional on X that identifies the class of optimizers. Namely, consider a functional d : X → [0,∞] such that
d(u) = 0 if and only if u ∈ X0. Stability with respect to this functional is defined in the same way. In contrast to
(1.1.3), (1.1.2) it is also called a non-quantitative result or weak stability.

Recently, finding stability estimates has become of significant interest in the study of functional and geometric
inequalities; the Sobolev inequalities [23, 44, 48], the Hardy–Littlewood–Sobolev inequality [41], the logarithmic
Sobolev inequality [53, 57, 58, 82, 83, 85], the Hausdorff–Young inequality [45], the isoperimetric inequalities
[59, 64, 65], and the Faber–Krahn inequalities [32, 34]. In particular, there have been great efforts to find sharp
stability results. A stability estimate is sharp if the modulus of continuity Φ is best possible. That is, if Φ cannot
be replaced by any other modulus of continuity Ψ which satisfies

lim
t→0

Φ(t)
Ψ(t) = 0.

1



Another direction is to study the best possible admissible space and distance in which stability of (1.1.1)
holds. Even though the inequality (1.1.1) holds for all u ∈ X , it is possible that a stability estimate holds only for
u ∈ X̃ ⊂ X . In this case, one can ask what is the largest possible subset X̃ of X in which stability of (1.1.1) is valid.

1.1.1 The sharp quantitative isoperimetric inequality

As an example, we review stability results for the classical isoperimetric inequality. Let D be a Borel set in Rn,
then the classical isoperimetric inequality states that

P(D) ≥ P(B) (1.1.4)

where B is a ball in Rn with |D | = |B| and P(E) denotes the perimeter of E . This is sharp and optimal: equality
holds in (1.1.4) if and only if D is a ball. The deficit of (1.1.4) is defined by

δ(D) = P(D) − P(B)
P(B)

where B is a ball with |D | = |B|. Fuglede [63] showed that if D is convex then there exists κ(n),Cn > 0 such that

δ(D) ≥ Cna(D)κ(n)

where a(D) = inf{dH (D, x + B) : x ∈ Rn}, dH is the Hausdorff distance, and B is a ball with |D| = |B|. He
constructed an one-parameter family of domains to show that κ(n) is the sharp exponent. Note that the asymmetry
a(D) is not appropriate for general non-convex sets. For example, if D is a ball in Rn (n ≥ 3) with a long and
thin tail, then a(D) could be large whereas the deficit is close to 0. Thus it is natural to deal with the Fraenkel
asymmetry

A(D) = inf
{
|D△(x + B)|

|D | : x ∈ Rn, B is a ball with |B| = |D|
}

for a general stability estimate. Hall [74] proved that if D has an axis of symmetry, then

δ(D) ≥ CnA(D)2 (1.1.5)

with an explicit dimensional constant Cn. For a general class of sets, he used the Steiner symmetrization and the
estimate from [75] to deduce (1.1.5) with the exponent 4. It was conjectured that the sharp exponent is 2. One can
see this by considering an ellipse which is very close to a ball; see [75, pp. 88–89]. Fusco, Maggi, and Pratelli [64]
gave an affirmative answer to the conjecture. They proved (1.1.5) for a Borel set with finite volume.

1.1.2 The logarithmic Sobolev inequality

In Chapter 3, we study stability of the logarithmic Sobolev inequality. In Chapter 4, we investigate conditions on
probability measure spaces and metrics under which the LSI is not stable. As an application, we discuss instability
of the Beckner–Hirschman inequality in Chapter 5. Chapter 3 is based on joint work with Emanuel Indrei [82],
and Chapter 4 and 5 are based on my work [85].

Let dγ be the standard Gaussian measure on Rn. The classical logarithmic Sobolev inequality (the LSI) states
that for a probability measure f dγ

1
2

I( f ) = 1
2

∫ |∇ f |2
f

dγ ≥
∫

f log f dγ = H( f ) (1.1.6)

where I( f ) and H( f ) are the Fisher information and the relative entropy respectively. Note that I and H are
nonnegative functionals and well-defined on the space of probability measures f dγ with

√
f ∈ W1,2(Rn, dγ). The

constant 1
2 is sharp and equality holds if and only if f (x) = eb ·x− |b |

2/2 for some b ∈ Rn.

2



In Chapter 3, we explore various probability measure spaces and metrics in which stability of the LSI holds. To
be specific, we find several types of lower bounds of the deficit δ( f ) := 1

2 I( f ) − H( f ) in terms of the Wasserstein
distances, the Kolmogorov distance, and Lp distances for p ≥ 1, under different conditions on the function f .
To obtain these results, we employ several different techniques: optimal transport theory, Fourier analysis, and
probability.

We considered the space of probability measures on Rn whose second moments are bounded by M > 0,
denoted by PM

2 (Rn). The first main result (Theorem 3.2.1) is to show that if f dγ is a centered probability measure
in PM

2 (R) then
δ( f ) ≥ CM ‖ f − 1‖4

L1(dγ). (1.1.7)

The proof is mainly based on the optimal transport technique, which was introduced by Cordero-Erausquin [50]
and adapted to the context of stability of the LSI by [83] and thereafter [57]. We consider the Brenier map between
f dγ and dγ, which is the solution to the optimal transportation problem. First, we derive W1 stability of the
LSI (Theorem 3.2.6) from that of Talagrand’s transportation inequality, which was obtained by [18] in dimension
1, [51] for higher dimensions (see also [57] for W1,1-stability). By a lower bound of the deficit (2.2.7) which follows
from the Monge–Ampère equation, we derive L1-stability (1.1.7). Under different assumptions on f (see (3.2.2)
and (3.2.3)), we exploit the deficit bound (2.2.7) of Cordero-Erausquin to show that the deficit is bounded below by
the L1 distance of log f from some affine function (Theorem 3.2.9). Combining W1–stability and a compactness
argument (the Rellich–Kondrachov theorem), we also derive non-quantitative L1–stability in PM

2 (Rn), for n ≥ 2
(Theorem 3.2.13).

Compared to the previous results [57,83], our stability results in PM
2 can be thought of as an extension in terms

of probability measure spaces. Indrei and Marcon [83] showed W2–stability in a class of probability measures
f dγ such that (−1 + ε) ≤ D2(− log f ) ≤ M for ε,M > 0. The proof is based on the optimal transport technique
(2.2.7). In [57], a strict improvement of the LSI for the class of probability measures that satisfy a (2, 2)-Poincaré
inequality was proved, which yields stability bounds with respect to W2 and L1. One can see that these spaces
are contained in PM

2 for some M . Note that the authors in [57] also considered stability estimates in a general
probability measure space via Talagrand’s transportation inequality.

The second approach is concerned with the deficit bound (2.2.4) derived by Carlen [40] (see Theorem 2.2.1).
To characterize the case of equality in (1.1.6), Carlen [40] derived a lower bound of the deficit in terms of the
relative entropy of the Fourier–Wiener transform from the entropic uncertainty principle, which was conjectured
by Hirschman [80] and proven by Beckner [20]. By investigating the behavior of the relative entropy of the
Fourier–Wiener transform when the deficit gets close to 0, we obtain non-quantitative L1-stability (Theorem
3.2.14). Applying the optimal transport technique to the Fourier–Wiener transform, we obtain a lower bound of
the deficit which holds for a wide class of functions (Theorem 3.2.16). As a corollary of this bound, we prove
non-quantitative L1–stability under some integrability assumptions (Corollary 3.2.18 and 3.2.19) .

From the probabilistic point of view, we derive stability estimates in terms of the Kolmogorov distance. The
proof is mainly based on the quantitative versions of Cramér’s theorem of [25, 68, 103]. Cramér’s theorem says
that if the sum of two independent random variables has a normal distribution, then both random variables are
normal. Combining quantitative versions of Cramér’s theorem (Theorem 2.3.1 and 2.3.2) with a convolution type
deficit bound of the LSI in [58] (see Theorem 3.4.1), we derive stability estimates in terms of the Kolmogorov
distance under some moment assumptions (Theorem 3.2.21 and 3.2.22).

In the process of finding the best possible function spaces and metrics, a natural question is whether the
previous stability results can be improved. In Chapter 4, we give a partial answer by showing that there exists a
sequence of centered probability measures in PM

2 (R) such that the deficit converges to 0 but the distance from the
optimizer does not converge to 0 in terms of W2 and Lp for p > 1 (Theorem 4.1.1). Furthermore, we construct a
sequence of centered probability measures in P2(R) such that the deficit converges to 0 and the W1-distance from
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the Gaussian measure goes to ∞ (Theorem 4.1.2). The implication of these results is that W2–stability of [26] and
W1–stability of Theorem 3.2.6 are sharp in terms of PM

2 (Rn) and that L1–stability in PM
2 (R) of Theorem 3.2.1 is

sharp in terms of the Lp distances.
To construct a sequence of probability measures whose deficit converges to 0, we start with the Gaussian

measure with a small perturbation in the tails. It turns out that this perturbation controls the second moment and
the relative entropy, which leads to the desired result.

The problem of finding the best possible function space and metric remains open. The most general space in
the setting of the LSI is the space of probability measures with finite second moments, since if the relative entropy
is finite then so is the second moment.

In Chapter 5, we prove that stability of the entropic uncertainty principle, which is also called the Beckner–
Hirschman inequality (BHI), fails with respect to the normalized Lp distances some weighted measures. For a
nonnegative function h in L2(R) with ‖h‖2 = 1, the entropic uncertainty principle states that

δBH(h) = S(|h|2) + S(| ĥ|2) − (1 − log 2) ≥ 0

where S(·) denotes Shannon’s entropy, ĥ is the Fourier transform of h, and δBH(h) is the deficit of the Beckner–
Hirschman inequality. Carlen [40] showed that the deficit of the LSI is bounded below by that of the BHI, which
implies that the example constructed in Chapter 4 has a small deficit of the BHI. With careful computation, we
show that there exists a sequence of L2 normalized functions such that the deficit converges to 0 but the distance
from the class of optimizers does not. In these results, we consider the Lp distances with polynomial (Theorem
5.1.1) and exponential weights (Theorem 5.1.2).

The entropic uncertainty principle was first proposed by Hirschman [80], and proved by Beckner [20] by
differentiating the sharp Hausdorff–Young inequality with respect to the exponent. Inspired by the quantitative
Hausdorff–Young inequality of Christ [45], it is natural to ask if there is a stability estimate for the BHI. The
heuristic consideration in Chapter 5 suggests that the BHI could be stable in terms of the L2 distance, which is an
interesting open problem.

1.1.3 The expected lifetime of Brownian motion

In Chapter 6, we investigate stability of isoperimetric type inequalities arising from stochastic analysis and their
relation to geometric inequalities. This is based on my work [86].

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the symmetric α–stable process with generator

−(−∆)α/2. The first exit time of Xα
t from D is defined by

ταD = inf{t ≥ 0 : Xα
t ! D}

and the expected lifetime by uαD(x) = Ex[ταD], where Ex is the expectation associated with Xα
t starting at x ∈ Rn.

For α = 2, Xα
t is Brownian motion with generator ∆.

Bañuelos and Méndez-Hernández [16] showed that several isoperimetric type inequalities for Brownian motion
continue to hold for a wide class of Lévy processes using the symmetrization of Lévy processes and the multiple
integral rearrangement inequalities of Brascamp–Lieb–Luttinger [31]. Indeed, they proved that if Yt is a Lévy
process, its Lévy measure is absolutely continuous with respect to the Lebesgue measure, and f and V are
nonnegative continuous functions, then for any x ∈ D and t > 0,

E0[ f ∗(Y ∗
t ) exp

(∫ t

0
V∗(Y ∗

s ) ds
)

; τY
∗
t

B > t] ≥ Ex[ f (Yt ) exp
(∫ t

0
V(Ys) ds

)
; τYtD > t]
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where f ∗ and V∗ are the symmetric decreasing rearrangements of f and V , Y ∗
t is the symmetrization of Yt , and B is

a ball centered at 0 with |D| = |B|; see [16, Theorem 1.4]. A particular case of this is that for all t ≥ 0 and x ∈ Rn,

P0(ταB > t) ≥ Px(ταD > t), (1.1.8)

which yields
uαB(0) ≥ uαD(x), (1.1.9)

where B is a ball centered at 0 with |B | = |D |. In fact, (1.1.8) gives

E0(ταB )p ≥ Ex(ταD)p (1.1.10)

for all p > 0. Talenti [110] proved that the Lp norm of a solution of a second-order elliptic equation is maximized
when the elliptic operator and the domain are symmetrically rearranged. In particular, the result yields that for
p > 0, α = 2, and a bounded domain D,

‖uB ‖p ≥ ‖uD ‖p (1.1.11)

where B is a ball with |B | = |D |.
Given the above isoperimetric type inequalities for the first exit times of the α-stable processes and their

connection to the classical torsion function, there are many questions that arise concerning quantitative versions
of these inequalities. The goal of Chapter 6 is to study quantitative versions of the expected lifetime inequalities
(1.1.9) for α = 2 and (1.1.11) for p ≥ 1.

The first main result is a lower bound of the deficit of (1.1.9) in terms of the deviations of x and D from the
optimizers. Note that equality holds in (6.2.1) if D is a ball and uD(x) = maxy∈D uD(y). The deviation of x is
represented by |{y ∈ D : uD(y) > uD(x)}|, and the deviation of D by the Fraenkel asymmetry, which is defined
by

A(D) = inf
{
|D△B|
|D| : B is a ball with |B| = |D |

}
. (1.1.12)

The proof is based on the proof of (1.1.9) for α = 2 in [6, 110], and the sharp quantitative isoperimetric
inequality [64]. In order to estimate the asymmetry of the level set, we use the idea of Hansen and Nadirashvili [76]
as in the proof of the boosted Pólya–Szegö inequality [33, Lemma 2.9].

The second result is a quantitative inequality for the Lp norm of the expected lifetime (1.1.11), 1 ≤ p ≤ ∞.
We define the Lp deficit of the expected lifetime inequality for 1 ≤ p ≤ ∞ by

δp(D) = 1 −
( ‖uD ‖p
‖uB ‖p

)κ(p)

where κ(p) = p for 1 ≤ p < ∞, κ(∞) = 1, and B is a ball centered at 0 with |B| = |D |. Let n ≥ 2 and D be a
bounded domain in Rn. For 1 ≤ p ≤ ∞, we have

δp(D) ≥ Cn,pA(D)2+κ(p). (1.1.13)

The torsional rigidity of D is defined by T(D) = ‖uD ‖1. In this context, we call uD the torsion function of D. The
Saint-Venant inequality states that the torsional rigidity is maximized when the region is a ball. If p = 1, the result
produces the non-sharp quantitative Saint-Venant inequality

T(B) − T(D) ≥ Cn,1T(B)A(D)3, (1.1.14)

which was proven in [33]. Thus the result can be thought of as an extension of (1.1.14) to the case 1 < p ≤ ∞. Note
that Brasco, De Philippis, and Velichkov [34] showed that the sharp exponent of (1.1.14) is 2 in the sense that the
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power cannot be replaced by any smaller number. Their method, however, does not give an explicit dimensional
constant because the proof relies on the selection principle of Cicalese and Leonardi [49].

The key step in the proof is the removal of t∗ defined in (6.2.3). In [33], the authors proved a non-sharp quan-
titative Saint-Venant inequality using the boosted Pólya–Szegö inequality. In the proof, they used the variational
representation for T(D) to replace the term t∗ by A(D) (up to dimensional constant). In our case, however, the Lp

norm of the expected lifetime does not have an appropriate variational formula for 1 < p ≤ ∞. To overcome this
difficulty, we find a critical level t0 which is comparable to A(D) and use the layer cake representation of the Lp

norm for p ∈ (1,∞) and the strong Markov property for p = ∞.
The fractional analogue of (1.1.14) is proven in [32]. They showed that if n ≥ 2, α ∈ (0, 2), and D is an open

set with |D | = 1, then

Tα(B) − Tα(D) ≥ Cn,αA(D) 6
α

where Cn,α is explicit and B is a ball with |B| = 1. Here Tα(D) is the fractional torsional rigidity defined in
(6.4.3). Furthermore, they proved that if D has Lipschitz boundary and satisfies the exterior ball condition, then the
exponent can be lowered to 2 + 2

α . It turns out that our method for removing t∗ yields the same exponent without
any additional geometric assumptions on D.

1.2 Littlewood–Paley inequality

Littlewood–Paley square (quadratic) functions have been of interest for many years with many applications in
harmonic analysis and probability. On the analysis side, these include the classical square functions obtained from
the Poisson semigroup as in [106] and more general heat semigroups as in [107]. On the probability side, these
correspond to the celebrated Burkholder–Gundy inequalities which are of fundamental importance in modern
stochastic analysis.

Littlewood–Paley Lp inequalities have played an important role in a broad area of analysis and probability.
These inequalities give a nice way of understanding the qualitative and quantitative properties of functions and
operators. In the classical case, the Lp inequalities for square functions are obtained from the Calderón–Zygmund
theory, which relies on the property of harmonic functions.

In Chapter 7, we introduce a fractional analogue of the Littlewood–Paley square function and derive an Lp–Lq

inequality for the square function. It turns out that the square function and its inequality hold for a general setting.
As an application, we prove a Hardy–Littlewood–Sobolev inequality for symmetric Markov semigroups. This is
based on my work [84].

In [106], Stein provided an alternative approach to obtaining the Lp bound for the square function using the
so-called Hardy–Stein identity. In Chapter 8, we extend this to non-symmetric pure jump Lévy processes and
derive the Lp inequalities for the corresponding square functions. As an application, we define a certain class of
the Fourier multipliers and prove the Lp boundedness of the multipliers. This is based on joint work with Rodrigo
Bañuelos [11].

1.2.1 The Hardy–Littlewood–Sobolev inequality

The Hardy–Littlewood–Sobolev (HLS) inequality, first derived by [77, 78, 105], states that∫
Rn

∫
Rn

f (x)g(y)
|x − y |n−α dxdy ≤ Cn,α,p ‖ f ‖p ‖g‖r

where 1 < p < q < ∞, 1 = 1
p +

1
r −

α
n , 0 < α < n, f ∈ Lp(Rn), and g ∈ Lr (Rn). Lieb [90] showed the existence of

optimizers and obtained the explicit formulas for optimizers in special cases. In light of its geometric implications,
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a subsequent problem is to extend the sharp HLS inequality to a more general setting than Rn. Because Lieb’s
result is based on rearrangement techniques which do not apply to outside of Rn, it is necessary to find a new
way of proving Lieb’s inequality. There have been several attempts along this line, for instance [42,60]. Frank and
Lieb [61] extended the sharp HLS inequality to the Heisenberg group using a radically new method.

In Chapter 7, we study an extension of the HLS inequality to symmetric Markov semigroups. We give a
stochastic representation for the fractional integrals for symmetric Markov semigroups and derived an analogue
of the HLS inequality for the semigroups. The stochastic representation is based on the techniques of Gundy and
Varopoulos [70–72] where the background radiation processes and time reversal were used to obtain the proba-
bilistic representations for the Riesz transforms. The representation is a variation of the one used by Applebaum
and Bañuelos [3], which is based on the space-time Brownian motion and martingale inequalities. Unlike the
space-time Brownian motion representation which requires a gradient in the space variable (or a carré du champ),
the representation in Theorem 7.2.1 only requires the time derivative which is well defined for general semigroups.

To prove the (non-sharp) HLS inequality for symmetric Markov semigroups, we introduce a fractional
Littlewood–Paley square function for symmetric Markov semigroups and derive a new Lp–Lq inequality for
the square function. The proof is based on the ergodic inequality for maximal functions, the optimal splitting
technique of [79, 106], and an estimate for the classical Littlewood–Paley square functions in [107].

The basic question, in connection with the problem of finding the sharp inequality, is how to bypass the
Littlewood–Paley square function method and the optimal splitting argument. This optimal splitting is also a key
step in the proof of Applebaum and Bañuelos [3], although it is done in combination with the Burkholder–Davis–
Gundy inequalities.

The stochastic representation of the fractional integral can be thought of as a martingale transform where the
predictable process is not bounded. Martingale transform techniques have been used quite effectively in the study
of singular integral operators, particularly in obtaining optimal, or nearly optimal inequalities. Given the powerful
martingale and Bellman function methods pioneered by Burkholder [37] to obtain sharp inequalities for martingale
transforms and their many subsequent uses in various problems in analysis and probability, it is natural to ask
if these techniques can be extended to martingale transforms with unbounded predictable processes and provide
a different proof of the sharp HLS inequalities which could be extended to other settings. At this moment, it is
unclear how to obtain the sharp results with the Bellman function methods. This remains an interesting challenging
problem.

1.2.2 Hardy–Stein identity for nonlocal operators and Fourier multipliers

Littlewood–Paley square functions and their Lp inequalities have been extensively studied with applications in
the study of function spaces, PDEs, and Fourier multiplier operators. From the probabilistic point of view, square
functions and the Lp inequalities correspond to the quadratic variations of martingales and the Burkholder–
Davis–Gundy inequalities. In the classical case, the Lp inequalities for square functions are obtained from the
Calderón–Zygmund theory, which relies on the property of harmonic functions. In [106], Stein provided an
alternate approach to obtaining the Lp bound for the square function when 1 < p < 2. Using the chain rule and
Green’s theorem, he derived the so-called Hardy–Stein identity [106, Equation (16), p.88], which states that for
f ∈ Lp(Rd), ∫

Rd
| f |pdx =

∫ ∞

0

∫
Rd

y∆updxdy

where u is the harmonic extension of f to the upper half-space. This approach can be adapted to more general
diffusion operators for which the chain rule holds.

In [10], the authors extended the Littlewood–Paley Lp inequalities for 1 < p < ∞ to nonlocal operators arising
from symmetric pure jump Lévy processes. Their proof is based on the Burkholder–Gundy inequalities and the
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Hardy–Stein type identity for symmetric pure jump Lévy processes. As an application, they introduced a certain
family of Fourier multiplier operators and proved the Lp boundedness.

In Chapter 8, we extend the Hardy–Stein identity of [10] to non-symmetric pure jump Lévy processes. For
a, b ∈ R and p ∈ (1,∞), let F(a, b; p) be the second-order Taylor remainder of the maps x ,→ |x |p given by
F(a, b; p) = |b|p − |a|p − pa|a|p−2(b − a). Let Pt be the semigroup corresponding to a non-symmetric pure jump
Lévy process and ν the Lévy measure. In this setting, we prove the following Hardy–Stein identity (Theorem
8.3.1): for f ∈ Lp(Rd) and 1 < p < ∞,

∫
Rd

| f |pdx =
∫
Rd

∫ ∞

0

∫
Rd

F(Pt f (x), Pt f (x + y); p) ν(dy)dtdx.

Compared to the result of [10] where the authors used properties of the semigroups, our proof relies on Itô’s
formula for general jump processes, which allows us to extend the identity to non-symmetric cases. Furthermore,
it gives a Hardy–Stein type identity for uniformly integrable martingales in L2 ∩ Lp (Theorem 8.3.5).

We also prove the Lp–boundedness of a certain class of Fourier multiplier operators for non-symmetric pure
jump Lévy processes (Theorem 8.4.1). Since the two-sided Lp–inequalities for square functions rely heavily on
the symmetry of the Lévy measures, the application to Fourier multiplies also requires it. To bypass this difficulty,
we employ the symmetrization technique as in [16].
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Chapter 2

Preliminaries

2.1 Probability metrics

2.1.1 The Wasserstein distances

For p ≥ 1 and a probability measure µ, the p-th moment of µ is given by mp(µ) =
∫
Rn

|x |pdµ. We say that µ
has finite p-th moment if mp(µ) < ∞. The space of probability measures with finite p-th moments is denoted by
Pp(Rn). The Wasserstein distance of order p between two probability measures µ, ν ∈ Pp(Rn) is

Wp(µ, ν) = inf
π

(∬
Rn×Rn

|x − y |pdπ(x, y)
) 1

p

where the infimum is taken over all probability measures π on Rn × Rn with marginals µ and ν. In general, one
can define the optimal transportation cost with a cost function c(x, y) on Rn × Rn by

Tc(µ, ν) = inf
π

(∬
Rn×Rn

c(x, y)dπ(x, y)
)
. (2.1.1)

In particular, W1 is called the Kantorovich–Rubinstein distance and W2 is called the quadratic Wasserstein distance.
For p ≥ 1, Wp defines a metric on Pp(Rn). For p1 < p2 and probability measures µ, ν ∈ Pp2 (Rn), it follows

from Jensen’s inequality that Wp1 (µ, ν) ≤ Wp2 (µ, ν) and Pp2 (Rn) ⊆ Pp1 (Rn). The Wasserstein distance of order p
is stronger than the weak convergence: let νk be a sequence of probability measures in Pp(Rn), then νk converges
to µ in Wp if and only if νk ⇀ µ weakly and mp(νk) → mp(µ) as k → ∞.

Let µ and ν be probability measures with finite second moments. Then there exists a map T : Rn → Rn such
that ν(A) = µ(T−1(A)) for all Borel sets A in Rn and

W2
2 (µ, ν) =

∫
Rn

|T(x) − x |2dµ.

It is well-known that the map T is uniquely determined µ-almost everywhere and is the gradient of a convex
function ϕ such that T = ∇ϕ. The map is called the Brenier map.

We say a function ϕ is 1-Lipschitz if |ϕ(x) − ϕ(y)| ≤ |x − y | for all x, y ∈ Rn. The Kantorovich–Rubinstein
distance W1 has a dual form

W1(µ, ν) = sup
{∫
Rn
ϕ(dµ − dν) : ϕ ∈ L1(d |µ − ν |), ϕ is 1-Lipschitz.

}
.
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On the real line, we have explicit formulas for W1. For probability measures µ and ν on R, let F and G be the
distribution functions of µ and ν. Then the W1 distance between µ and ν can be written as

W1(µ, ν) =
∫ 1

0
|F−1(t) − G−1(t)|dt =

∫
R
|F(x) − G(x)|dx.

Let γ be the Gaussian measure and dν = f dγ. The relative entropy functional ν ,→ H( f ) is stronger than the
total variation distance but weaker than the Lp-norm for p > 1 in a sense that

2‖ f − 1‖2
L1(dγ) ≤ H( f ) ≤ 2

p − 1
‖ f − 1‖p

Lp (dγ) + 2‖ f − 1‖Lp (dγ). (2.1.2)

The first inequality is called Pinsker’s inequality and the second inequality follows from Hölder’s inequality and
the fact that t log t ≤ 2

p−1 |t − 1|p + 2|t − 1|, for all t ≥ 0 (see [56, p.93]). In particular, the second inequality tells
us that if the relative entropy does not converge to zero then f dγ does not converge to dγ in Lp for p > 1, which
is a key ingredient in the proof of Theorem 4.1.1.

Talagrand [108] introduced the inequality

δTal( f ) = 2H( f ) − W2
2 ( f dγ, dγ) ≥ 0 (2.1.3)

where δTal( f ) is the deficit of Talagrand’s transportation inequality. This implies that the relative entropy is
stronger than the quadratic Wasserstein distance. Otto and Villani [99] proved that the LSI implies Talagrand’s
transportation inequality. If ν ∈ P2 is centered, then Cordero-Erausquin [51] showed

δTal( f ) ≥ C min
{
W2

1 ( f dγ, dγ),W1( f dγ, dγ)
}
. (2.1.4)

Note that a comparable stability result was also shown in [57] . The quantitative Talagrand’s transportation
inequality is one of the main ingredients in the proof of Theorem 3.2.6. Otto and Villani proved the HWI inequality
which is an “interpolation” inequality between the relative entropy, the Wasserstein distance, and the Fisher
information

H( f ) ≤ W2(dν, dγ)
√

I( f ) − 1
2

W2
2 (dν, dγ). (2.1.5)

We refer the reader to [1, 113] for further details.

2.1.2 The total variation distance

Let µ and ν be probability measures. The total variation distance between µ and ν is defined by

dTV(µ, ν) = sup
A

|µ(A) − ν(A)|

where the supremum is taken over all Borel sets in Rn and yields a stronger topology than the weak topology. That
is, if dTV(µ, νk) → 0 as k → ∞, then νk converges weakly to µ (however, the converse does not hold). The total
variation distance can be thought of as the optimal transportation distance (2.1.1) with c(x, y) = 1{x!y }. It has a
dual form

dTV(µ, ν) = sup
0≤ |ϕ |≤1

∫
Rn
ϕ(dµ − dν).

If dν = f dµ, then the total variation distance dTV(µ, ν) can be written in terms of the L1–norm

dTV(µ, ν) =
1
2
‖ f − 1‖L1(dµ).

It is well-known that the total variation distance is comparable to the Hellinger distance

‖
√

f − 1‖2
L2(dµ) ≤ ‖ f − 1‖L1(dµ) ≤ 2‖

√
f − 1‖L2(dµ). (2.1.6)
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2.1.3 Comparison between probability metrics

This subsection is devoted to introduce probability metrics and investigate their relations. The following is based
on [25, 67, 113].

Definition 2.1.1. Let (Ω,F , λ) be a measure space. For probability measures dµ = f dλ and dν = gdλ, the
Hellinger distance is defined by

dH(µ, ν) =
( ∫
Ω

|
√

f − √
g |2dλ

) 1
2
.

Note that dH is a metric and 0 ≤ dH(µ, ν) ≤
√

2.

Definition 2.1.2. Let (Ω,F ) be a measurable space. Let µ and ν be probability measures on (Ω,F ). The total
variation distance is

dTV(µ, ν) = sup
h

....
∫
Ω

hdµ −
∫
Ω

hdν
....

where the supremum is taken over all measurable functions h : Ω→ R with |h(x)| ≤ 1.

Definition 2.1.3. Let (Ω, d) be a Polish space. Let µ and ν be probability measures on Ω. For a Borel set B and
ε > 0, Bε = {x ∈ Ω : infy∈B d(x, y) ≤ ε}. The Prokhorov metric is defined by

dP(µ, ν) = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for all Borel sets B}.

If X and Y random variables with the laws µ and ν, then it follows from Strassen’s theorem that

dP(µ, ν) = inf
P
{ε > 0 : P(d(X,Y ) > ε) < ε}

where the infimum is taken over all joint distributions of X and Y . Similarly, we have

dTV(µ, ν) = inf E[1{X!Y }] = sup{µ(F) − ν(F) : F closed}.

Definition 2.1.4. The Kolmogorov distance between two probability measures µ and ν on R is given by

dK(µ, ν) = sup
x∈R

|µ((−∞, x]) − ν((−∞, x])|.

If F and G are distribution functions of µ and ν, then we denote by dK(F,G) = dK(µ, ν). One can see that
0 ≤ dK(µ, ν) ≤ 1.

Definition 2.1.5. Let µ and ν be probability measures on R with distribution functions F and G. The Lévy metric
is defined by

dL(µ, ν) = dL(F,G) = inf{ε > 0 : G(x − ε) − ε ≤ F(x) ≤ G(x + ε) + ε, ∀x ∈ R}.

Proposition 2.1.6. Let µ and ν be probability measures on R, then we have

dL(µ, ν) ≤ min{dK(µ, ν), dP(µ, ν)}
≤ max{dK(µ, ν), dP(µ, ν)}

≤ min{dTV(µ, ν),
√

W1(µ, ν)}.

Proposition 2.1.7. Let µ be a probability measure on R and γ the standard Gaussian measure on R, then

dK(µ, γ) ≤ 2dP(µ, γ).
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Proposition 2.1.8 ( [25, Proposition A.1.2]). Let µ, ν ∈ PM
2 (R), then

W1(µ, ν) ≤ 2dL(µ, ν) + 2
√

MdL(µ, ν)1/2,
W1(µ, ν) ≤ 4

√
MdK(µ, ν)1/2.

Proposition 2.1.9. Let Ω be a measurable space. Let µ and ν be probability measures on Ω, then

dH(µ, ν)2 ≤ dTV(µ, ν) ≤ 2dH(µ, ν).

2.2 The LSI deficit bounds

Let dγ = (2π)− n
2 e−

|x |2
2 dx be the standard Gaussian measure on Rn and f a nonnegative function in L1(dγ) such

that dν = f dγ is a probability measure. We define the Fisher information and the relative entropy of f with respect
to γ by

I(ν) = I( f ) =
∫
Rn

|∇ f |2
f

dγ,

H(ν) = H( f ) =
∫
Rn

f log f dγ.

The classical logarithmic Sobolev inequality (the LSI) states that

δ( f ) = 1
2

I( f ) − H( f ) ≥ 0. (2.2.1)

We call δ( f ) the deficit of the LSI. In this section, we discuss some estimates on the LSI deficit that we will call
upon later.

2.2.1 Carlen’s deficit estimate

Carlen [40] characterized the equality cases in two ways: if f ∈ Lp(R2n) is a product function in (x, y) and(
x+y√

2
,
x−y√

2

)
, then f and its factors are Gaussian functions. Thereafter, he proved a Minkowski-type inequality and

derived the strict superadditivity of the Fisher information. Combining this with the factorization theorem, he
deduced that equality holds in (2.2.1) only if eb ·x−

b2
2 , b ∈ Rn.

The second proof is based on the Beckner–Hirschman entropic uncertainty principle. Indeed, he derived a
lower bound of the LSI deficit in terms of the relative entropy of the Fourier–Wiener transform, which leads to the
characterization of the equality cases.

Let g(x) := 2 n
4 e−π |x |

2 and dm = g(x)2dx. The Fourier transform of f in L2(Rn) is

F ( f )(ξ) = f̂ (ξ) =
∫
Rn

e−2πix ·ξ f (x) dx.

Let U : L2(dx) → L2(dm) be defined by f ,→ f /g and W := UFU∗ on L2(dm) where U∗ is the adjoint operator
of U. The operator W is called the Fourier–Wiener transform. Let f ∈ L2(dm) with ‖ f ‖L2(dm) = 1. By the
Plancherel theorem, we have ‖W f ‖L2(dm) = ‖ f ‖L2(dm) = 1. The LSI deficit with respect to dm is defined by

δc( f ) = 1
2π

∫
Rn

|∇ f |2 dm −
∫
Rn

| f |2 log | f |2 dm.

For a probability measure f dγ, let u f (x) = ( f (2
√
πx))1/2. Then u2

f dm is a probability measure and δ( f ) = δc(u f ).
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For a nonnegative function ρ on Rn with
∫
ρ dx = 1, the entropy of ρ is given by

S(ρ) = −
∫
ρ log ρ dx. (2.2.2)

The Beckner–Hirschman inequality [20] states that for a function h with
∫
|h|2dx = 1,

S(|h|2) + S(|F (h)|2) ≥ n(1 − log 2). (2.2.3)

Let µ be a probability measure and f a nonnegative function such that f dµ is a probability measure. The relative
entropy of f with respect to µ is denoted by

Entµ( f ) =
∫

f log f dµ.

Theorem 2.2.1 ( [40, Theorem 6]). Let f ∈ L2(dm) be normalized, then

δc( f ) ≥ Entdm(|W f |2). (2.2.4)

Proof. Let h = U∗ f , then (2.2.3) yields

S(|h|2) + S(|F (h)|2) = S(| f g |2) + S(|W( f )g |2)

=

∫
R
(|h|2 + |F (h)|2)(2π |x |2 − n

2
log 2) dx

− (Entdm(| f |2) + Entdm(|W f |2))
≥ n(1 − log 2).

Since ‖h‖2 = ‖F (h)‖2 = 1, it suffices to show that

1
2π

∫
(|2πxh|2 + |2πxF (h)|2) dx =

1
2π

∫
|∇ f |2 dm + n.

Using ∇(g−1) = 2πxg−1, −2πxF (h) = F (∇h), and Parseval’s formula, we have∫
(|2πxh|2 + |2πxF (h)|2)dx =

∫
(|∇(g−1)h|2 + |g−1∇h|2) dm

=

∫
|∇(g−1)h + g−1∇h|2 dm − 2π

∫
x · ∇(|h|2) dx

=

∫
|∇ f |2 dm + 2πn,

which finishes the proof. □

Remark 2.2.2. For h ∈ L2(dx) with
∫
|h|2 dx = 1, we define the deficit of the Beckner–Hirschman inequality by

δBH(h) = S(|h|2) + S(| ĥ|2) − n(1 − log 2).

In fact, the proof of Theorem 2.2.1 yields

δc( f ) −
∫
Rn

|W( f )|2 log |W( f )|2dm = δBH( f g). (2.2.5)

Remark 2.2.3. Suppose f ≥ 0 and δc( f ) = 0, then Theorem 2.2.1 yields Entdm(|W f |2) = 0. By Cramér’s
theorem, one obtains f (x) = e2π(b ·x− |b |2

2 ) for some b ∈ Rn, which is equivalent to the cases of equality in (2.2.1).
Indeed, since |W f |2 = 1 a.e., we have

|F (h)(x)|2 = F (h(x))F (h(−x)) = g2(x)

13



where h(x) = g(x) f (x). By the Fourier inversion theorem,
∫

h(x)h(x + y) dy = 2−
n
2 e−

π |x |2
2 ,

which yields in turn that h is Gaussian by Cramér’s theorem. Since |W f | = 1, we get W f = eib ·x as desired.

In §3.2.2, we investigate the lower bound Entdm(|W f |2) to obtain weak stability of the LSI. Combining
Carlen’s estimate with the optimal transport method, we also get several types of deficit bounds which hold for a
wide class of probability measures.

2.2.2 Optimal transport method

Let µ and ν be Borel probability measures on Rn. We say that a map T : Rn → Rn pushes µ forward to ν if
ν(B) = µ(T−1(B)) for every Borel set B ⊂ Rn. Brenier [36] and McCann [94] showed that if µ is absolutely
continuous with respect to the Lebesgue measure, then there exists a convex function ϕ such that T = ∇ϕ pushes
µ forward to ν and ∇ϕ is uniquely determined µ-a.s. If µ and ν have finite second moments, then π0 = (Id × ∇ϕ)
is the optimal plan for

W2(µ, ν)2 = inf
π

∬
|x − y |2 dπ(x, y) =

∫
|x − T(x)|2 dµ(x),

where the infimum is taken over all probability measures π on Rn × Rn with marginals µ and ν.
Cordero-Erausquin [50] used the Brenier map to derive the following inequality that holds for a wide class of

probability measures, which entails the logarithmic Sobolev inequalities, Talagrand’s transport inequalities, and
the HWI inequalities.

Theorem 2.2.4 ( [50, Theorem 1]). Let µ be a probability measure on Rn of the form dµ(x) = e−V (x)dx, where V
is a twice differentiable function satisfying Hess V ≥ c for some c ∈ R. Let f , g : Rn → [0,∞) be non-negative
compactly supported functions. Assume that f ∈ C1 and

∫
f dµ =

∫
gdµ. If T(x) = x + ∇θ is the Brenier map

pushing f dµ forward to gdµ, then

Entµ(g) ≥ Entµ( f ) +
∫

∇ f · ∇θdµ + c
2

∫
f |∇θ |2dµ

+

∫
(∆Aθ − log det(I + Hess θ)) f dµ (2.2.6)

where ∆A denotes the Aleksandrov Laplacian.

Remark 2.2.5. For µ = γ and g ≡ 1 (using an approximation argument), (2.2.6) yields

δ( f ) ≥ 1
2

∫
|∇(log f ) + ∇θ |2 f dγ +

∫
(∆Aθ − log det(I + Hess θ)) f dµ. (2.2.7)

Remark 2.2.6. If we apply this theorem to µ = dm (i.e. V(x) = 2π |x |2 and c = 4π), then one can see

1
2π

∫
|∇ f |2 dm + Entdm(|g |2) ≥ Entdm(| f |2) +

1
2π

∫
|2π f∇θ + ∇ f |2 dm

where T(x) = x + ∇θ is the Brenier map pushing | f |2dm forward to |g |2dm. In particular, if g =W f , then

δc( f ) + Entdm(|W f |2) ≥ 1
2π

∫
|2π f∇θ + ∇ f |2 dm. (2.2.8)
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2.2.3 Scaling asymmetry of the logarithmic Sobolev inequality

Following the proof of [53, Proposition 1], we obtain a lower bound of the deficit in terms of the second moment
and the relative entropy.

Proposition 2.2.7. If dν = f dγ ∈ P2(Rn) and
√

f ∈ W1,2(Rn, dγ), then

δ( f ) ≥ 1
4n

((m2(γ) − m2(ν)) + 2H( f ))2 . (2.2.9)

Proof. Let u ∈ H1(Rn, dγ) be such that
∫
|u|2dγ = 1 and

∫
|x |2 |u|2dγ = s < ∞. Let dγ = γ(x)dx. We define

v = u
√
γ, then

∫
|v |2dx = 1 and

∫
|x |2 |v |2dx = s. Direct computations show that

|∇v |2 = |√γ∇u − 1
2

u
√
γx |2 = |∇u|2γ + 1

4
|x |2 |u|2γ + 1

2
∇(u2) · ∇γ,

and ∫
|∇v |2dx =

∫
|∇u|2dγ +

1
4

∫
|x |2 |u|2dγ +

1
2

∫
∇(u2) · ∇γdx

=

∫
|∇u|2dγ +

1
4

∫
|x |2 |u|2dγ − 1

2

∫
u2(−n + |x |2)dγ

=

∫
|∇u|2dγ − 1

4

∫
|x |2 |u|2dγ +

n
2

∫
|u|2dγ.

Similarly, we have
∫

|v |2 log |v |2dx =
∫

|u|2 log |u|2dγ − 1
2

∫
|x |2 |u|2dγ − n

2
log(2π)

∫
|u|2dγ.

It then follows from the LSI with respect to γ that
∫

|∇u|2dγ − 1
2

∫
|u|2 log |u|2dγ =

∫
|∇v |2dx − 1

2

∫
|v |2 log |v |2dx − n

4
log(2πe2).

Let w(x) := λ− n
2 v(x/λ) for λ > 0, then

∫
Rn

|w |2dx = 1,
∫
Rn

|x |2 |w |2dx = λ2s,
∫

|∇v |2dx = λ2
∫

|∇w |2dx,∫
|v |2 log |v |2dx =

∫
|w |2 log |w |2dx + n log λ.

The LSI with respect to the Lebesgue measure yields

λ2
∫

|∇w |2dx − n
2

log λ ≥ 1
2

∫
|w |2 log |w |2dx +

n
4

log(2πe2).

Optimizing the LHS in λ, we have
∫

|∇w |2dx ≥ nπe
2

exp
(2

n

∫
|w |2 log |w |2dx

)
.

Let w =
√

f γ, dν = f dγ, and A = 1
n (2H( f ) + (m2(γ) − m2(ν)), then

δ( f ) ≥ n
2
(eA − 1 − A) ≥ 1

4n
(2H( f ) + (m2(γ) − m2(ν))2.

□
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2.3 Stability for Cramér’s theorem

Cramér’s theorem says that if the sum of two independent random variables has a normal distribution, then both
random variables are normal. Let X and Y be independent random variables with distribution functions F and G
respectively, then the Kolmogorov distance between X and Y is given by

dK(F,G) = sup
x∈R

|F(x) − G(x)|.

Let F ∗ G be the distribution of the sum X + Y so that it is defined by

F ∗ G(x) =
∫
R

F(x − y)dG(y).

If p1 and p2 are density functions of X and Y , one can write it as

F ∗ G(x) =
∫ x

−∞
p1 ∗ p2(t)dt .

Let γb,σ(x) = 1√
2πσ2 e−

|x−b |2
2σ2 be the Gaussian density with mean b, variance σ2, andΦb,σ its distribution function.

For simplicity, let Φσ := Φ0,σ and Φ := Φ0,1. We recall the following stability result of Cramér’s theorm
from [68,103].

Theorem 2.3.1 ( [25, Theorem 2.2]). Let ε > 0 and N = N(ε) = 1+
√

2 log(1/ε). Let X1, X2 be random variables
with distribution functions F1, F2. We also put

ai =
∫ N

−N
xdFi(x), σ2

i =

∫ N

−N
x2dFi(x) − a2

i

for i = 1, 2. Suppose that F1 and F2 have median zero and σ1,σ2 > 0. If dK(F1 ∗ F2,Φ) ≤ ε < 1, then there exist
absolute constants C1,C2 > 0 such that for i = 1, 2,

dK(Fi,Φai,σi ) ≤
Ci

σi
√

log(1/ε)
min

{
1

√
σi
, log log

ee

ε

}
.

A general version of the stability result can be found in [25].

Theorem 2.3.2 ( [25, Theorem 2.3]). Let X1, X2 be independent random variables with E[X1] = E[X2] = 0 and
Var[X1+X2] = 1. For i = 1, 2, let Fi be the distribution function of Xi and v2

i = Var(Xi). If dK(F1 ∗F2,Φ1) ≤ ε < 1,
then there exists C > 0 such that

dK(Fi,Φvi ) ≤
C

vi

√
log 1

ε

min
{

1
√
vi
, log log

ee

ε

}

for i = 1, 2.

2.4 Entropic uncertainty principle

For a nonnegative function h on Rn, the entropy of h is given by

S(h) = −
∫
Rn

h log h dx.

Let h ∈ L2(Rn) with ‖h‖2 = 1. The Beckner–Hirschman inequality (the BHI in short) states that

S(|h|2) + S(| ĥ|2) ≥ n(1 − log 2) (2.4.1)
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where ĥ(ξ) =
∫
Rn

e−2πix ·ξ h(x)dx. It is also called the entropic uncertainty principle. By differentiating the (non-
sharp) Hausdorff–Young inequality in p at p = 2, Hirschman obtained S(|h|2)+S(| ĥ|2) ≥ 0. He conjectured in [80]
that the Gaussian functions are extremal for the inequality and the best constant in the right hand side of (2.4.1) is
n(1− log 2). Beckner [20] found the best constant in the Hausdorff–Young inequality for all p ∈ [1, 2], which gave
an affirmative answer to the conjecture.

Even though the Gaussian functions satisfy the equality, it was an open problem to show that the Gaussians
are the only optimizers. Lieb [91] characterized the class of optimizers for the Hausdorff–Young inequality and
the BHI. Indeed, he proved that every optimizer for a convolution operator with a Gaussian kernel is Gaussian.
Equality holds in (2.4.1) if and only if h is of the form

h(x) = ce−〈x,Jx 〉+x ·v

where c ∈ C, v ∈ Cn, and J is an n × n real positive definite matrix (see [40, Remarks in p.207]).

2.5 Torsional rigidity

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the rotationally symmetric α–stable process with

generator −(−∆)α/2. The first exit time of Xα
t from D is defined by

ταD = inf{t > 0 : Xα
t ! D}.

The expected lifetime is defined by uαD(x) = Ex[ταD] where Ex is the expectation associated with Xα
t starting at

x ∈ Rn. Note that uαD(x) is a solution to the equation



(−∆) α

2 u(x) = 1, x ∈ D,

u(x) = 0, x ! D
(2.5.1)

in the weak sense. If B is a ball of radius R and centered at the origin, then uαB(x) is explicitly given by

uαB(x) = Cn,α(R2 − |x |2) α
2 .

For α = 2, Xα
t is Brownian motion with generator ∆. In this case, we drop the superscript α.

The semigroup Pα
t associated with Xα

t killed upon exiting D is given by

Pα
t f (x) = Ex[ f (Xα

t ); t < ταD]

on L2(D). The general semigroup theory yields (see [52]) that there exists an orthonormal basis {ϕn} of L2(D)
and the corresponding eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · such that Pα

t ϕn = e−tλnϕn and (−∆)α/2ϕn = λnϕn.
Using the representation of the transition density of Xα

t

pt (x, y) =
∞∑
n=1

e−λn tϕn(x)ϕn(y),

one obtains

Px(ταD > t) =
∫
D

pt (x, y)dy =
∞∑
n=1

e−λn t ‖ϕn‖1ϕn(x)

and

uαD(x) =
∫ ∞

0
Px(ταD > t)dt =

∞∑
n=1

‖ϕn‖1
λn
ϕn(x).
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In addition (see [29, Theorem 4.4]), there exist constants c1, c2 depending on D and α such that c1uαD(x) ≤ ϕ1(x) ≤
c2uαD(x) for all x ∈ D. For further information, we refer the reader to [29] and the references therein.

The classical torsional rigidity of D is defined by T(D) = ‖uD ‖1 for α = 2. We say that uD(x) is the torsion
function of D. Let W1,2

0 (D) be the completion of C∞
0 (D) with respect to the norm u ,→ ‖∇u‖2. We have variational

representations of the torsional rigidity

T(D) = max

{
‖u‖2

1

‖∇u‖2
2

: u ∈ W1,2
0 (D), u " 0

}
(2.5.2)

= max
{
2‖u‖1 − ‖∇u‖2

2 : u ∈ W1,2
0 (D), u " 0

}
.

Since uD is an optimizer for the maximization problems, we have T(D) = ‖uD ‖1 = ‖∇uD ‖2
2 . There are two

important inequalities for T(D). The Saint-Venant inequality, an isoperimetric type inequality for T(D), states that
if D is a set of finite measure in Rn then

|B|− n+2
n T(B) ≥ |D|− n+2

n T(D)

where B is a ball. The Kohler-Jobin inequality states that for a ball B,

λ1(D)T(D) 2
n+2 ≥ λ1(B)T(B)

2
n+2 .

Note that the classical Faber–Krahn inequality for the first eigenvalue λ1 follows from these two inequalities for
T(D):

λ1(D)
λ1(B)

≥
(

T(B)
T(D)

) 2
n+2

≥
(
|B |
|D |

) 2
n

. (2.5.3)

Furthermore, it is well-known [34] that stability of Saint-Venant inequality can be transferred to that of Faber–Krahn
inequalities for the first eigenvalues. To see this, suppose that there is a modulus of continuity Φ : [0,∞) → [0,∞)
such that Φ(t) = 0 if and only if t = 0, and

|B |− n+2
n T(B) − |D |− n+2

n T(D) ≥ Φ(A(D))

where A(D) is the Fraenkel asymmetry defined in (1.1.12). Without loss of generality, we assume that |D | = 1 and
B is a ball with |B| = 1. If T(B) ≤ 2T(D), it follows from (2.5.3) that

λ1(D)
λ1(B)

− 1 ≥
(

T(B)
T(D)

) 2
n+2

− 1 ≥ Cn

(
T(B)
T(D) − 1

)
≥ CnΦ(A(D)).

If T(B) > 2T(D), then λ1(D) − λ1(B) ≥ cn for some universal constant cn. Since 0 ≤ A(D) < 2, if there exists
M > 0 such that Φ(x) ≤ M for all x ∈ [0, 2), then one can choose Cn,M small enough that

λ1(D) − λ1(B) ≥ Cn,MΦ(A(D)).

Thus we obtain
|D| 2

n λ1(D) − |B| 2
n λ1(B) ≥ Cn,MΦ(A(D)).

This is called the Faber–Krahn hierarchy (see [33, Proposition A.1]).
The fractional torsional rigidity for 0 < α < 2 is defined by

Tα(D) =
∫
D

uαD(x) dx =
∫
D

∫ ∞

0
Px(ταD > t) dtdx.

There has been recent progress in the study of the fractional torsional rigidity. The isoperimetric inequality for
Tα(D), a fractional analogue of the Saint-Venant inequality, follows from [16, Corollary 5.4] where the isoperimetric
inequality was proven for a general class of Lévy processes. For the stable processes, it also follows from the sharp
rearrangement inequality of [62, Theorem A.1]. Recently, Brasco, Cinti, and Vita [32] proved a quantitative
improvement of the fractional Saint-Venant inequality. Their method is based on the extension of [39] and the
symmetrization argument of [65].
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Chapter 3

Stability of the logarithmic Sobolev
inequality

We investigate different probability measure spaces and metrics under which the logarithmic Sobolev inequality
is stable. We consider the Wasserstein distances, the Kolmogorov distance, and the Lp distances for p ≥ 1. To
obtain these results, we use optimal transport theory, Fourier analysis, and probability. This chapter is based on
joint work with Emanuel Indrei [82].

3.1 Setting

Let dγ = (2π)− n
2 e−

|x |2
2 dx be the standard Gaussian measure on Rn and f a nonnegative function in L1(dγ) such

that dν = f dγ is a probability measure. We define the Fisher information and the relative entropy of f with respect
to γ by

I(ν) = I( f ) =
∫
Rn

|∇ f |2
f

dγ,

H(ν) = H( f ) =
∫
Rn

f log f dγ.

The classical logarithmic Sobolev inequality (the LSI) states that

δ( f ) = 1
2

I( f ) − H( f ) ≥ 0. (3.1.1)

We call δ( f ) the deficit of the LSI. Note that the constant 1
2 is sharp and I( f ),H( f ) are well-defined if

√
f ∈

W1,2(Rn, dγ). Equality holds in (3.1.1) if and only if eb ·x−
b2
2 for some b ∈ Rn. Note that the Gaussian measure

(that is, f = 1) is the only centered optimizer. There are several proofs based on the central limit theorem [69],
the Ornstein–Uhlenbeck semigroup [88], the Prékopa–Leindler inequality [27], optimal transport theory [50], and
harmonic analysis [21, 40].

We are interested in measuring the deviation of a centered probability measure dν = f dγ from the Gaussian
measure γ, which is the only centered optimizer. Let A be a family of centered probability measures and d a metric
or a functional that identifies the equality cases. We say that the LSI is weakly stable under (d,A) if { fkdγ} ⊂ A
and δ( fk) → 0 implies d( fkdγ, dγ) → 0 as k → ∞. The LSI is stable if a modulus of continuity is explicit: for a
function Φ : [0,∞) → [0,∞) such that Φ(t) = 0 if and only if t = 0,

δ( f ) ≥ Φ(d( f dγ, dγ))
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for all f dγ ∈ A. Let P2(Rn) be the class of probability measures with finite second moments, and PM
2 (Rn) the

class of probability measures whose second moments are bounded by M > 0.

3.2 Statements of stability results

3.2.1 Optimal transport method

We present stability estimates obtained by the optimal transport technique (Theorem 2.2.4 and Remark 2.2.5).

Theorem 3.2.1. Let f dγ be a centered probability measure in PM
2 (R). Then there exists C = C(M) > 0 such that

δ( f ) ≥ C‖ f − 1‖4
L1(dγ). (3.2.1)

In the next chapter, we will see that (3.2.1) is false in Lp if p > 1 (Theorem 4.1.1) : there exists a sequence of
centered probability measures fkdγ ∈ PM

2 (R) (also on Rn) for which δ( fk) → 0 and

lim inf
k→∞

‖ fk − 1‖Lp (dγ) > 0.

A sufficient additional condition for Lp–stability is higher integrability.

Corollary 3.2.2. Let f dγ be a centered probability measure in PM
2 (R) such that

∫
| f |2p−1dγ ≤ N for some p > 1

and N > 0. Then there exists C = C(M, N, p) > 0 such that

δ( f ) ≥ C‖ f − 1‖8p
Lp (dγ).

We extend Theorem 3.2.1 to higher dimension, under some tensorization assumptions.

Corollary 3.2.3. Let f dγ be a probability measure such that
∫

xi f dγ = 0 and
∫

|xi |2 f dγ(xi) ≤ M a.e. x ′ = (x1, . . . , xi−1, xi+1, . . . , xn)

for some M > 0 and some i = 1, 2, · · · , n. Then there exists C = C(M) > 0 such that

δ( f ) ≥ C‖ f − 1‖4
L1(dγ).

Remark 3.2.4. Consider a class of probability measures f dγ such that ‖ f ‖L∞(Rn) < R for some R > 1. If
f (x1, . . . , xn) = Πn

i=1 fi(xi) and fj is centered for some j, then f satisfies the above condition. Therefore, the
constant C is independent of the dimension for this function space.

Corollary 3.2.5. Suppose f (x1, . . . , xn) = Πn
i=1 fi(xi), where fi ∈ PM

2 (R) and f dγ is a centered probability
measure. Then there exists C = C(n,M) > 0 such that

δ( f ) ≥ C‖ f − 1‖4
L1(dγ).

To prove Theorem 3.2.1, we apply the optimal transport technique and deduce that the total variation distance
is bounded above by W1 and the LSI deficit. Then we employ the following W1–stability result.

Theorem 3.2.6. Let f dγ be a centered probability measure in PM
2 (Rn). There exists a constant C = C(n,M) > 0

such that
δ( f ) ≥ C min{W1( f dγ, dγ),W4

1 ( f dγ, dγ)}.
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Remark 3.2.7. The proof is based on the stability estimates of Talagrand’s transportation inequality in terms of
W1 by [18, 51]. In the same way, one can obtain W1,1-stability from [57, Theorem 5].

Remark 3.2.8. Since W1–stability is not true in P2(Rn), the constant C = C(n,M) in Theorem 3.2.6 cannot be
taken independent of M (see Theorem 4.1.2). Furthermore, the constant C necessarily depends on the dimension
for the following reason: there exists a sequence of centered probability measures { fkdγ} in PM

2 (R) such that
δ( fk) → 0 by Example 4.3.2. Then Theorem 3.2.16 implies

n ≤ n + lim sup
k→∞

I( fk) ≤ M .

The proof of Theorem 3.2.6 is based on the observation that the relative entropy is bounded by the deficit
and the second moment via the HWI inequality. Then we combine this with a stability estimate for Talagrand’s
transportation inequality [51, 57].

The following theorem does not impose additional regularity assumptions or bounds on the second moment
and yields L1-stability in case that there is an L1 bound on the densities. For g ∈ L1(dγ) and α > 0, we define

B(α) = { f dγ ∈ P : f (x) ≥ α a.e. x}, (3.2.2)

B(α, g) = { f dγ ∈ P : α ≤ f (x) ≤ g(x) a.e. x} (3.2.3)

where P is the space of probability measures.

Theorem 3.2.9. Let α ∈ (0, 1] and f dγ ∈ B(α) be a centered probability measure. Then there exists C(α, n) > 0
and a linear function L f = a f · x + b f such that

δ( f ) ≥ C(α, n)‖ log f − L f ‖2
L1(dγ), (3.2.4)

where a f ∈ Rn, b f ∈ R, and |a f | + |b f | ≤ c for some c = c(n, α) > 0.

Corollary 3.2.10. Let α ∈ (0, 1] and { fkdγ} ⊂ B(α) be a sequence of centered probability measures such that
δ( fk) → 0 as k → ∞. Then there exist a subsequence { fk j } ⊂ { fk} and a constant c ∈ [α, 1] such that fk j → c
a.e. as j → ∞.

Corollary 3.2.11. Let α ∈ (0, 1], g ∈ L1(dγ), and { fkdγ} ⊂ B(α, g) be a sequence of centered probability
measures. If δ( fk) → 0 as k → ∞, then fk → 1 in L1(dγ).

Remark 3.2.12. For any M, α > 0 and g ∈ L1(dγ), we have B(α, g) # PM
2 (Rn) and PM

2 (Rn) # B(α, g). To see
this, it suffices to consider the case n = 1. Let M > 0 be fixed and fkdγ be a sequence of probability measures
constructed as in Example 4.3.2 with w = 2. Then we can choose v so that { fkdγ} is included in PM

2 as we
have seen in the end of Section 4.3. Since the minimum of fk converges to 0, we get PM

2 # B(α, g). We define a
sequence of functions fk such that fk(x) = fk(−x) and

fk(x) =




e
x2
2

Ckπ(x2 + 1)
, x ∈ [0, k],

e
k2
2

Ckπ(k2 + 1)
, x ∈ (k,∞)

where

Ck =
2
π

(
arctan(k) + e

k2
2 (1 − Φ(k))

k2 + 1

)
.

Note that fkdγ is a probability measure and Ck → 1 as k → ∞. Furthermore, there exist C, α > 0 such that fk ≥ α
for all k and

fk(x) ≤
Ce

x2
2

π(x2 + 1)
∈ L1(dγ)

for all x and k. Since the second moment of fkdγ diverges, we conclude that B(α, g) # PM
2 (Rn).
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Combining Theorem 3.2.6 with the standard compactness argument, we obtain weak L1-stability in PM
2 (Rn).

Theorem 3.2.13. Let M ≥ n and { fkdγ} be a sequence of centered probability measures in PM
2 (Rn). If δ( fk) → 0

as k → ∞, then fk → 1 in L1(dγ).

3.2.2 Fourier analytic method

Let g(x) = 2 n
4 e−π |x |

2 and dm = g2(x)dx. The LSI deficit with respect to dm is defined by

δc( f ) = 1
2π

∫
Rn

|∇ f |2 dm −
∫
Rn

| f |2 log | f |2 dm

for a normalized function f ∈ L2(dm). Note that if u f (x) = f (2
√
πx) 1

2 , then we have δc(u f ) = δ( f ) by change of
variable. Since

‖u f − 1‖2
L2(dm) ≤ ‖ f − 1‖L2(dγ) ≤ 2‖u f − 1‖L2(dm),

L2–stability with respect to δc( f ) is equivalent to L1–stability with respect to δ( f ).
Recall that Carlen [40] derived the lower bound of δc( f ) in terms of the relative entropy of the Fourier–Wiener

transform (see Theorem 2.2.1). We investigate the case where Entdm(|W f |2) converges to 0 and use a compactness
argument to obtain the following weak L2–stability result.

Theorem 3.2.14. Let M > 0, ε ∈ (0, 2π), and { fk} be a sequence of normalized and centered functions in L2(dm).
Suppose ∫

| fk |2e−(2π−ε ) |x |
2
dx ≤ M

for all k. If δc( fk) → 0 as k → ∞, fk → 1 in L2(dm).

Remark 3.2.15. As we have seen in Corollary 3.2.2, higher integrability assumption yields weak Lp-stability for
p > 2.

The optimal transport method and Carlen’s deficit estimate (2.2.4) yields the following inequality which in
particular implies weak L2–stability for PM

2 (Rn) with respect to δc .

Theorem 3.2.16. Let f be normalized in L2(dm). Then

2
√
πnW2(dm, |W f |2dm) + Entdm(|W f |2)

≥ 2π
∫

|x |2dm − 2π
∫

|x |2 | f |2dm +
1

2π

∫
|∇ f |2dm. (3.2.5)

As a consequence,

√
2nδ

1
2
c ( f ) + δc( f ) ≥ 2π

∫
|x |2dm − 2π

∫
|x |2 | f |2dm +

1
2π

∫
|∇ f |2dm. (3.2.6)

Remark 3.2.17. Stability for Talagrand’s transportation inequality (2.1.4) yields an extra remainder term while
passing from (3.2.5) to (3.2.6).

Corollary 3.2.18. Let M ≥ 1 and { fk} be a sequence of normalized and centered functions in L2(dm). Suppose∫
| fk |4dm ≤ M for all k. If δc( fk) → 0 as k → ∞, then

lim
k→∞

∫
|∇ fk |2dm = 0.

In particular, we have fk → 1 in L2(dm).
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Corollary 3.2.19. Let M ≥ n
4π and { fk} be a sequence of normalized and centered functions in L2(dm). Suppose∫

|x |2 | fk |2dm ≤ M for all k. If δc( fk) → 0 as k → ∞, then fk → 1 in L2(dm).

Remark 3.2.20. Suppose there is a modulus of continuityω and C = C(M) > 0 such that ‖ f−1‖Lp (dγ) ≤ Cω(δ( f ))
as δ( f ) → 0 and f ∈ PM

k
(Rn) for k ∈ N and p ≥ 1. Then C necessarily depends on the dimension since∫

|x |kdγ ≤ M .

3.2.3 Probabilistic method

Another approach to proving stability estimates for the LSI is to investigate quantitative versions of Cramér’s
theorem [24, 25] and combine them with a convolution type deficit estimate of the LSI in [58]. We consider the
space of probability measures in PM

2 satisfying further integrability and assumptions on the second moment. For
probability measures µ and ν on R, the Kolmogorov distance is given by

dK(µ, ν) = sup
x∈R

|µ((−∞, x]) − ν((−∞, x])|.

Theorem 3.2.21. Let f be a symmetric nonnegative function on R and dµ = f dγ ∈ PM
2 (R) with m2(µ) = k.

Let v(x) = f ( x√
2
)2 and assume that dν := vdγ is a probability measure. Then there exists ε0 > 0 such that if

δ(v) ≤ ε ≤ ε0, then

dK(µ, γε) ≤
Ck√
log 1

ε

(3.2.7)

where Ck depends on k and γε is a Gaussian measure given by

dγε =
1√

4πσ2
ε

e
− |x |2

4σ2
ε dx,

for some σ2
ε > 0 depending on ε.

Theorem 3.2.22. Let f be a symmetric nonnegative function on R, dµ = f dγ, and m2(µ) = 1. Let v(x) = f ( x√
2
)2

and assume that dν := vdγ is a probability measure. We have

δ(v) ≥ Ψ(dK(µ, γ))

where Ψ(t) = e−
c

t2 for some c > 0.

Remark 3.2.23. Note that for dγ 1√
2
= 1√

π
e− |x |

2
dx and v(x) = f ( x√

2
)2,

δ(v) =
∫

|∇ f |2dγ 1√
2
−
∫

| f |2 log | f |2dγ 1√
2
.

Remark 3.2.24. By Proposition 2.1.6, Theorem 3.2.6 implies that

δ( f ) ≥ CM min{dK(µ, γ)2, dK(µ, γ)8}.

On the other hand, it follows from Proposition 2.1.8 that Theorem 3.2.22 implies

δ(v) ≥ c1Ψ(c2W1(µ, γ)2).

Note that if t is small then Ψ(t) is bounded by t8, which implies that Theorem 3.2.6 is stronger than Theorem
3.2.22. Notice also that Theorem 3.2.22 has a scaled version of the deficit δ(v).
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3.3 Dimension-free stability estimates

One of the most important features of the logarithmic Sobolev inequality is that the sharp constant 1
2 is dimension-

independent, which leads to many interesting applications. It is natural to ask if there is a dimension-free quantitative
improvement of the LSI.

We observe that Carlen’s deficit estimate (2.2.1) is dimension-free. He showed that the LSI deficit is bounded
below by the relative entropy of the Fourier–Wiener transform, which yields the characterization of the equality
cases. This estimate is, however, not metric-involved. The first result on dimension-free stability estimates in terms
of a metric is found in [83], where W2–stability was considered in the space of probability measures satisfying the
differential inequalities

−1 + ε ≤ D2(− log f ) ≤ M

for ε,M > 0. The estimate only depends on the choice of ε and M . In [57], the authors considered the space
of probability measures satisfying Poincaré inequalities. Indeed, they proved a strict improvement of the LSI in
within the class of probability measures satisfying a (2, 2)-Poincaré inequality with a constant λ > 0

λ

∫
g2 f dγ ≤

∫
|∇g |2 f dγ.

for every smooth function g with
∫
g f dγ = 0. The improvement yields stability estimates in terms of W2 and L1,

which depend only on the Poincaré constant λ. In [58], it was shown that if f dγ is a probability measure satisfying

F (e−π |x |2 f (2
√
πx)) ≥ 0,

then δ( f ) ≥ 1
2 ‖ f − 1‖4

2 , which is dimension-free. We note that this estimate does not have any parameters while
the above estimates have the parameters that define the probability measure spaces.

The stability estimate in Corollory 3.2.3 is dimension-free. We show L1–stability in the space of probability
measures such that for some M > 0 and some i = 1, 2, · · · , n,

∫
xi f dγ = 0 and

∫
|xi |2 f dγ(xi) ≤ M a.e. x ′ = (x1, . . . , xi−1, xi+1, . . . , xn).

Note that the constant depends only on M . In particular, as we have seen in Remark 3.2.4, we have a dimension-free
L1–stability estimate in the space

{ f dγ ∈ P : f (x1, · · · , xn) =
n∏
i=1

fi(xi), ‖ f ‖∞ < R}

for R > 0.
Recently, it was shown in [55] that the LSI can be self-improved with a dimension-free estimate. Previously,

a self-improvement of the LSI with a dimensional constant was proven in [26, 53]. The authors in [55] derived
a dimension independent estimate in terms of the Fisher information matrix. As a consequence, they proved that
if the covariance matrix of a measure is dominated by the identity matrix, then the deficit of the LSI is bounded
below by some functionals in term of the eigenvalues of the Fisher information matrix.

However, the logarithmic Sobolev inequality turns out to be so delicate that such dimension-free stability
estimates require strong restrictions on probability measures and distance functionals. As we have seen in Remark
3.2.8, any W1–stability estimates in PM

2 should depend on M by Example 4.3.2 and the constant M necessarily
depends on n by Theorem 3.2.16. In Theorem 4.1.1, we show that W2–stability fails in PM

2 (Rn) for M > n, which
implies that dimension-dependency is necessary for W2–stability. We remark that it was shown in [55] that there
exist a sequence of dimensions nk ∈ N and a sequence of probability measures µk on Rnk such that the deficit
converges to 0 but the W2 distance from the class of optimizers diverges.
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3.4 Proofs of the main results

3.4.1 Proofs of Theorem 3.2.1 and its corollaries

Proof of Theorem 3.2.1. Let T be the Brenier map between f dγ and dγ. Recall that the Gaussian measure dγ
satisfies the (1, 1)-Poincaré inequality∫

| f − 1|dγ ≤ 2
∫

|∇ f | dγ = 2
∫

|∇(log f )| f dγ.

Combining this with (2.2.7), we have∫
| f − 1| dγ ≤ 2

∫
|∇ log f | f dγ

≤ 2
∫

|∇ log f − T(x) + x | f dγ + 2
∫

|T(x) − x | f dγ

≤ 2
( ∫

|∇ log f − T(x) + x |2 f dγ
) 1

2
+ 2

∫
|T(x) − x | f dγ

≤ 2
√

2δ
1
2 ( f ) + 2

∫
|T(x) − x | f dγ.

Note that in one-dimensional case, the Brenier map between f dγ and dγ gives an optimal transport plan for W1

as well as W2. In other words, we have ∫
|T(x) − x | f dγ = W1( f dγ, dγ).

Applying Theorem 3.2.6, we get∫
| f − 1|dγ ≤ 2

√
2δ

1
2 ( f ) + C max(δ( f ), δ 1

4 ( f ))

as desired. □

Proof of Corollary 3.2.2. The result follows from Cauchy–Schwarz inequality∫
| f − 1|pdγ =

∫
| f − 1|p− 1

2 | f − 1| 1
2 dγ

≤ (22p−2(N + 1)) 1
2 ‖ f − 1‖

1
2
L1(dγ)

≤ CM (22p−2(N + 1)) 1
2 δ

1
8 ( f ).

□

Proof of Corollary 3.2.3. For fixed x ′ = (x1, . . . , xi−1, xi+1, · · · , xn), let gx′(xi) = f (x ′). Theorem 3.2.1 implies

1
2

∫ (∂xigx′(xi))2
gx′(xi)

dγ(xi) ≥
∫

gx′(xi) log gx′(xi)dγ(xi) + c
( ∫

|gx′(xi) − 1|dγ(xi)
)4
.

Since we have ∫ ∫ |∇ f |2
f

dγ(xi)dγ(x ′) ≥
∫ ∫ (∂xigx′(xi))2

gx′(xi)
dγ(xi)dγ(x ′),

it follows from Jensen’s inequality that

δ( f ) ≥ C
∫ ( ∫

|gx′(xi) − 1|dγ(xi)
)4

dγ(x ′)

≥ C
( ∫ ∫

|gx′(xi) − 1|dγ(xi)dγ(x ′)
)4

= C‖ f − 1‖4
L1(dγ).

□

25



Proof of Corollary 3.2.5. By applying Theorem 3.2.1 to fi , it follows that
n∑
i=1
δ( fi) ≥ c

n∑
i=1

( ∫
| fi(xi) − 1|dγ(xi)

)4
.

Since the Fisher information and the relative entropy of f = f1 f2 · · · fn are∫ |∇ f |2
f

dγ =
∫ |∇( f1 f2 · · · fn)|2

f
dγ

=

n∑
i=1

∫ (∂xi fi(xi))2Πj!i( fj(xj))2

f
dγ

=

n∑
i=1

∫ (∂xi fi)2
fi

dγ(xi)

and ∫
f log f dγ =

n∑
i=1

∫
fi(xi) log fi(xi) dγ(xi),

we have δ( f ) = ∑n
i=1 δ( fi). The result follows from

n∑
i=1

( ∫
| fi(xi) − 1| dγ(xi)

)4
≥ n−3

( n∑
i=1

∫
| fi(xi) − 1| dγ(xi)

)4

≥ n−3
( ∫

| f − 1| dγ
)4
.

□

3.4.2 Proofs of Theorem 3.2.6

By the HWI inequality (2.1.5), we obtain

H( f ) ≤ W2( f dγ, dγ)
√

I( f ) − 1
2

W2
2 ( f dγ, dγ)

≤ 1
2t

I( f ) + t − 1
2

W2
2 ( f dγ, dγ)

for any t > 1. Let T : Rn → Rn be the Brenier map from dγ to f dγ, then

H( f ) ≤ t
2

∫
Rn

|T(x) − x |2dγ +
t

t − 1
δ( f )

≤ t
( ∫
Rn

|x |2 f dγ +
∫
Rn

|x |2dγ
)
+

t
t − 1

δ( f )

≤ t(n + M) + t
t − 1

δ( f ).

Note that it is well-known (for example [57]) that 16δ( f )H( f ) ≥ δ2Tal( f ) where δTal( f ) is defined in (2.1.3). Thus
we obtain

δ2( f ) + (t − 1)(n + M)δ( f ) − (t − 1)
16t

δ2Tal( f ) ≥ 0.

Solving this inequality for δ( f ) and applying (2.1.4), we get

δ( f ) ≥ t − 1
2

(n + M)
( (

1 +
δ2Tal( f )

4t(t − 1)(n + M)
) 1

2 − 1
)

≥ t − 1
6

(n + M)G
(

δTal( f )
2
√

t(t − 1)(n + M)

)

≥ t − 1
6

(n + M)G
(

CCE

2
√

t(t − 1)(n + M)
G(W1( f dγ, dγ))

)
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where G(x) = min{x, x2}. We finish the proof by choosing t > 1 such that CCE = 2
√

t(t − 1)(n + M). □

3.4.3 Proofs of Theorem 3.2.9 and its corollaries

Proof of Theorem 3.2.9. Let T = ∇Φ = (T1,T2, . . . ,Tn) be the Brenier map from f dγ to dγ and {λi} the
eigenvalues of DT − Id. By (2.2.7), we have

δ( f ) ≥ 1
2

∫
|T(x) − x + ∇ log f |2 f dγ +

∫ n∑
i=1

(λi − log(1 + λi)) f dγ.

Since f (x) ≥ α for all x, there exists a constant C such that | log f | ≤ C(| f |+1). This implies that ‖ log f −L f ‖L1(dγ)
is bounded so that it suffices to assume that δ( f ) ≤ 1. Since t − log(1 + t) ≥ (1 − log 2)min{t, t2} for t ≥ 0 and
f (x) ≥ α for all x, we have

∫ n∑
i=1

(λi − log(1 + λi)) f dγ ≥ Cα

n∑
i=1

( ∫
{ |λi |≤1}

|λi |2dγ +
∫
{ |λi |>1}

|λi |dγ
)

≥ Cα

n∑
i=1

(( ∫
{ |λi |≤1}

|λi |dγ
)2
+

∫
{ |λi |>1}

|λi |dγ
)

≥ Cα

n∑
i=1

(( ∫
{ |λi |≤1}

|λi |dγ
)2
+
( ∫

{ |λi |>1}
|λi |dγ

)2)

≥ Cα,n

( n∑
i=1

∫
|λi |dγ

)2

where Cα,n = (1 − log 2)α/n. Let a =
∫

Tdγ and a = (a1, . . . , an), then

|a| ≤
∫

|T |dγ ≤ 1
α

∫
|x |dγ.

By the (1, 1)-Poincaré inequality for dγ, we have
n∑
i=1

∫
|λi | dγ ≥ C

∑
i, j

∫
|∂jT i − δi j | dγ

≥ C
∑
i

∫
|∇(T i − xi)| dγ

≥ C
∑
i

∫
|T i − xi − ai | dγ

for some universal constant C. Thus we have∫
|∇ log f + a| dγ ≤

∫
|∇ log f + (T − x)| dγ +

∫
|T − x − a| dγ

≤ 1
√
α

( ∫
|∇ log f + (T − x)|2 f dγ

) 1
2
+

∫
|T − x − a| dγ

≤ C(α, n)δ 1
2 ( f ).

Let b =
∫

log f dγ ∈ (logα, 0). It then follows from the (1, 1)-Poincaré inequality for dγ that
∫

|∇ log f + a| dγ ≥ c
∫

| log f + a · x − b| dγ,

which finishes the proof. □
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Proof of Corollary 3.2.10. Theorem 3.2.9 implies that

lim
k→∞

∫
| log

(
fke−(a fk

·x+b fk
)) | dγ = 0

Since |a fk | + |b fk | is uniformly bounded in k, there exists a ∈ Rn and b ∈ R such that a fk → a and b fk → b as
k → ∞ along a subsequence. There exists a further subsequence such that log( fke−(a fk

·x+b fk
)) → 0 and in turn

that fk → ea ·x+b a.e. as k → ∞. Since fk(x) ≥ α for all k and x, we have a = 0 as desired. □

Proof of Corollary 3.2.11. Suppose that there exists a subsequence { fk} such that ‖ fk − 1‖L1(dγ) ≥ C > 0 for all
k. By Corollary 3.2.10, fk converges to a constant a.e. along a subsequence as k → ∞. It then follows from the
dominated convergence theorem and the mass constraint that fk converges to 1 a.e., which is a contradiction. □

3.4.4 Proof of Theorem 3.2.13

Let { fj} be any subsequence of the original sequence. We will show that there exists a further subsequence { fj(k)}
that converges to 1 in L1(Rn, dγ). By (2.1.6), it suffices to show that

√
fj(k) → 1 in L2(Rn, dγ). Since the deficit

converges to zero, it follows from Theorem 3.2.16 that {I( fj)}j≥1 is uniformly bounded in j. Let hj = fjγ where

γ(x) = (2π)− n
2 e−

|x |2
2 , then

I( fj) = 4
∫
Rn

|∇(
√

fj)|2dγ

= 4
∫
Rn

|∇(
√

hj) −
√

fj∇(
√
γ)|2dx

= 4
∫
Rn

|∇(
√

hj)|2dx − 2n +
∫
Rn

|x |2dνj .

So {
√

hj}j≥1 is bounded in W1,2(Rn).
Let Ω ⊂ Rn be a bounded domain. The Rellich–Kondrashov theorem says that there exists a subsequence

{hj(k)}k≥1 such that
√

hj(k) converges to a function g in L2(Ω). Since
√

hj is nonnegative for all j, we let g =
√

f γ.
We claim that f = 1 a.e. in Ω. Let dνj = fjdγ. Since δ( fj(k)) converges to 0, we have W1(νj(k), γ) → 0 by

Theorem 3.2.6. This implies that νj(k) ⇀ γ weakly, that is,

lim
k→∞

∫
Rn
ϕdνj(k) =

∫
Rn
ϕdγ

for all ϕ ∈ C0
b
(Rn). Let ε > 0 and ϕ be a bounded continuous function such that |ϕ| ≤ K for some K > 0. We pick

N ∈ N such that ...
∫
Ω

ϕdνj(k) −
∫
Ω

ϕdγ
... ≤ ε2,

...
∫
Ω

|
√

fj(k) −
√

f |2dγ
... ≤ ε2

16K2

for any k ≥ N . Since
∫
Ω

fj(k)dγ ≤ 1 for all k and∫
Ω

f dγ ≤
∫
Ω

|
√

fj(k) −
√

f |2dγ +
∫
Ω

fj(k)dγ,

we obtain
∫
Ω

f dγ ≤ 1. One can see that...
∫
Ω

( f − 1)ϕdγ
... ≤ ...

∫
Ω

( fj(k) − 1)ϕdγ
... + ...

∫
Ω

( f − fj(k))ϕdγ
...

≤ ε
2
+ K

∫
Ω

| f − fj(k) |dγ

≤ ε
2
+ K

( ∫
Ω

|
√

f −
√

fj(k) |2dγ
) 1

2
( ∫
Ω

|
√

f +
√

fj(k) |2dγ
) 1

2

≤ ε.
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This holds for all ε > 0 and all ϕ ∈ C0
b
(Ω). Thus, we conclude that f = 1 a.e. in Ω.

Let Bk := {x ∈ Rn : |x | < k} for each k ∈ N. Choose a subsequence { f1, j}j≥1 such that
√

f1, j → 1 in
L2(B1, dγ) as j → ∞. On B2, we can find a further subsequence { f2, j}j≥1 ⊆ { f1, j}j≥1 such that

√
f2, j → 1 in

L2(B2, dγ) as j → ∞. Iterating this procedure, we have { fk, j}j,k≥1 such that
√

fk, j → 1 in L2(Bk, dγ) as j → ∞.
Define f (k) := fk,k and let ε > 0.

Since νj converges weakly to γ, the family {νj} is tight by Prokhorov’s theorem. Thus, we can choose N1 ∈ N
be such that

∫
Rn\Bk

dνj < ε
8 and

∫
Rn\Bk

dγ < ε
8 for all k ≥ N1. By definition, there exists N2 ∈ N such that∫

Bk
|
√

f (k) − 1|2dγ < ε
2 for all k ≥ N2. Combining our observation, we have

...
∫
Rn

|
√

f (k) − 1|2dγ
... ≤ ...

∫
Bk

|
√

f (k) − 1|2dγ
... + 2

...
∫
Rn\Bk

( f (k) + 1)dγ
... < ε

for any k ≥ max{N1, N2}. Therefore, we conclude that
√

f (k) → 1 in L2(Rn, dγ) as desired. □

3.4.5 Proof of Theorem 3.2.14

Suppose that there exists a subsequence { fk} such that ‖ fk − 1‖L2(dm) ≥ C > 0 for all k. Let dmε = e−(2π−ε ) |x |
2
dx.

Since ∫
| fk |2dmε ≤ M,

fk converges weakly to f in L2(dmε ) along a subsequence. Since ϕ(x) := e−2πiξ ·xe(π−ε ) |x |
2 is in L2(dmε ) for each

ξ, we have

lim
k→∞

∫
e−2πiξ ·xU∗ fk(x)dx =

∫
e−2πiξ ·xU∗ f (x)dx.

Therefore, W fk(ξ) → W f (ξ) for every ξ ∈ Rn. On the other hand, it follows from δc( fk) → 0 and Carlen’s
deficit estimate (2.2.4) that

lim
k→∞

Entdm(|W fk |2) = 0.

By Pinsker’s inequality (2.1.2), we have |W fk |2 → 1 in L1(dm) as k → ∞ and |W f |2 = 1 a.e. This implies
f = 1 by Cramér’s theorem. Since fk is normalized in L2(dm), therefore fk ⇀ g weakly in L2(dm) along a
further subsequence. By uniqueness of weak limits, we have g = 1. This yields fk → 1 in L2(dm), which is a
contradiction. □

3.4.6 Proof of Theorem 3.2.16

Proof of Theorem 3.2.16. Let f ∈ L2(dm) be normalized and T the Brenier map between dm = |U∗ |2dx and
|W f |2dm = |Û∗ f |2dx. Note that there exists a convex function φ such that T = ∇φ and it satisfies the Monge–
Ampère equation

log det D2φ = log
|U∗ |2

|Û∗ f (T)|2

=
n
2

log 2 − 2π |x |2 − log |Û∗ f (T)|2.

Integrating of both sides with respect to dm = |U∗ |2dx, we get
∫

|U∗ |2 log |Û∗ f (T)|2dx +
∫

|U∗ |2 log det D2φdx =
n
2

log 2 − 2π
∫

|x |2 |U∗ |2dx.
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Let ψ(x) = φ(x) − 1
2 |x |2 and λi be the eigenvalues of D2ψ, then

2π
∫

|x |2 |Û∗ f |2dx − 2π
∫

|x |2 dm =
∫

log det D2φ dm + Entdm(|W f |2)

=

∫ n∑
i=1

log(1 + λi) dm + Entdm(|W f |2)

≤
∫
∆ψ dm + Entdm(|W f |2)

= 4π
∫

(T(x) − x) · x dm + Entdm(|W f |2)

≤ 4πW2(dm, |W f |2dm)(m2(dm)) 1
2 + Entdm(|W f |2)

where m2(dm) is the second moment of dm. By the Plancherel theorem, we have

4π2
∫

|x |2 |Û∗ f |2dx =
∫

|>∇U∗ f |2dx

=

∫
|∇U∗ f |2dx

= 4π2
∫

|x |2 |U∗ f |2dx − 4π
∫

x · ∇ f f dm +
∫

|∇ f |2dm.

Using

−2
∫

x · ∇ f f dm = n − 4π
∫

|x |2 | f |2dm,

we obtain

2π
∫

|x |2dm − 2π
∫

|x |2 | f |2dm +
1

2π

∫
|∇ f |2dm

≤ 2
√
πnW2(dm, |W f |2dm) + Entdm(|W f |2).

Therefore, it follows from Talagrand’s transportation inequality (2.1.3) for the measure dm and the entropic
uncertainty principle (2.2.3) that

2π
∫

|x |2dm − 2π
∫

|x |2 | f |2dm +
1

2π

∫
|∇ f |2dm ≤ 2

√
πnW2(dm, |W f |2dm) + δc( f )

≤
√

2n
√
δc( f ) + δc( f ).

□

Proof of Corollary 3.2.18. Suppose that there exists a subsequence { fk} such that δc( fk) → 0 as k → ∞ and∫
|∇ fk |2dm ≥ c > 0 for all k. Since

∫
| fk |4 dm ≤ C for all k, along a further subsequence, f 2

k
converges weakly

to f 2 in L2(dm) for some f ∈ L4(dm). In particular, we have∫
|x |2 | fk |2dm →

∫
|x |2 | f |2dm

as k → ∞ because |x |2 ∈ L2(dm). By Theorem 3.2.6 and Theorem 3.2.16, f = 1 and∫
|∇ fk |2dm → 0

as k → ∞, which is a contradiction. □

Proof of Corollary 3.2.19. Suppose that there exists a subsequence { fk} such that δc( fk) → 0 and ‖ fk−1‖L1(dγ) ≥
c > 0. Since Theorem 3.2.16 implies

∫
|∇ fk |2dm ≤ M for all k, we have fk → f in L2(dm) as k → ∞ along a

further subsequence, for some f ∈ L2(dm). Theorem 3.2.6 yields f = 1, which is a contradiction. □
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3.4.7 Proofs of Theorem 3.2.21 and Theorem 3.2.22

We recall a convolution type deficit estimate for the LSI of [58].

Theorem 3.4.1 ( [58, Theorem 4.1]). Let f ∈ L2(dm), f (x) = f (−x), ‖ f ‖2 = 1, and h = f g. Then there exists a
constant C > 0 such that ∫

R
|h ∗ h − g ∗ g |2dx ≤ Cδc( f ) 1

4 (‖h − g‖2
6
5
+ ‖h − g‖2)

3
2 .

The following lemma is an L1–L2 estimate under a second moment assumption, which allows connecting
stability of Cramér’s theorem in [68, 103] (see Theorem 2.3.1 and 2.3.2) with Theorem 3.4.1.

Lemma 3.4.2. Let u be a nonnegative function in L1(dx) ∩ L2(dx) such that
∫
R

x2u(x)dx = k ‖u‖1 < ∞

for some k > 0. Then we have ‖u‖1 ≤ e
k+1

2 ‖u‖2.

Proof. Let p(x) = u(x)/‖u‖1 and q(x) = 1√
π

e−x
2 . Since ϕ = x log x for x ≥ 0 is convex (ϕ(0) = 0), one can see

by Jensen’s inequality that
∫
R

p(x) log
p(x)
q(x)dx =

∫
R
ϕ( p(x)

q(x) )q(x)dx ≥ ϕ(
∫
R

p(x)dx) = 0.

So, we have
∫
R

p(x) log p(x)dx ≥
∫
R

p(x) log q(x)dx (3.4.1)

= −
∫
R

x2p(x)dx − 1
2

log π

≥ −(k + 1).

Let 1 ≤ p0, p1 ≤ 2, θ ∈ (0, 1), and 1
pθ
= 1−θ

p0
+ θ

p1
. It follows from Hölder’s inequality that

‖u‖pθ ≤ ‖u‖1−θ
p0 ‖u‖θp1 . (3.4.2)

This implies that the map p ,→ J(p) := log ‖ f ‖pp is convex on [1, 2]. On the other hand, the derivative of J(p) is
given by

d
dp

J(p) = 1
‖u‖pp

∫
R
|u|p log |u|dx.

By the convexity of J(p), we have J(2) − J(1) ≥ J ′(1). So, we apply (3.4.1) to obtain

log ‖u‖2
2 − log ‖u‖1 ≥ 1

‖u‖1

∫
R
|u| log |u|dx

=

∫
R

p(x) log p(x)dx + log ‖u‖1

> −(k + 1) + log ‖u‖1,

which yields the desired result. □
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Proof of Theorem 3.2.21 . Let h(x) = f̃ (x)g(x) and f̃ (x) = f (
√

2πx) then one can easily see that
∫
R
|h|2dx = 1,

∫
R

hdx = 2
1
4 ,

∫
R

x2hdx =
2− 3

4 k
π
. (3.4.3)

Let X1, X2 be i.i.d. random variables with the density p(x) = 2−1/4
√
π

h( x√
π
) and the distribution function F. Note that

F has median zero and Var[X1] = k
2 . Since the Kolmogorov distance is bounded by the total variation, one can see

that

dK(F ∗ F,Φ1) ≤
1
2

∫
R
|p ∗ p(x) − γ(x)|dx.

Since we have h ∗ h(x) =
√

2πp ∗ p(
√
πx) and g ∗ g(x) =

√
2πγ(

√
πx), we obtain

dK(F ∗ F,Φ1) ≤
1

2
√

2

∫
R
|h ∗ h(x) − g ∗ g(x)|dx.

Let u := h ∗ h − g ∗ g, then we have ‖u‖1 ≤ 2
√

2 and∫
R

x2 |u|dx ≤
∫
R

x2(h ∗ h)(x)dx +
∫
R

x2(g ∗ g)(x)dx

≤ 2
5
4

( ∫
R

x2h(x)dx +
∫
R

x2g(x)dx
)

≤ C(k + 1).

By Lemma 3.4.2, we have ‖u‖1 ≤ Ck ‖u‖2 where Ck > 0 depends only on k. Combining our observation with
Theorem 3.4.1, we obtain

dK(F ∗ F,Φ1) ≤ Ck(‖h − g‖2
6
5
+ ‖h − g‖2)

3
4 δc( f̃ ) 1

8

where f̃ = f (
√

2πx). Note that δc( f̃ ) = δ(v). It follows from (3.4.2) and (3.4.3) that (‖h − g‖2
6
5
+ ‖h − g‖2)

3
4 is

bounded by a universal constant and that

dK(F ∗ F,Φ1) ≤ Ckδ(v)
1
8 .

Choose ε0 > 0 such that Ckε
1
8
0 < 1. Let ε > 0 be such that δ(v) < ε < ε0, and put η = Ckε

1
8 , N = N(η) =

1 +
√

2 log(1/η) and

σ(η)2 =
∫ N (η)

−N (η)
x2p(x)dx.

Note that σ(η)2 ↗ Var[X1] = 1
2 m2(µ) as η → 0. So, we choose ε0 small enough so that 1

4 m2(µ) < σ(η)2 for all
ε < ε0. It then follows from Theorem 2.3.1 that

dK(F,Φσ(η)) ≤
C

σ(η)
√

log(1/η)
min

{
1√
σ(η)
, log log

ee

η

}

≤ C

σ(η) 3
2
√

log(1/η)

≤ C

m2(µ)
3
4

√
1
8 log( 1

ε ) − log Ck

≤ Ck√
log 1

ε

.
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By change of variables, we have dK(F,Φσ(η)) = dK(µ, γε) where

dγε =
1√

4πσ(η)2
e
− |x |2

4σ(η)2 dx,

which yields (3.2.7). □

Proof of Theorem 3.2.22 . Let h(x) = f̃ (x)g(x) and f̃ (x) = f (
√

2πx). Let X1, X2 be i.i.d. random variables with
the density p(x) = 2−1/4

√
π

h( x√
π
) and the distribution function F. Since m2(µ) = 1, we have Var(X1) = Var(X2) = 1

2 .
The same argument then leads to

dK(F ∗ F,Φ1) ≤ c1δc( f̃ ) 1
8 = c1δ(v)

1
8

for some universal constant c1. So, we choose ε0 > 0 such that c1ε
1
8
0 < 1. Assume δ(v) < ε < ε0. We apply

Theorem 2.3.2 to obtain
dK(F,Φ 1√

2
) < c2√

log 1
ε

.

Note that dK(F,Φ 1√
2
) = dK(µ, γ) by change of variables. Let Ψ(s) be the inverse of the map t ,→ c2!

log 1
t

, then

δ(v) ≥ Ψ(dK(µ, γ)) as desired. □
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Chapter 4

Instability of the logarithmic Sobolev
inequality

We have seen that there are different types of stability estimates for the LSI according to the choice of probability
measure spaces and distances. A natural question is to find the best possible probability measure space and distance
in which the LSI is stable. In this chapter, we investigate this question. To be specific, we show that there are no
stability in PM

2 (R) (resp. P2(R)) with respect to W2 and Lp(dγ) for p > 1 (resp. W1). This chapter is based on my
work [85].

4.1 Main results

The first result shows that the W2-stability estimate obtained in [26, Corollary 1.2] cannot be improved in terms
of the probability measure space P1

2 (R). It also implies that the L1-stability estimate in Theorem 3.2.1 is best
possible in terms of the Lp distances. Note that there is an Lp-stability estimate in PM

2 (R) (p > 1) with a higher
integrability assumption (see Corollary 3.2.2).

Theorem 4.1.1. Let M > 1 and p > 1. There exists a sequence of centered probability measures dνk = fkdγ in
PM

2 (R) such that limk→∞ δ( fk) = 0,
lim inf
k→∞

W2(νk, γ) ≥ C1,

and
lim inf
k→∞

‖ fk − 1‖Lp (dγ) ≥ C2,

for some C1,C2 > 0.

The next result is W1-instability in P2(R), which implies that the W1-stability estimate in Theorem 3.2.6 cannot
be improved in terms of the space PM

2 (R).

Theorem 4.1.2. There exists a sequence of centered probability measures dνk = fkdγ in P2(R) such that
limk→∞ δ( fk) = 0 and limk→∞ W1(νk, γ) = ∞.

The key idea of the proofs is as follows. Using the class of the LSI optimizers, we construct a sequence of
centered probability measures with a small deficit. We then control the second moments and the relative entropies
so as to conclude that the distances from the standard Gaussian measure, which is the only centered optimizer, do
not converge to zero.
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Theorem 4.1.1 and 4.1.2 deal with probability measures on the real line. These results, however, can be directly
generalized to the higher dimensional case. Let νk be the sequence of probability measures on R constructed
in Example 4.3.2 and γn−1 the standard Gaussian measure on Rn−1. If we define a probability measure ν̃k on
Rn by ν̃k = νk ⊗ γn−1, then we have I(ν̃k) = I(νk), H(ν̃k) = H(νk), and δ(ν̃k) = δ(νk). Furthermore, we have
m2(ν̃k) = (n − 1) + m2(νk) and m1(ν̃k) ≥ m1(νk) − m1(γn−1). Controlling the second moment and the relative
entropy of νk as in the proofs of Theorem 4.1.1 and 4.1.2, we extend the results to Rn for n ≥ 2.

In Proposition 4.3.4, we show that the sequence νk in P2(R) constructed in Theorem 4.1.2 converges to γ in
L1(dγ). Thus it is still open to show L1-stability in P2. Note that if H( f ) is finite, then it follows from Jensen’s
inequality that the second moment is finite. So P2 is the most general probability measure space in the setting of
the LSI.

4.2 Literature review

We review previous stability results and compare the probability spaces and the conditions used in this literature.

4.2.1 Wasserstein distance

Indrei and Marcon [83] showed that if f dγ is a centered probability measure with the log-concavity condition on
the density

− 1 + ε ≤ D2(log( 1
f
)) ≤ M (4.2.1)

for ε,M > 0, then
δ( f ) ≥ Cε,MW2

2 ( f dγ, dγ). (4.2.2)

Their method relies on the optimal transport method (Theorem 2.2.4) and Caffarelli’s contraction theorem [38].
Note that W2–stability cannot hold for all probability measures since it would improve the constant in the sharp
LSI (see [83, Remark 4.3]).

Let λ > 0 and P(λ) be the space of probability measure f dγ satisfying a (2, 2)-Poincaré inequality with a
constant λ: for every smooth function g with

∫
g f dγ = 0,

λ

∫
g2 f dγ ≤

∫
|∇g |2 f dγ. (4.2.3)

It was shown in [57] that every probability measure f dγ ∈ P(λ) for λ > 0 satisfies the following improvement of
the LSI

H( f ) ≤ c(λ)
2

I( f ) (4.2.4)

where c(λ) = 1−λ+λ logλ
(1−λ)2 < 1. The proof is based on an interpolation along the Ornstein–Uhlenbeck semigroup. In

particular, this yields W2–stability
δ( f ) ≥ c1(λ)W2

2 ( f dγ, dγ). (4.2.5)

where c1(λ) = 1
2 (

1
c(λ) − 1). Note that every probability measure f dγ with (4.2.1) satisfies a (2, 2)-Poincaré

inequality. Thus the W2–stability bound (4.2.5) of [57] is an improvement of (4.2.2). We note that if f dγ ∈ P(λ)
then

m2( f dγ) =
∫

|x |2 f dγ ≤ n
λ

by (4.2.3) with g(x) = xi for i = 1, 2, · · · , n. Thus we have P(λ) ⊆ Pn/λ
2 (Rn).
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The Fisher information and the relative entropy with respect to dγ have different scaling. From this observation,
W2–stability was derived in [26] (see also [53, Theorem 1] and Proposition 2.2.7), which states that if f dγ ∈ Pn

2 (R
n)

is centered, then
δ( f ) ≥ CW2( f dγ, dγ)4.

4.2.2 Total variation distance

One of the consequences of (4.2.4) in [57] is an L1-stability estimate, which states that if f dγ satisfies (2, 2)-
Poincaré inequality with constant λ then

δ( f ) ≥ c2(λ)‖ f − 1‖2
L1(dγ)

where c2(λ) = 1
4 (1 − c(λ)).

In [58, Proposition 4.7], the authors proved that if f dγ is a probability measure satisfying

F (e−π |x |2 f (2
√
πx)) ≥ 0, (4.2.6)

then
δ( f ) ≥ 1

2
‖ f − 1‖4

2, (4.2.7)

which also implies an L1–stability estimate. The proof is based on Carlen’s deficit bound (2.2.4) and Pinsker’s
inequality (2.1.2). It is remarkable that the positivity of the Fourier transform is quite different from PM

2 . Indeed,
the spaces of probability measures f dγ satisfying (4.2.6) is not included in PM

2 for any M , and vice versa.

Proposition 4.2.1. Let S be the space of probability measures f dγ satisfying (4.2.6). For any M > 0, we have
S # PM

2 (Rn) and PM
2 (Rn) # S.

Proof. Since the LSI is L2-stable in S by (4.2.7), Theorem 4.1.1 implies that PM
2 # S for all M > 0. Let fkdγ be

the centered Gaussian with variance k, then { fkdγ} is not included in PM
2 for any M > 0. Since e−π |x |

2√
fk(2πx)

is also Gaussian, its Fourier transform is positive. Thus we get S # PM
2 . □

We note that the positivity condition for the Fourier transform can be relaxed in a sense that F (e−π |x |2 f (2πx) 1
2 )

belongs to some region in the complex plane. See [58].

4.3 Examples

In this section, we construct a sequence of centered probability measures to prove Theorem 4.1.1 and Theorem
4.1.2. First, we find a sequence of centered probability measures such that the deficit of the LSI goes to 0. By
Lemma 4.4.1 and (2.1.2), it is enough to control the second moments and the relative entropies of the sequence to
show that it does not converge to γ in the Wasserstein distances and the Lp(dγ) distances for p > 1.

Recall that δ( f ) = 0 if and only if f (x) = exp(b · x − 1
2 |b|2), for b ∈ Rn. We start with a trivial example.

Example 4.3.1. Let b ∈ Rn, gb(x) = eb ·x−
|b |2

2 , and dνb = gbdγ. Since gb are the optimizers of the LSI, we have
δ(gb) = 0 for all b ∈ Rn. Indeed, a direct calculation yields that

I(νb) =
∫
Rn

|∇gb |2
gb

dγ = |b|2
∫
Rn

gbdγ = |b|2,

H(νb) =
∫
Rn

gb log gbdγ =
∫
Rn

(
b · (x + b) − 1

2
|b|2

)
dγ =

1
2
|b|2,

m2(νb) =
∫
Rn

|x |2gbdγ =
∫
Rn

|x + b|2dγ = n + |b|2.
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Note that I(νb), H(νb), and m2(νb) all tend to ∞, as |b| → ∞. Notice also that the measure gbdγ is not centered
provided b " 0.

Now we present the main example.

Example 4.3.2. Let gb(x) = ebx−
b2
2 and γ(x) = (2π)− 1

2 e−x
2/2 for x, b ∈ R. We denote by dγ = γ(x)dx and set

Φ(x) =
∫ x

−∞ dγ. For each k ∈ N, let f̃k be a function in C∞(R) such that

f̃k(x) =




1, x ∈ [0, k]
lk(x), x ∈ (k, k + 1

k ]
αgb(x), x ∈ (k + 1

k ,∞)

and f̃k(x) = f̃k(−x) where

(i) b = bk = 2(k + 1
k ) +

√
k,

(ii) α = αk = vb−w
k

∈ (0, 1
2 ) for v,w > 0,

(iii) lk ∈ C∞(R) satisfies lk(k) = 1, lk(k + 1
k ) = αgb(k +

1
k ), |l ′k(x)| ≤ 2k, and

αgb(k +
1
k
) ≤ lk(x) ≤ 1

for all x ∈ (k, k + 1
k ].

We observe that αgb(k + 1
k ) <

1
2 for all k ∈ N. Note also that f̃k ∈ L1(dγ) and

∫
R

f̃kdγ = 2
∫ k

0
dγ + 2

∫ k+ 1
k

k

lk(x)dγ + 2α
∫ ∞

k+ 1
k

gb(x)dγ

= (2Φ(k) − 1) + 2
∫ k+ 1

k

k

lk(x)dγ + 2αΦ(b − k − 1
k
).

Since lk(x) ≤ 1 and .....
∫ k+ 1

k

k

lk(x)dγ
..... ≤

∫ k+ 1
k

k

γ(x)dx ≤ 1
k
γ(k) = o(1),

we have
∫
R

f̃kdγ → 1, as k → ∞. Let ck = (
∫
R

f̃kdγ)−1 and define fk = ck f̃k and dνk = fkdγ. The constants
v and w in α = αk will be determined later. They play a role in controlling the second moment and the relative
entropy of νk . Note that the following lemma and proposition do not depend on the choices of v and w.

Lemma 4.3.3. Let fk and νk be defined as in Example 4.3.2. Then we have

lim
k→∞
δ( fk) = 0.

Proof. Direct computations give

I( fk) = 2ck

∫ k+ 1
k

k

|l ′
k
(x)|2

lk(x)
dγ + 2ckα

∫ ∞

k+ 1
k

|g′
b
(x)|2

gb(x)
dγ

= 2ck

∫ k+ 1
k

k

|l ′
k
(x)|2

lk(x)
dγ + 2ckαb2Φ(b − k − 1

k
)
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and

H( fk) = 2
∫ k

0
ck log ckdγ + 2

∫ k+ 1
k

k

ck lk(x) log(ck lk(x))dγ (4.3.1)

+ 2
∫ ∞

k+ 1
k

(ckαgb) log(ckαgb)dγ

= (ck log ck)(2Φ(k) − 1) + 2
∫ k+ 1

k

k

ck lk(x) log(ck lk(x))dγ

+ 2ckα log(ckα)Φ(b − k − 1
k
) + 2ckαbγ(b − k − 1

k
) + ckαb2Φ(b − k − 1

k
).

Thus the deficit of the LSI is

δ( fk) = ck

∫ k+ 1
k

k

|l ′
k
(x)|2

lk(x)
dγ − 2

∫ k+ 1
k

k

ck lk(x) log(ck lk(x))dγ − (ck log ck)(2Φ(k) − 1)

− 2ckα log(ckα)Φ(b − k − 1
k
) − 2ckαbγ(b − k − 1

k
).

Note that ck → 1 and α→ 0, as k → ∞. Since the limits of the map t ,→ t log t at t = 0 and t = 1 is 0, we have

lim
k→∞

(
(ck log ck)(2Φ(k) − 1) + 2ckα log(ckα)Φ(b − k − 1

k
)
)
= 0.

By the construction of αk and bk , we have

lim
k→∞
αbγ(b − k − 1

k
) = lim

k→∞

1
√

2π
vb1−we−

1
2 b

√
k = 0.

By the construction of lk , we have

lk(x) ≥ αgb(k +
1
k
),

which yields
.....
∫ k+ 1

k

k

|l ′
k
(x)|2

lk(x)
dγ

..... ≤
4k2

αgb(k + 1
k )

∫ k+ 1
k

k

dγ

≤ 4kγ(k)
αgb(k + 1

k )

=
4k

√
2πα

e−
1
2 (k2−b

√
k) = o(1).

Choose k0 ∈ N such that 1
2 ≤ ck ≤ 3

2 for all k ≥ k0. Since lk(x) ≤ 1 for all k, there exists a constant C such that
|ck lk(x) log(ck lk(x))| ≤ C for all k ≥ k0. So we have

.....
∫ k+ 1

k

k

ck lk(x) log(ck lk(x))dγ
..... ≤

C
k
γ(k) = o(1),

for k ≥ k0. Therefore we conclude that δ( fk) → 0 as k → ∞ as desired. □

Proposition 4.3.4. Let fk and νk be defined as in Example 4.3.2. Then, fk → 1 in L1(dγ). As a consequence,
νk ⇀ γ weakly as k → ∞.
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Proof. By (2.1.6), it suffices to show that ‖
√

fk − 1‖L2(dγ) → 0. A direct computation yields

‖
√

fk − 1‖2
L2(dγ) = 2

∫ k

0
|√ck − 1|2dγ + 2

∫ k+ 1
k

k

|
√

ck lk − 1|2dγ

+ 2
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|2dγ

= |√ck − 1|2(2Φ(k) − 1) + 2
∫ k+ 1

k

k

|
√

ck lk − 1|2dγ

+ ckαΦ(b − k − 1
k
) − 2

√
ckαe−

b2
8 Φ(b

2
− k − 1

k
) + Φ(−k − 1

k
)

= o(1) + 2
∫ k+ 1

k

k

|
√

ck lk − 1|2dγ.

It follows from the assumption on lk(x) that
....∫ k+ 1

k

k
|
√

ck lk − 1|2dγ
.... ≤ 2(ck+1)

k γ(k) = o(1), which leads to ‖
√

fk −
1‖L2(dγ) = o(1) as desired. □

4.4 Proofs of the main results

4.4.1 Lemma

Let {νk} be a sequence of probability measures in Pp(Rn). The next lemma gives a sufficient condition for the
sequence {νk} not converging to a measure µ in the Wp metric. In the proof of Theorem 4.1.1 and Theorem 4.1.2,
we control the second moments to conclude that the Wp distance does not converge to γ.

Lemma 4.4.1. Let p ≥ 1 and µ, µk ∈ Pp(Rn) for k ≥ 1. If there exists a constant C1 > 0 such that

lim inf
k→∞

(mp(µk) − mp(µ)) ≥ C1,

then lim infk→∞ W p
p (µ, µk) ≥ C2, for some C2 > 0.

Proof. Let t > 0, then there exists a constant Ct > 0 such that

|x |p − |y |p ≤ t |y |p + Ct |x − y |p

for any x, y ∈ Rn. Let πk be a probability measure on Rn × Rn with marginals µk and µ. Taking the integral with
respect to dπk , we get

mp(µk) − mp(µ) ≤ tmp(µ) + Ct

∫
Rn×Rn

|x − y |pdπk(x, y).

We take the infimum over all such πk to get

mp(µk) − mp(µ) ≤ tmp(µ) + CtW
p
p (µ, µk).

Let t1 ∈ (0,C1) and choose k0 ∈ N large enough that

lim inf
j→∞

(mp(µj) − mp(µ)) − t1 < mp(µk) − mp(µ)

for all k ≥ k0. Put C3 = lim inf j→∞(mp(µj) − mp(µ)) − t1, then

C3 ≤ tmp(µ) + CtW
p
p (µ, µk)

for all k ≥ k0. We finish the proof by choosing t = C3
2mp (µ)+1 > 0 and C2 =

C3
2Ct

. □
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4.4.2 Proof of Theorem 4.1.1

Let w = 2 and v ∈ (0, (M − 1)/4) be such that vb−2
k
< 1

2 for all k. Define fk and νk as in Example 4.3.2 with
bk = 2(k + 1

k ) +
√

k and αk = vb−2
k

. The second moment of νk is

m2(νk) = 2ck

∫ k

0
x2dγ + 2ck

∫ k+ 1
k

k

x2lk(x)dγ + 2ckα
∫ ∞

k+ 1
k

x2gb(x)dγ (4.4.1)

= ck(2Φ(k) − 1 − 2kγ(k)) + 2ck

∫ k+ 1
k

k

x2lk(x)dγ + 2ckαb2Φ(b − k − 1
k
)

+ 2ckα
(
Φ(b − k − 1

k
) − (b − k − 1

k
)γ(b − k − 1

k
) + 2bγ(b − k − 1

k
)
)
.

Note that ck(2Φ(k) − 1 − 2kγ(k)) → 1 and

lim
k→∞

2ckα
(
Φ(b − k − 1

k
) − (b − k − 1

k
)γ(b − k − 1

k
) + 2bγ(b − k − 1

k
)
)
= 0.

Since
....∫ k+ 1

k

k
x2lk(x)dγ

.... ≤ (k+ 1
k )2
k γ(k) = o(1), we obtain

lim
k→∞

m2(νk) = 1 + lim
k→∞

2ckαb2Φ(b − k − 1
k
)

= 1 + 2v lim
k→∞

ckΦ(b − k − 1
k
)

= 1 + 2v.

Since 1 + 2v < M , there exists N ∈ N such that {νk}k≥N ⊂ PM
2 . Since µ2(γ) = 1 and

lim
k→∞

(m2(νk) − µ2(γ)) = 2v > 0,

it follows from Lemma 4.4.1 that lim infk→∞ W2(µ, µk) ≥ C, for some C > 0. By (4.3.1), we have

H( fk) = o(1) + 2ckvb−2bγ(b − k − 1
k
) + ckvb−2b2Φ(b − k − 1

k
)

= o(1) + vckΦ(b − k − 1
k
),

which implies that H( fk) → v > 0. By (2.1.2), we conclude that ‖ fk − 1‖Lp (dγ) does not converge to zero for
p > 1. □

4.4.3 Proof of Theorem 4.1.2

Let νk and fk be defined as in Example 4.3.2 with α = b−
1
2 (i.e. v = 1 and w = 1

2 ). Note that m2(νk) < ∞ for all
k and m2(νk) → ∞ as k → ∞ by (4.4.1). By Lemma 4.4.1 it is enough to show that m1(νk) does not converge to
m1(γ). By the construction of νk , we have

m1(νk) =
∫
R
|x |dνk

= 2ck

∫ k

0
|x |dγ + 2ck

∫ k+ 1
k

k

|x |lk(x)dγ + 2ckα
∫ ∞

k+ 1
k −b

|x + b|dγ.

We observe that 2ck
∫ k

0 |x |dγ = o(1) + m1(γ),.....
∫ k+ 1

k

k

|x |lk(x)dγ
..... ≤

(
k +

1
k

) γ(k)
k
= o(1),
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and

2ckα
∫ ∞

k+ 1
k −b

|x + b|dγ ≥ 2ckα
∫ ∞

k+ 1
k −b

(b − |x |)dγ

≥ 2ckαbΦ(b − k − 1
k
) − 2ckαm1(γ).

Since we have αb = b
1
2 → ∞, we conclude that m1(νk) → ∞. By Lemma 4.4.1, the proof is complete. □

Remark 4.4.2. We summarize what we have seen in this section. Let νk and fk be as in Example 4.3.2. Note that
αk = vb−w

k
and b = 2(k + 1

k ) +
√

k. According to the computations above, we have

H(νk) = o(1) + ckvb2−wΦ(b − k − 1
k
)

and
o(1) + 21−pckvbp−w ≤ mp(νk) − mp(γ) ≤ o(1) + 2pckvbp−w

for all p ≥ 1. For any v,w > 0, we have νk ∈ P2(R), δ(νk) → 0, ‖ fk − 1‖L1(dγ) → 0, and νk ⇀ γ. The followings
describe the behaviors of the relative entropy and the second moment of νk in terms of w.

(i) If w > 2, then H(νk) → 0 and m2(νk) → m2(γ) so that no instability results can be obtained.

(ii) If w = 2, then m2(νk) does not converge to m2(γ) which implies that W2(νk, γ) ∕→ 0. In this case, m2(νk)
can be bounded by some constant so that νk ∈ PM

2 .

(iii) If w < 2, then m2(νk) goes to ∞ so that νk does not belong to PM
2 for any M > 0. In this case, we have

mp(νk) − mp(γ) ∕→ 0 for any p ≥ w. So Wp(νk, γ) ∕→ 0.

(iv) The relative entropy H(νk) ∕→ 0 if and only if w ≤ 2.
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Chapter 5

Instability for Beckner–Hirschman
inequality

In the previous chapter, we constructed a sequence of probability measures such that the LSI deficit converges to 0
but the distances from the Gaussian measure does not. Note that we have seen in (2.2.5) that the deficit of the BHI
is bounded above by that of the LSI. As an application of Example 4.3.2, we prove that there are no stability for the
Beckner–Hirschman inequality (the BHI) in terms of the normalized Lp distances with some weighted measures
and range of p. This chapter is based on my work [85].

5.1 Main results

For a nonnegative function h on R with ‖h‖2 = 1, the Beckner–Hirschman inequality states that

δBH(h) = S(|h|2) + S(| ĥ|2) − (1 − log 2) ≥ 0

where S(ρ) is the entropy of ρ defined as in (2.2.2), and δBH(h) is the deficit of the BHI. It is also called the
entropic uncertainty principle. We say that a function h is an optimizer for the BHI if δBH(h) = 0. LetG be the set
of all nonnegative, L2-normalized optimizers for the BHI. Using the fact that the optimizers are Gaussian (see [91]
and [40, p.207]), we get

G = {Ga,r (x) =
(2a
π

) 1
4
e−a(x−r)

2
: a > 0, r ∈ R}. (5.1.1)

We denote by Ga(x) = Ga,0(x) and g(x) = Gπ(x). For a measure µ on R and p > 0, we define

distLp (dµ)(h,G) = inf
u∈G

‖h − u‖Lp (dµ) = inf
a>0,r ∈R

‖h − Ga,r ‖Lp (dµ).

The key element of the application is that the deficit of the LSI is bounded below by that of the BHI. To be
specific, we have δ( f ) ≥ δBH(h) where

h(x) = ( f (2
√
πx)) 1

2 g(x). (5.1.2)

Let fk be a sequence of functions constructed in Example 4.3.2 and hk the transformation of fk by (5.1.2), then we
have δBH(hk) → 0; see Lemma 4.3.3. Note that hk is indeed a Gaussian function with small Gaussian bumps in the
tails. In the proofs of Theorem 4.1.1 and Theorem 4.1.2, we have seen that the growth of the second moments of the
probability measures { fkdγ} can be controlled by the choice of parameters. This implies that the Gaussian bumps
of hk in the tails are not negligible with respect to measures with some polynomial weights. This observation leads
us to adopt the polynomial measure dηλ = |x |λdx.
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Theorem 5.1.1. Let λ > 0, dηλ = |x |λdx, and p ≥ 2(λ + 1), then there exists a sequence of nonnegative functions
{hk}k≥1 in Lp(dηλ) such that ‖hk ‖2 = 1, δBH(hk) → 0, ‖hk ‖Lp (dηλ) → ∞, and

lim inf
k→∞

distLp (dηλ)(hk,G)
‖hk ‖Lp (dηλ)

≥ C(p, λ) > 0.

Inspired by the transformation (5.1.2), it is natural to consider a reference measure with a Gaussian weight
g(x). It turns out that for dmθ = g−θdx with specific ranges of p and θ, we obtain an instability result for the BHI
with respect to Lp(dmθ ).

Theorem 5.1.2. Let p > θ > 0 and dmθ = g−θdx. There exists a sequence of nonnegative functions {hk}k≥1 in
Lp(dmθ ) such that ‖hk ‖2 = 1, δBH(hk) → 0, ‖hk ‖Lp (dmθ ) → ∞, and

lim inf
k→∞

distLp (dmθ )(hk,G)
‖hk ‖Lp (dmθ )

≥ C(p, θ) > 0.

We emphasize that dηλ is a more suitable reference measure than dmθ in a sense that Lp(dηλ) contains all
optimizersG whereas Lp(dmθ ) does not (see (5.3.2)). If we choose the Lebesgue measure as a reference measure
(that is, θ = 0 in Theorem 5.1.1 or λ = 0 in Theorem 5.1.2), then the sequence of functions hk converges to g in
Lp (see Remark 5.3.4). It remains open to show Lp-stability for the BHI with respect to the Lebesgue measure.

5.2 Relation to stability of the Hausdorff–Young inequality

We briefly review the work of Christ [45] and discuss how it is related to the Beckner–Hirschman inequality. This
consideration gives a glimpse of what stability of the Beckner–Hirschman inequality would be and the connection
to our instability results of the BHI.

Let p ∈ [1, 2], q = p/(p − 1), and Ap = p1/2pq−1/2q . For a complex-valued function h ∈ Lp(Rn), the sharp
Hausdorff–Young inequality by Babenko [4] and Beckner [20] states that ‖ ĥ‖q ≤ An

p ‖h‖p . Then Lieb [91] showed
that equality holds if and only if a function h is of the form h(x) = ce−Q(x)+x ·v where v ∈ Cn, c ∈ C, and Q is a
positive definite real quadratic form. Let G be the set of all optimizers for the Hausdorff–Young inequality. Define
P(Rn) to be the set of all polynomials P : Rn → C of the form P(x) = −x · Ax + b · x + c where b ∈ Cn, c ∈ C,
and A is a symmetric, positive definite real matrix. Note that G \ {0} = {eP : P ∈ P(Rn)}. Let u ∈ G \ {0}. The
real tangent space to G at u is TuG = {Pu : P ∈ P(Rn)}, and the normal space to G at u is

NuG = {h ∈ Lp : Re
( ∫
Rn

hPu|u|p−2dx
)
= 0}. (5.2.1)

Define distp(h,G ) = infu∈G ‖h − u‖p . There exists δ0 > 0 such that if a nonzero function h satisfies distp(h,G ) ≤
δ0‖h‖p , then h can be written as h = h⊥ + π(h) where π(h) ∈ G and h⊥ ∈ Nπ(h)G . Since ‖h⊥‖p = ‖h − π(h)‖p
and π(h) ∈ G , we have ‖h⊥‖p ≥ distp(h,G ). For a function h satisfying distp(h,G ) ≤ δ0‖h‖p , we define
dist∗p(h,G ) = ‖h⊥‖p .

Let p ∈ [1, 2] and h ∈ Lp(Rn). The deficit of the Hausdorff–Young inequality is given by

δHY(h; p) = An
p −

‖ ĥ‖q
‖h‖p

.

Let Bp,n =
1
2 (p − 1)(2 − p)An

p . For η > 0, we define

h⊥η =



h⊥, |h⊥ | ≤ η |π(h)|,
0 |h⊥ | > η |π(h)|.
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In [45], Christ proved the following quantitative Hausdorff–Young inequality. He firstly showed a compactness
result using combinatoric arguments, and then computed the second variation to obtain remainder terms for the
Hausdorff–Young inequality.

Theorem 5.2.1 ( [45, Theorem 1.3]). For each n ≥ 1 and p ∈ (1, 2), there exist η0, γ > 0 and C, c > 0 such that for
all η ∈ (0, η0), if a nonzero function h ∈ Lp(Rn) satisfies distp(h,G ) ≤ ηγ ‖h‖p , then δHY(h; p) ≥ R1(h; p)+R2(h; p)
where

R1(h; p) = (Bp,n − Cη)‖h‖−pp
( ∫
Rn

|h⊥η |2 |π(h)|p−2dx
)
, (5.2.2)

R2(h; p) = cη2−p
(distp(h,G )

‖h‖p

)p−2
(
‖h⊥ − h⊥η ‖p

‖h‖p

)2

.

By differentiating the sharp Hausdorff–Young inequality, one can derive the BHI. Indeed, let h ∈ L1(Rn) ∩
L2(Rn) with ‖h‖2 = 1. Since δHY(h; p) ≥ 0 and δHY(h; 2) = 0, the derivative of δHY(h; p) with respect to p at
p = 2 is less than or equal to 0, which yields

− d
dp
δHY(h, p)|p=2 =

1
4

(
S(|h|2) + S(| ĥ|2) − n(1 − log 2)

)
≥ 0.

A natural question is whether stability of the Hausdorff–Young inequality also yields that of the BHI. In what
follows, we fix a function h ∈ L1(Rn) ∩ L2(Rn) that satisfies distp(h,G ) ≤ δ0‖h‖p and ‖h‖2 = 1 for all p ∈ [1, 2].
Note that h⊥ and π(h) depend on p. We assume the following:

(i) We can choose a constant δ0 to be uniform in p ∈ [1, 2].

(ii) The constant η in (5.2.2) is independent of p ∈ (1, 2).

(iii) We choose the constant C = C(p) in (5.2.2) such that C is differentiable on (1, 2] and C(2) = 0.

(iv) R1(h; p) ≥ 0 for all p ∈ (1, 2).

(v) h⊥ and π(h) are differentiable with respect to p.

Based on these assumptions, we have δHY(h; p) ≥ R1(h; p)+R2(h; p) ≥ R1(h; p) ≥ 0 and δHY(h; 2) = R1(h; 2) = 0.
Taking the derivative with respect to p, we obtain

S(|h|2) + S(| ĥ|2) − n(1 − log 2) = −4
d
dp

(
An

p −
‖ ĥ‖q
‖h‖p

)
|p=2 ≥ −4

d
dp

R1(h; p)|p=2

and

d
dp

R1(h; p)|p=2 =
d
dp

(Bp,n − Cη)|p=2

(
lim
p↑2

∫
Rn

|h⊥η |2 |π(h)|p−2dx
)

= −(1
2
+ C ′(2)η)

(
lim
p↑2

∫
Rn

|h⊥η |2 |π(h)|p−2dx
)
.

Let h be a nonnegative function and Lη = {x : |h⊥(x)| ≤ η |π(h)(x)|}, then h⊥η = h⊥ · 1Lη . By Fatou’s lemma, we
get

lim
p↑2

∫
R
|h⊥η |2 |π(h)|p−2dx ≥

∫
R
|h⊥η |2dx

=

∫
Lη

|h − π(h)|2dx.
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Since h − π(h) ∈ Nπ(h)G , it follows from (5.2.1) that π(h) is nonnegative with ‖π(h)‖2 ≤ 1. Let

G̃ = {u ∈ G : u ≥ 0, ‖u‖2 ≤ 1}.

Note that the set of the optimizers for the BHI defined in (5.1.1),G, is contained in G̃ and π(h) ∈ G̃. For η small
such that 1

2 + C ′(2)η > 0, we get
δBH( f ) ≥ Cηdist2(h̃, G̃)2

where dist2(h̃, G̃) = inf
u∈"G ‖ h̃ − u‖2 and

h̃(x) =



h(x), x ∈ Lη,

π(h)(x), x ! Lη .

Although we make strong assumptions, our observation suggests that there might be a stability estimate for the
BHI in terms of L2 or weaker distance than L2 with respect to the Lebesgue measure. We remark that Theorem
5.1.1 and 5.1.2 do not contradict to the observation. In Theorem 5.1.2, we show that the BHI is not stable in terms
of distLp (dmθ )(·,G) with normalization for p > θ > 0. In Remark 5.3.4, we explain that our example constructed
in Theorem 5.1.2 does not give any instability results for the BHI when θ = 0. Note that dist2(·, ·) is the boundary
case when θ = 0 and p = 2. Compared to Theorem 5.1.1, dist2(·, ·) can be seen as the case when λ = 0 (so that
p ≥ 2(λ + 1) = 2). Furthermore, Theorem 5.1.1 implies that an L2-stability estimate would be best possible in
terms of the Lp distances if exists.

5.3 Proofs of Theorem 5.1.1 and Theorem 5.1.2

5.3.1 Technical lemmas

To complete the proof of Theorem 5.1.2, we want to show that if k is large enough then

distLp (dmθ )(hk,G) ≥ C‖hk ‖Lp (dmθ )

for some C > 0. Lemma 5.3.1 and Lemma 5.3.2 reduce the left hand side to the infimum of Lp norms over a finite
interval when p > 2, which makes it easy to estimate a lower bound of the distance. To control the right hand side,
we obtain a two-sided estimate of ‖hk ‖Lp (dmθ ) in Lemma 5.3.3.

Lemma 5.3.1. Let p > θ > 0, a ≥ a0 > π, 0 < t < (a0/π)
1
4 , and Ga(x) = Ga,0(x) = ( 2a

π ) 1
4 e−ax

2 . Let
M(a, t) = {x : Ga(x) ≥ tGπ(x)}, then there exist constants C(p, a0, t),C(p, θ) > 0 such that

C(p, a0, t)a
p−2
4p ≤ ‖Ga · 1M(a,t)‖Lp (dmθ ) ≤ C(p, θ)a

p−2
4p

for all a ≥ a0. In particular, if p > 2 then lima→∞ ‖Ga · 1M(a,t)‖Lp (dmθ ) = ∞.

Proof. Since Ga is symmetric and decreasing in [0,∞), the level set Ma,t = [−x0, x0] where x0 > 0 satisfies
Ga(x0) = tGπ(x0). Solving the equation for x0, we obtain

x0 =
1
2

√
log a − log π − 4 log t

a − π .

Let β = ap − θπ > 0, then

‖Ga · 1M(a,t)‖pLp (dmθ ) =

∫ x0

−x0

|Ga(x)|pdmθ

=
(2a
π

) p
4
∫ x0

−x0

e−βx
2
dx

= 2
p
4 π−

p−2
4 a

p−2
4 (p − θπ

a
)− 1

2 (2Φ(
√

2βx0) − 1).
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Since
√

2βx0 → ∞ as a → ∞, there exists a constant C(a0, t) > 0 such that C(a0, t) ≤ 2Φ(
√

2βx0) − 1 ≤ 1. We
have

2
1
4 π−

p−2
4p p−

1
2p C(a0, t)

1
p a

p−2
4p ≤ ‖Ga · 1M(a,t)‖Lp (dmθ ) ≤ 2

1
4 π−

p−2
4p (p − θ)−

1
2p a

p−2
4p ,

which completes the proof. □

Let fk be the sequence of functions defined in Example 4.3.2 with b = bk = 2(k + 1
k )+

√
k and α = αk = b

− 3
2

k
.

Recall that bk = 2(k + 1
k ) +

√
k, fk(x) = fk(−x), and

fk(x) =




ck, x ∈ [0, k],
ck lk(x), x ∈ (k, k + 1

k ],
ckαgb(x), x ∈ (k + 1

k ,∞).

Here ck is a normalization constant so that
∫
R

fkdγ = 1. Note that αk → 0, bk → ∞, and ck → 1 as k → ∞.
Define hk(x) =

√
fk(2

√
πx)g(x). It follows from change of variables that ‖hk ‖2 = ‖ fk ‖L1(dγ) = 1.

Lemma 5.3.2. Let p > 2, p > θ > 0, and hk be defined as above. There exist k0 ∈ N and a0 > π such that

‖hk − Ga‖Lp (dmθ ) ≥ ‖hk − Gπ ‖Lp (dmθ )

for all a ≥ a0 and k ≥ k0.

Proof. Let G̃a(x) = Ga( x
2
√
π
)/Gπ( x

2
√
π
), then

‖hk − Ga‖pLp (dmθ ) = (4π)
β−1

2

∫
|
√

fk(x) − G̃a(x)|pγβ(x)dx

where γ(x) = (2π)− 1
2 e−

|x |2
2 and β = p−θ

2 . We choose k0 ∈ N such that 1
2 ≤ ck ≤ 3

2 for all k ≥ k0. Since lk(x) ≤ 1,
we have |

√
ck lk(x) − 1| ≤ 1. Let k ≥ k0, then we get

∫
|
√

fk(x) − 1|pγβ(x)dx =
∫ k

−k
|√ck − 1|pγβ(x)dx + 2

∫ k+ 1
k

k

|
√

ck lk − 1|pγβ(x)dx (5.3.1)

+ 2
∫ ∞

k+ 1
k

|√ckαgb − 1|pγβ(x)dx

≤ 2−p(2π)−
β−1

2 β−
1
2 (2Φ(

√
βk) − 1) + 2γβ(k)

k

+ 2
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγβ(x)dx

≤ C1(p, θ) + 2
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγβ(x)dx.

Choose a1 > π so that G̃a(1) ≤ 1
2 ≤ √

ck for all a ≥ a1. Setting A = {x : G̃a(x) ≥ 3
2 }, we see that A ⊆ [−k, k] and

∫ k

−k
|√ck − G̃a(x)|pγβ(x)dx ≥

∫
#Ga (x)≥ 3

2

...G̃a(x) −
3
2

...pγβ(x)dx

≥ 21−p
∫
A

|G̃a(x)|pγβ(x)dx −
(3
2

)p
(2π)−

β−1
2 β−

1
2
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for all a ≥ a1. Let B = {x :
√

ckαgb(x) ≥ 1}. Note that b = 2(k + 1
k )+

√
k, αk ≤ 1

2 , and ck ≤ 3
2 . If

√
ckαgb(x) ≥ 1,

then x ≥ b
2 − 1

b log(ckα) and B ⊂ [k + 1
k ,∞). If x ≥ k + 1

k , then G̃a(x) ≤ 1; we have∫ ∞

k+ 1
k

|
√

ckαgb(x) − G̃a(x)|pγβ(x)dx ≥
∫
B

|
√

ckαgb(x) − 1|pγβ(x)dx

≥
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγβ(x)dx − 1
2
(2π)−

β−1
2 β−

1
2 .

Combining our observation, we get∫
|
√

fk(x) − G̃a(x)|pγβ(x)dx

≥
∫ k

−k
|√ck − G̃a(x)|pγβ(x)dx + 2

∫ ∞

k+ 1
k

|
√

ckαgb(x) − G̃a(x)|pγβ(x)dx

≥ 21−p
∫
A

|G̃a(x)|pγβ(x)dx + 2
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγβ(x)dx − C2(p, θ).

By Lemma 5.3.1, one can choose a0 ≥ a1 such that∫
A

|G̃a(x)|pγβ(x)dx ≥ 2p−1(C1(p, θ) + C2(p, θ))

for all a ≥ a0. By (5.3.1), we have∫
|
√

fk(x) − G̃a(x)|pγβ(x)dx ≥ 21−p
∫
A

|G̃a(x)|pγβ(x)dx +
∫

|
√

fk(x) − 1|pγβ(x)dx

− C1(p, θ) − C2(p, θ)

≥
∫

|
√

fk(x) − 1|pγβ(x)dx,

which finishes the proof. □

Lemma 5.3.3. Let p > θ > 0 and hk be defined as above. There exists k0 ∈ N such that

‖hk ‖Lp (dmθ ) ≍p,θ b−
3
4 e

θb2
4(p−θ )

for all k ≥ k0.

Proof. Let β = p−θ
2 . A direct computation yields that

‖hk ‖pLp (dmθ ) = (4π)
β−1

2

∫
| fk(x)|

p
2 γβ(x)dx

= |ck |
p
2 2

β−1
2 β−

1
2 (2Φ(

√
βk) − 1) + 2|ck |

p
2

∫ k+ 1
k

k

|lk(x)|
p
2 γβ(x)dx

+ 2
β+1

2 |ckα |
p
2 β−

1
2 e

pθb2
4(p−θ )Φ( pb

2
√
β
−
√
β(k + 1

k
)).

Choose k1 ∈ N such that ck ∈ [ 1
2,

3
2 ] and Φ( pb

2
√
β
−
√
β(k + 1

k )) ≥
1
2 for all k ≥ k1. Then we have

‖hk ‖Lp (dmθ ) ≥ C(p, θ)b− 3
4 e

θb2
4(p−θ ) .

Since we have

|ck |
p
2 2

β−1
2 β−

1
2 (2Φ(

√
βk) − 1) + 2|ck |

p
2

∫ k+ 1
k

k

|lk(x)|
p
2 γβ(x)dx ≤ C(p, θ),

we can choose k2 ∈ N such that
‖hk ‖Lp (dmθ ) ≤ C(p, θ)b− 3

4 e
θb2

4(p−θ )

for all k ≥ k2. □
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5.3.2 Proof of Theorem 5.1.2

Let fk be the sequence of functions defined in Example 4.3.2 with b = bk = 2(k + 1
k ) +

√
k and α = αk = b

− 3
2

k
.

Define hk(x) =
√

fk(2
√
πx)g(x). Note that ‖hk ‖L2(dmθ ) = ‖ fk ‖L1(dγ) = 1. By (2.2.5) and Lemma 4.3.3, we have

δBH(hk) → 0 as k → ∞. Since the function hk and g−θ are symmetric and the symmetric decreasing rearrangement
of Ga,r is Ga, it follows from the rearrangement inequality (see [92, Theorem 3.5]) that

distLp (dmθ )(hk,G) = inf
a∈( θπp ,∞)

‖hk − Ga‖Lp (dmθ )

for all k ≥ 1. Here we used the fact that

Ga,r ∈ Lp(dmθ ) if and only if a > θπ/p. (5.3.2)

Our goal is to show that there exists a constant C = C(p, θ) > 0 such that

‖hk − Ga‖Lp (dmθ ) ≥ C‖hk ‖Lp (dmθ )

for all a ∈ ( θπp ,∞) and for large k.

Case 1: a ≥ π

Suppose p > 2. By Lemma 5.3.2, there exists a0 > π such that

distLp (dmθ )(hk,G) = inf
a∈( θπp ,a0]

‖hk − Ga‖Lp (dmθ )

for all large k. So it suffices to show that if k is large enough, then ‖hk − Ga‖Lp (dmθ ) ≥ C‖hk ‖Lp (dmθ ) for all
a ∈ (π, a0]. First we consider the case when π ≤ a ≤ a0. Since p > 2,

‖Ga‖pLp (dmθ ) = 2
p−θ

4 ( a
π
)
p−2

4 (p − θπ
a
)− 1

2 (5.3.3)

= C(p, θ)a
p−2

4 (p − θπ
a
)− 1

2

is uniformly bounded in a ∈ [π, a0]. By Lemma 5.3.3, we can choose k1 ∈ N so that for all k ≥ k1, ‖hk ‖Lp (dmθ ) ≥
2 supa∈[π,a0] ‖Ga‖Lp (dmθ ). We obtain

‖hk − Ga‖Lp (dmθ ) ≥ ‖hk ‖Lp (dmθ ) − sup
a∈[π,a0]

‖Ga‖Lp (dmθ )

≥ 1
2
‖hk ‖Lp (dmθ )

for all a ∈ [π, a0] and k ≥ k1.
If p ≤ 2, then it follows from (5.3.3) that ‖Ga‖pLp (dmθ ) ≤ C(p, θ)π

p−2
4 (p− θ)− 1

2 for all a ≥ π. By Lemma 5.3.3,
we choose k2 ∈ N such that ‖hk − Ga‖Lp (dmθ ) ≥ 1

2 ‖hk ‖Lp (dmθ ) for all k ≥ k2.

Case 2: θπ
p < a < π

By Lemma 5.3.3, it suffices to show that there exists a constant c > 0 such that

‖hk − Ga‖Lp (dmθ ) ≥ cb−
3
4 e

θb2
4(p−θ )
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for all a ∈ ( θπp , π) and large k. Let β = p−θ
2 and s = 1− a

π , then 0 < s < 1− θ
p . We define Rs,k(x) = G̃a(x)/

√
fk(x),

then

‖hk − Ga‖Lp (dmθ ) = (4π)
β−1

2

∫
|
√

fk − G̃a |pγβdx

= (4π)
β−1

2

∫
|1 − Rs,k |p | fk |

p
2 γβdx

≥ (4π)
β−1

2 |ckα |
p
2

∫ ∞

k+ 1
k

|1 − Rs,k |pe
pb
2 x− pb2

4 γβdx.

Let Qs,k(x) = s
4 (x − b

s )2 − ( 1−s
4s )b2, then

Rs,k(x) =
(1 − s) 1

4

(ckα)
1
2

eQs,k (x).

Choose t ∈ (1, p
p−θ ), then

Qs,k(tb) =
s
4
(tb − b

s
)2 − (1 − s

4s
)b2 =

t2b2

4

(
s −

(2t − 1
t2

) )
.

Since the map t ,→ 2t−1
t2 is decreasing on (1, p

p−θ ), we know

2t − 1
t2 ≥

2( p
p−θ ) − 1

( p
p−θ )2

=
p2 − θ2

p2 >
p − θ

p
.

Since s ∈ (0, p−θp ), we have Qs,k(tb) < 0. The function Qs,k(x) is symmetric about x = b
s and b

s > tb. This yields
that Qs,k(x) ≤ Qs,k(tb) for all x ∈ [tb, 2b

s − tb]. Thus we can choose k3 ∈ N so that Rs,k(x) ≤ 1
2 for all k ≥ k3 and

s ∈ (0, p−θp ). Since (t − p
p−θ ) < 0 and ( 2

s − t − p
p−θ ) ≥ c > 0 uniformly in s, we can choose k4 ∈ N so that

Φ((2
s
− t − p

p − θ )b
√
β) − Φ((t − p

p − θ )b
√
β) ≥ 1

2

for all k ≥ k4 and s ∈ (0, p−θp ). If k is large enough, then we obtain

‖hk − Ga‖pLp (dmθ ) ≥ (4π)
β−1

2 2−p |ckα |
p
2

∫ ∞

k+ 1
k

e
pb
2 x− pb2

4 γβdx

≥ 2
β−1

2 −p |ckα |
p
2 e

pθb2
4(p−θ ) β−

1
2 (Φ((2

s
− t − p

2β
)b
√
β) − Φ((t − p

2β
)b
√
β))

≥ C(p, θ)b−
3p
4 e

pθb2
4(p−θ ) .

By Lemma 5.3.3, we have

‖hk − Ga‖Lp (dmθ ) ≥ C‖hk ‖Lp (dmθ )

for all a ∈ ( θπp , π), which completes the proof. □
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5.3.3 Proof of Theorem 5.1.1

We note that Ga,r ∈ Lp(dηλ) for all a > 0 and r ∈ R. Indeed we have

‖Ga,r ‖pLp (dηλ) =

∫
|Ga,r (x)|pdηλ (5.3.4)

≤
∫

|Ga(x)|pdηλ

=
(2a
π

) p
4
∫

|x |λe−apx
2
dx

=
(2a
π

) p
4 (2ap)− λ+1

2

∫
|x |λe−

x2
2 dx

= C(p, λ)a
p−2λ−2

4 mλ(γ)

where mλ(γ) is the λ-th moment of the standard Gaussian measure. Let hk(x) =
√

fk(2
√
πx)g(x) with αk = b−w

k

and 0 < w < 2λ
p , then

‖hk ‖pLp (dηλ) = C(p, λ)
∫

| fk(x)|
p
2 γ

p
2 (x)|x |λdx

≥ C(p, λ)|ckαk |
p
2

∫ ∞

k+ 1
k

|x |λe−
p
4 (x−bk )2 dx

= C(p, λ)|ckαk |
p
2

∫ ∞

k+ 1
k −bk

|x + bk |λe−
p
4 x2

dx

≥ C(p, λ)|ckαk |
p
2 (|bk |λ − mλ(γ))

so that ‖hk ‖Lp (dηλ) → ∞ as k → ∞. By the rearrangement inequality,

distLp (dηλ)(hk,G) = inf
a>0

‖hk − Ga‖Lp (dηλ).

Assume p = 2λ + 2, then ‖Ga‖Lp (dηλ) = C(p, λ)mλ(γ) is independent of a. We pick k1 ∈ N such that
‖hk ‖Lp (dηλ) ≥ 2‖Ga‖Lp (dηλ) for all k ≥ k1, then

‖hk − Ga‖Lp (dηλ) ≥ ‖hk ‖Lp (dηλ) − ‖Ga‖Lp (dηλ) ≥
1
2
‖hk ‖Lp (dηλ)

for all k ≥ k1, as desired.
Suppose p − 2λ − 2 > 0. By (5.3.4), we have ‖Ga‖Lp (dηλ) → ∞ as a → ∞. Since ‖hk ‖Lp (dηλ) → ∞ and

‖Ga‖Lp (dηλ) is bounded in a ∈ (0, a0] for a fixed a0 by (5.3.4), it suffices to show that there exist k0 and a0 such
that

‖hk − Ga‖Lp (dηλ) ≥ ‖hk − Gπ ‖Lp (dηλ)

for all k ≥ k0 and a ≥ a0. Let G̃a(x) = Ga( x
2
√
π
)/Gπ( x

2
√
π
), then

‖hk − Ga‖pLp (dηλ) = C(p, λ)
∫

|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx.

We choose k1 ∈ N such that 1
2 ≤ ck ≤ 3

2 for all k ≥ k1. Let I = [−x0, x0] with

x0 =
1
2

√
log a − log π − 4 log(3/2)

a − π ,
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then G̃a(x) ≥ 3/2 for all x ∈ I. Choose a1 > π so that G̃a(1) ≤ 1
2 ≤ √

ck for all a ≥ a1, then I ⊂ [−k, k]. We get
∫ k

−k
|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx ≥

∫
I

|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx

≥ C(p, λ)a
p−2(λ+1)

4

∫ √
ap
2π x0

−
√

ap
2π x0

|x |λdγ − C1(p, λ).

Since
√

ax0 → ∞ as a → ∞, there exist a2 and C > 0 such that
∫
I
|x |λdγ ≥ C for all a ≥ a2. Let B = {x :√

ckαkgbk
(x) ≥ 1}. Note that bk = 2(k+ 1

k )+
√

k, αk ≤ 1
2 , and ck ≤ 3

2 . If
√

ckαgb(x) ≥ 1, then x ≥ b
2 −

1
b log(ckα)

and B ⊂ [k + 1
k ,∞). If x ≥ k + 1

k , then G̃a(x) ≤ 1; thus we have∫ ∞

k+ 1
k

|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx ≥

∫
B

|
√

ckαgb(x) − 1|pγ
p
2 (x)|x |λdx

≥
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγ
p
2 (x)|x |λdx − C(p, λ).

Combining our observation, we get∫
|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx

≥
∫ k

−k
|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx + 2

∫ ∞

k+ 1
k

|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx

≥ C1(p, λ)a
p−2(λ+1)

4 + 2
∫ ∞

k+ 1
k

|
√

ckαgb(x) − 1|pγ
p
2 (x)|x |λdx − C2(p, λ).

We choose k2 large enough so that for all k ≥ k2, we have∫
|
√

fk(x) − 1|pγ
p
2 (x)|x |λdx = 2

∫ k

0
|√ck − 1|pγ

p
2 (x)|x |λdx

+ 2
∫ k+ 1

k

k

|
√

ck lk − 1|pγ
p
2 (x)|x |λdx

+ 2
∫ ∞

k+ 1
k

|√ckαgb − 1|pγ
p
2 (x)|x |λdx

= C3(p, λ) + 2
∫ ∞

k+ 1
k

|√ckαgb − 1|pγ
p
2 (x)|x |λdx.

It then follows that∫
|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx

≥ C1(p, λ)a
p−2(λ+1)

4 +

∫
|
√

fk(x) − 1|pγ
p
2 (x)|x |λdx − C2(p, λ) − C3(p, λ).

Letting a large enough, we obtain∫
|
√

fk(x) − G̃a(x)|pγ
p
2 (x)|x |λdx ≥

∫
|
√

fk(x) − 1|pγ
p
2 (x)|x |λdx.

Therefore, we have ‖hk − Ga‖Lp (dηλ) ≥ ‖hk − Gπ ‖Lp (dηλ) as desired. □

Remark 5.3.4. For the Lebesgue measure and p ≥ 0, we have

‖hk − Gπ ‖pp = (4π)
p−2

4

∫
|
√

fk − 1|pγ
p
2 (x)dx

= o(1) + 2(ckα)
p
2

∫ ∞

k+ 1
k

|
√
gb(x) − 1|pγ

p
2 (x)dx
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and ∫ ∞

k+ 1
k

|
√
gb(x) − 1|pγ

p
2 (x)dx ≤ 2p

∫ ∞

k+ 1
k

gb(x)
p
2 γ

p
2 (x)dx + 2p

∫ ∞

k+ 1
k

γ
p
2 (x)dx ≤ C(p).

So we get
lim
k→∞

distLp (dx)(hk,G) ≤ lim
k→∞

‖hk − Gπ ‖p = 0,

which implies that our method does not give an instability result for the BHI when θ = 0 in Theorem 5.1.2 and
λ = 0 in Theorem 5.1.1.
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Chapter 6

Stability of the expected lifetime inequality

The isoperimetric inequalities for the expected lifetime of Brownian motion state that the Lp-norms of the expected
lifetime in a bounded domain for 1 ≤ p ≤ ∞ are maximized when the region is a ball with the same volume. In
this chapter, we prove quantitative improvements of the inequalities. We also discuss related open problems that
arise from these improvements. This chapter is based on my work [86].

6.1 Introduction

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the rotationally symmetric α–stable process with

generator −(−∆)α/2. The first exit time of Xα
t from D is given by

ταD = inf{t > 0 : Xα
t ! D}.

The expected lifetime of Xα
t is denoted by uαD(x) = Ex[ταD] where Ex is the expectation associated with Xα

t starting
at x ∈ Rn. Note that uαD(x) is a solution to the equation



(−∆) α

2 u(x) = 1, x ∈ D,

u(x) = 0, x ! D.

If B is a ball of radius R and centered at the origin, then uαB(x) is explicitly given by

uαB(x) = Cn,α(R2 − |x |2) α
2 .

For α = 2, Xα
t is Brownian motion with generator ∆. In this case, we drop the superscript α.

Bañuelos and Méndez-Hernández [16] showed that several isoperimetric type inequalities for Brownian motion
continue to hold for a wide class of Lévy processes using the symmetrization of Lévy processes and the multiple
integral rearrangement inequalities of Brascamp–Lieb–Luttinger [31]. A particular case of this is that for all t ≥ 0
and x ∈ Rn,

P0(ταB > t) ≥ Px(ταD > t), (6.1.1)

which yields in turn that
uαB(0) ≥ uαD(x), (6.1.2)

where B is a ball centered at 0 with |B | = |D |. In fact, (6.1.1) gives

E0(ταB )p ≥ Ex(ταD)p (6.1.3)
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for all p > 0.
Talenti [110] proved that the Lp norm of a solution of a second-order elliptic equation is maximized when the

elliptic operator and the domain are symmetrically rearranged. In particular, the result yields that for p > 0, α = 2,
and a bounded domain D,

‖uB ‖p ≥ ‖uD ‖p (6.1.4)

where B is a ball with |B | = |D |.
Given the above isoperimetric type inequalities for the first exit time of the stable processes and their connection

to the classical torsion function, it is interesting to find quantitative versions of these inequalities: for example,
quantitative versions of (6.1.1) and (6.1.2), and their implications to quantitative versions of the torsional rigidity
inequality, not only for the stable processes but even for the more general Lévy processes studied in [16]. The goal
of this chapter is to study quantitative versions of the expected lifetime inequalities (6.1.2) for α = 2 and (6.1.4)
for p ≥ 1.

6.2 Main results

We define the deficit of (6.1.2) by

δ(x,D) = 1 − uD(x)
uB(0)

≥ 0 (6.2.1)

where B is a ball centered at 0 with |B| = |D |. We provide a lower bound of the deficit δ(x,D) in terms of
the deviations of x and D from the optimizers. Note that equality holds in (6.2.1) if D is a ball and uD(x) =
maxy∈D uD(y). The deviation of x is represented by the level set |{y ∈ D : uD(y) > uD(x)}|, and the deviation of
D by the Fraenkel asymmetry, which is defined by

A(D) = inf
{
|D△B|
|D| : B is a ball with |B| = |D |

}
. (6.2.2)

Theorem 6.2.1. Let D ⊆ Rn be a bounded domain with A(D) > 0. Let Dt = {y ∈ D : uD(y) > t}, µ(t) = |Dt |,
and

t∗ = t∗(D) = sup{t > 0 : µ(t) > |D |(1 − 1
4

A(D))}. (6.2.3)

Then we have
δ(x,D) ≥ |D |− 2

n

(
µ(uD(x))

2
n + Cn(uD(x) ∧ t∗)A(D)2

)
, (6.2.4)

where Cn = βnω
1
n
n , βn is a dimensional constant in (6.3.3), and ωn is the volume of a unit ball in Rn.

The proof is based on the proof of (6.1.2) for α = 2 in [6, 110], and the sharp quantitative isoperimetric
inequality [64]. In order to estimate the asymmetry of the level sets, we use the idea of Hansen and Nadirashvili [76]
as in the proof of the boosted Pólya–Szegö inequality [33, Lemma 2.9].

Remark 6.2.2. We note that (6.2.4) with the first remainder term follows from the pointwise estimate uB(x) ≥
(uD)∗(x) of [109]. For simplicity, we assume that |D | = 1. For each x ∈ D, we define r(x) ≥ 0 by µ(uD(x)) = |Br(x) |
where Br(x) is a ball of radius r(x). For a nonnegative measurable function f on D, the symmetric decreasing
rearrangement f ∗(x) = f ∗(|x |) satisfies f ∗(r(x)) ≥ f (x) for each x ∈ D. Since uB is rotationally symmetric, we
use the notation uB(x) = uB(|x |). Using uB(x) ≥ (uD)∗(x), one has

uD(x) ≤ (uD)∗(r(x)) ≤ uB(r(x)) = uB(0)(1 − (ω
1
n
n r(x))2) = uB(0)(1 − µ(uD(x))

2
n ).

Notice that (6.2.4) can be written as uB(r(x)) − uD(x) ≥ Cn(uD(x) ∧ t∗)A(D)2.
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Remark 6.2.3. Note that if A(D) > 0, then t∗ > 0. Suppose δ(x,D) = 0. If A(D) > 0, then (6.2.4) implies
µ(uD(x)) = 0 and uD(x) = 0. This contradicts to the assumption |D | > 0 and thus D is a ball with |B | = |D |. As a
consequence, one sees that equality holds (6.2.1) only if D is a ball and uD(x) = maxy∈D uD(y).

Remark 6.2.4. One can extend the result to an uniformly elliptic operator as in [110]. Let L = ∂i(ai j(x)∂j) where
ai j(x) is a bounded measurable function with

n∑
i, j=1

ai j(x)ξiξj ≥
n∑
i=1
ξ2i (6.2.5)

for each x ∈ Rn and ξ = (ξ1, · · · , ξn) ∈ Rn. Consider a weak solution uL
D of



−Lu(x) = 1, x ∈ D,

u(x) = 0, x ∈ ∂D.

Following the proof of Theorem 6.2.1 and modifying (6.3.6) with inequality, which follows from the elliptic
condition (6.2.5), one obtains

1 −
uL
D(x)

uB(0)
≥ |D |− 2

n

(
µ(uL

D(x))
2
n + Cn(uL

D(x) ∧ t∗)A(D)2
)
.

The second result is a quantitative inequality for the Lp norm of the expected lifetime, 1 ≤ p ≤ ∞. We define
the Lp deficit of the expected lifetime inequality (6.1.4) for 1 ≤ p ≤ ∞ by

δp(D) = 1 −
( ‖uD ‖p
‖uB ‖p

)κ(p)

where κ(p) = p for 1 ≤ p < ∞, κ(∞) = 1, and B is a ball centered at 0 with |B| = |D |.

Theorem 6.2.5. Let n ≥ 2 and D be a bounded domain in Rn. For 1 ≤ p ≤ ∞, we have

δp(D) ≥ Cn,pA(D)2+κ(p) (6.2.6)

where Cn,p is explicitly given in (6.3.12) and (6.3.13). In particular, if p = 1, we have

T(B) − T(D) ≥ Cn,1T(B)A(D)3. (6.2.7)

Remark 6.2.6. Let n = 2 and ε > 0. Consider an ellipse D = {(x, y) ∈ R2 : x = cos t, y = (1 + ε) sin t, t ∈ R}.
The asymmetry of D is A(D) = 1

π ε +O(ε2) (see [75, pp. 88–89]). Note that the torsion function of D is

uD(x) =
(1 + ε)2

2(1 + (1 + ε)2)

(
1 − x2 − y2

(1 + ε)2
)
.

Let B be a ball with |B| = |D | = (1 + ε)π. Let p ∈ [1,∞). Direct computations yield

‖uB ‖pp − ‖uD ‖pp =
π

22p(p + 1)
(1 + ε)p+1 − π

2p(p + 1)(1 + (1 + ε)2)p
(1 + ε)2p+1

=
π

22p(p + 1)
(1 + ε)p+1

(
1 −

(
1 − ε2

1 + (1 + ε)2
)p)

= Cpε
2 + o(ε2)

for some Cp > 0, and

δ∞(D) = 1 − ‖uD ‖∞
‖uB ‖∞

= 1 − 2(1 + ε)
1 + (1 + ε)2

=
ε2

1 + (1 + ε)2

for p = ∞. This implies that the exponent of A(D) in (6.2.6) cannot be replaced by smaller number than 2. It is
open to show the inequality (6.2.6) with power 2.

57



Brasco, De Philippis, and Velichkov [34] showed that the sharp exponent of (6.2.7) is 2 in the sense that the
power cannot be replaced by any smaller number. Their method, however, does not give an explicit dimensional
constant because the proof relies on the selection principle of Cicalese and Leonardi [49].

The key step in the proof of Theorem 6.2.5 is the removal of t∗ defined in (6.2.3). In [33], the authors proved
the non-sharp quantitative Saint-Venant inequality (6.2.7) using transfer of asymmetry (Lemma 6.3.1) and the
boosted Pólya–Szegö inequality. Thus t∗ also appears in their proof. To replace t∗ by A(D) (up to a dimensional
constant), they made use of the variational representation for T(D) (2.5.2). In our case, however, the Lp norm of
the expected lifetime does not have an appropriate variational formula for 1 < p ≤ ∞. Instead, we estimate the
distribution function of uD when t∗ is sufficiently small, and apply the layer cake representation and the strong
Markov property. It turns out that this enables us to replace t∗ by A(D).

The fractional analogue of (6.2.7) is proven in [32]. Brasco, Cinti, and Vita showed that if n ≥ 2, α ∈ (0, 2),
and D is an open set with |D| = 1, then

Tα(B) − Tα(D) ≥ Cn,αA(D) 6
α

where Cn,α is explicit and B is a ball with |B| = 1. Furthermore, if D has Lipschitz boundary and satisfies the
exterior ball condition, then the exponent can be lowered to 2 + 2

α . It turns out that our method for removing t∗
yields the same exponent without any additional geometric assumptions on D.

Theorem 6.2.7. If n ≥ 2, α ∈ (0, 2), and D is an open set with |D | = 1, then

Tα(B) − Tα(D) ≥ Cn,αA(D)2+ 2
α

where B is a ball with |B| = |D |.

6.3 Proofs of the main results

6.3.1 Transfer of asymmetry

The following lemma is essentially from [76, Lemma 5.1], which provides an estimate of asymmetries of two sets
when these sets are close in L1 sense. We refer the reader to [32, Lemma 4.1] for its generalization.

Lemma 6.3.1 ( [33, Lemma 2.8]). Let D ⊆ Rn be an open set with finite measure, U ⊆ D, |U | > 0, and
|D \ U |
|D | ≤ k A(D)

for k ∈ (0, 1
2 ). Then, A(U) ≥ (1 − 2k)A(D).

Proof. Let B1 be a ball centered at 0 with |B1 | = |U | satisfying

A(U) = |U△(x + B1)|
|U |

for some x ∈ Rn and B2 a ball centered at 0 with |B2 | = |D |. Note that |U△D| = |D \ U | = |B1△B2 |. Using the
triangular inequality for the symmetric difference, one can see that

A(U) = |U△(x + B1)|
|U |

≥ |D△(x + B2)| − |U△D | − |B1△B2 |
|D |

≥ A(D) − 2
|D \ U |
|D |

≥ (1 − 2k)A(D).
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□

Remark 6.3.2. Let D be a bounded domain in Rn, u a nonnegative function defined in D, and Dt = {x : u(x) > t}
for t > 0. Assume A(D) > 0 and

t∗ = sup{t > 0 : µ(t) > |D|(1 − 1
4

A(D))} > 0.

If t < t∗, then we have
|D \ Dt |

|D | = 1 − µ(t)|D | ≤ 1 − (1 − 1
4

A(D)) = 1
4

A(D), (6.3.1)

which yields A(Dt ) ≥ 1
2 A(D) by Lemma 6.3.1.

6.3.2 Proof of Theorem 6.2.1

We assume that |D | = 1. Let Dt = {x ∈ D : u(x) > t}, µ(t) = |Dt |, and u(x) = uD(x). By the coarea formula, we
have (

− d
dt

∫
Dt

|∇u| dx
)2

≥ P(Dt )2 (6.3.2)

for almost every t > 0. Note that the sharp quantitative isoperimetric inequality [64] states

P(D) ≥ P(B) + βnA(D)2 (6.3.3)

where B is a ball with |B | = |D | = 1 and βn is a dimensional constant. A simple manipulation gives

P(Dt )2 ≥ P(D∗
t )2 + 2P(D∗

t )(P(Dt ) − P(D∗
t )) (6.3.4)

≥ P(D∗
t )2 + (2nω

1
n
n βn)µ(t)2−

2
n A(Dt )2

≥ n2ω
2
n
n µ(t)2−

2
n

(
1 +

2
n
βnω

− 1
n

n A(Dt )2
)

where ωn is the volume of the unit ball in Rn and D∗
t is a ball with |Dt | = |D∗

t |. It follows from Cauchy–Schwarz
inequality that

(−µ′(t)) 1
2

(
− d

dt

∫
Dt

|∇u|2 dx
) 1

2 ≥ − d
dt

∫
Dt

|∇u| dx. (6.3.5)

By (6.3.2), (6.3.4), and (6.3.5), we get

−µ′(t)
(
− d

dt

∫
Dt

|∇u|2 dx
)
≥ n2ω

2
n
n µ(t)2−

2
n

(
1 +

2
n
βnω

− 1
n

n A(Dt )2
)

for almost every t > 0. Since u is a weak solution of −∆u = 1 in D,∫
D

ϕ dx =
∫
D

∇u · ∇ϕ dx

for all ϕ ∈ W1,2
0 (D). Let ϕ(x) = (u(x) − t)+, then it belongs to ϕ ∈ W1,2

0 (D) and
∫
Dt

(u − t) dx =
∫
Dt

|∇u|2 dx.

Let h ∈ R be small enough, then

1
h

( ∫
Dt

|∇u|2 dx −
∫
Dt+h

|∇u|2 dx
)
= µ(t + h) +

∫
Dt △Dt+h

...u − t
h

... dx.
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Since 0 ≤ |u − t | ≤ |h| in Dt△Dt+h and |Dt△Dt+h | → 0 as h → 0, we obtain

µ(t) = − d
dt

∫
Dt

|∇u|2 dx. (6.3.6)

Therefore, we have

− µ(t) 2
n −1µ′(t) ≥ n2ω

2
n
n (1 +

2
n
βnω

− 1
n

n A(Dt )2) (6.3.7)

for almost every t > 0.
For each t > 0, choose R(t) > 0 such that µ(t) = |BR(t)(0)|, where BR(t)(0) is the ball of radius R(t), centered

at 0. Let τR(t) be the first exit time from the ball BR(t)(0). Since Ex[τR(t)] = 1
2n (R(t)2 − |x |2), we have

E0[τR(t)] =
1
2n
ω
− 2

n
n µ(t)

2
n . (6.3.8)

Differentiating of the both sides in t and applying (6.3.7), we have

− d
dt
E0[τR(t)] = − 1

n2ω
− 2

n
n µ(t)

2
n −1µ′(t) ≥ 1 +

2
n
βnω

− 1
n

n A(Dt )2.

Taking the integral over [0, uD(x)] and applying (6.3.8), we have

uB(0) −
1

2nω2/n
n

µ(uD(x))2/n = E0[τR(0)] − E0[τR(uD (x))]

≥ uD(x) +
2
n
βnω

− 1
n

n

∫ u(x)

0
A(Dt )2 dt .

By Lemma 6.3.1 and Remark 6.3.2, we have A(Dt ) ≥ 1
2 A(D) for t < t∗ and

∫ u(x)

0
A(Dt )2 dt ≥

∫ u(x)∧t∗

0
A(Dt )2 dt ≥ 1

4
(u(x) ∧ t∗)A(D)2.

Therefore, we obtain

uB(0) − uD(x) ≥
1

2nωn/2
n

µ(uD(x))
2
n +

2
n
βnω

− 1
n

n

∫ u(x)

0
A(Dt )2 dt

≥ uB(0)
(
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

)

where Cn = βnω
1
n
n .

Suppose that |D| = r−n for some r > 0. By translation invariance, we assume 0 ∈ D without loss of generality.
For r > 0, we denote by rD = {ry : y ∈ D}. Note that the Fraenkel asymmetry is scaling invariant, i.e.
A(D) = A(rD). By the scaling property of Xt , we have r2uD(x) = urD(r x). This leads to the following scaling
identities

δ(x,D) = δ(r x, rD),
µD(t) = |{y : uD(y) > t}| = |{y : urD(ry) > r2t}| = r−nµrD(r2t),

t∗(D) = sup{t > 0 : µD(t) > |D |(1 − 1
4

A(D))}

= sup{t > 0 : µrD(r2t) > |rD|(1 − 1
4

A(rD))}

= r−2t∗(rD).
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Since |rD | = 1, we have

δ(x,D) = δ(r x, rD)

≥ µ(urD(r x)) 2
n + Cn(urD(r x) ∧ t∗(rD))A(rD)2

= r2
(
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

)

= |D |− 2
n

(
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

)
,

as desired. □

6.3.3 Proof of Theorem 6.2.5

If A(D) = 0, the results follow from (6.1.4). From now on, we assume A(D) > 0. By scaling invariance, we assume
|D | = 1 without loss of generality. Let B be a ball centered at 0 with |B| = 1.

Consider p ∈ [1,∞). Let Dt = {x ∈ D : uD(x) > t} and µ(t) = |Dt |. Note that Theorem 6.2.1 reads

1
2nω2/n

n

(1 − µ(uD(x))2/n) − uD(x) ≥ C̃n(uD(x) ∧ t∗)A(D)2

where C̃n =
1

2nω2/n
n

Cn. By the coarea formula, we have

1
(2n)pω2p/n

n

∫
D

(1 − µ(uD(x))2/n)p dx

=
1

(2n)pω2p/n
n

∫ ∞

0

∫
∂Dt

(1 − µ(uD(x))2/n)p |∇uD |−1dHn−1(x) dt

= − 1
(2n)pω2p/n

n

∫ ∞

0
(1 − µ(t)2/n)pµ′(t) dt

=
1

2p+1np−1ω
2p/n
n

B(p, (n − 2)/2)

= ‖uB ‖pp

where B(a, b) is the Beta function. Using ap − bp ≥ pbp−1(a − b) for a ≥ b, we get

‖uB ‖pp − ‖uD ‖pp ≥ C̃nA(D)2
∫
D

puD(x)p−1(uD(x) ∧ t∗) dx (6.3.9)

≥ C̃nA(D)2
∫ t∗

0
ptp−1µ(t) dt

≥ 1
2

C̃nA(D)2 (t∗)p .

In the last inequality, we used the fact that µ(t) > |D |(1 − 1
4 A(D)) ≥ 1

2 for 0 < t < t∗.

Let µ0(t) = |{x ∈ B : uB(x) > t}|. Since uB(x) = 1
2n (r2

n − |x |2) with rn = ω
− 1

n
n , we have

µ0(t) =
(
1 − 2nω

2
n
n t

) n
2 . (6.3.10)

Choose t0 > 0 so that µ0(2t0) = 1 − 1
8 A(D). By (6.3.10) and the inequality 1 − (1 − x)a ≥ ax for 0 ≤ x, a ≤ 1, we

have

t0 =
1

4nω
2
n
n

(
1 − (1 − 1

8
A(D)) 2

n
)
≥ 1

16n2ω
2
n
n

A(D). (6.3.11)
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Suppose t∗ < t0, then µ(t) ≤ 1 − 1
4 A(D) for all t ≥ t0 by definition. Since µ0(t) ≥ 1 − 1

8 A(D) for t ≤ 2t0, we get
µ0(t) − µ(t) ≥ 1

8 A(D) for t ∈ [t0, 2t0]. By the layer cake representation and (6.3.11), we have

‖uB ‖pp − ‖uD ‖pp =
∫ ∞

0
ptp−1(µ0(t) − µ(t)) dt

≥
∫ 2t0

t0

ptp−1(µ0(t) − µ(t)) dt

≥ p
8
(t0)pA(D)

≥ p

24p+3n2pω
2p
n
n

A(D)1+p

≥ p

24(p+1)n2pω
2p
n
n

A(D)2+p .

If t∗ ≥ t0, then it follows from (6.3.9) and (6.3.11) that

‖uB ‖pp − ‖uD ‖pp ≥ C̃n

24p+1n2pω
2p
n
n

A(D)2+p .

For 1 ≤ p < ∞, we finish the proof of (6.2.6) by letting

Cn,p =
1

24(p+1)n2pω
2p
n
n ‖uB ‖pp

min{p, 8C̃n} (6.3.12)

=
1

23(p+1)np+1B(p, (n − 2)/2)
min

{
p,

4βn

nω
1
n
n

}

where βn is the constant in (6.3.3).
Consider the case p = ∞. By translation invariance, we assume that 0 ∈ D and uD(0) = maxy∈D uD(y) without

loss of generality. Putting x = 0 in (6.2.4), we get

δ∞(D) ≥ Cnt∗A(D)2.

Let µ0(t) = |{x ∈ B : uB(x) > t}| and choose t0 > 0 so that µ0(2t0) = 1 − 1
8 A(D) as above. If t∗ ≥ t0, then it

follows from (6.3.11) that

δ∞(D) ≥ Cn

16n2ω
2
n
n

A(D)3.

Let t∗ < t0. Let ε > 0 be small enough that t1 := t∗ + ε < t0 and D1 = {x ∈ D : uD(x) > t1}, then D1 is open.
Let B̃ be a ball centered at 0 with |B̃| = |D1 | and t̃ be such that µ0(t̃) = µ(t1). Since 1 − 1

4 A(D) > µ(t̃), we have
t̃ > 2t0. Recall that the strong Markov property of Xt yields for any x ∈ U ⊂ D that

Ex[τD] = Ex[τU ] + Ex[EXτU [τD]].

Since the paths of Xt are continuous a.s., we have XτD1
∈ ∂D1 a.s. Since D1 is open, ∂D1 ⊂ Rn \D1 and uD(y) ≤ t1

for y ∈ ∂D1. Then we obtain

E0[τD] = E0[τD1 ] + E0[EXτD1 [τD]] ≤ E0[τD1 ] + t1.
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On the other hand, it follows from a direct computation that E0[τB] = E0[τB̃] + t̃. Since E0[τB̃] ≥ E0[τD1 ] by
(6.1.2), we get

‖uB ‖∞ − ‖uD ‖∞ = uB(0) − uD(0)
≥ (E0[τB̃] − E0[τD1 ]) + t0

≥ 1

16n2ω
2
n
n

A(D)

≥ ‖uB ‖∞
32n

A(D)3.

We complete the proof by letting

Cn,∞ = min

{
βn

16n2ω
1
n
n

,
1

32n

}
. (6.3.13)

□

6.3.4 Proof of Theorem 6.2.7

Since A(D) < 2, it suffices to consider the case 1
2Tα(B) ≤ Tα(D). Let uαD be the expected lifetime of the α-stable

process in D, µ(t) = |{y ∈ D : uαD(y) > t}|, and t∗ = sup{t > 0 : µ(t) > |D |(1 − 1
9 A(D))}. By the proof

of [32, Theorem 1.3], one has

Tα(B) − Tα(D) ≥ Cn,αTα(B)2(t∗)
4
α A(D) 2

α . (6.3.14)

Let µ0(t) = |{y ∈ D : uαB(y) > t}|. Since uαB(x) = Cn,α(r2 − |x |2) α
2 and r = ω

− 1
n

n , we have

µ0(t) = (1 − Cn,αt
2
α ) n

2 .

Choose t0 > 0 such that µ0(2t0) = 1 − 1
18 A(D), then

t0 = Cn,α(1 − (1 − 1
18

A(D)) 2
n ) α

2 ≥ Cn,αA(D) α
2 . (6.3.15)

If t∗ < t0, then µ(t) ≤ 1 − 1
9 A(D) for all t ≥ t0 by definition. Since µ0(t) ≥ 1 − 1

18 A(D) for t ≤ 2t0, we get
µ0(t) − µ(t) ≥ 1

18 A(D) for t ∈ [t0, 2t0]. By the layer cake representation and (6.3.11), we have

Tα(B) − Tα(D) =
∫ ∞

0
(µ0(t) − µ(t)) dt

≥ 1
18

t0 A(D)

≥ Cn,αA(D)1+ α
2 .

If t∗ ≥ t0, then by (6.3.14) and (6.3.15) we have

Tα(B) − Tα(D) ≥ Cn,αTα(B)2 A(D)2+ 2
α ,

which completes the proof. □
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6.4 Related open problems

6.4.1 Brownian motion

It is open to find quantitative improvement of (6.1.1) and (6.1.3) even for Brownian motion. In particular, it is
unclear what is the right statement for stability of (6.1.1). Having a small deficit of (6.1.1) at some t is not enough
to obtain the proximity of the region to a ball, which implies that the deficit should be defined in a strong sense.

As discussed in Remark 6.2.6, it is expected that the sharp exponent of (6.2.6) is 2 for 1 < p ≤ ∞. For p = 1,
the sharp result was derived in [34]. It is, however, not obvious how to apply the method of [34] to the case
1 < p ≤ ∞ because the proof strongly replies on the variational formula (2.5.2), whereas the Lp norm of the
expected lifetime does not have such formula.

In Theorem 6.2.1, our quantitative result of (6.1.2) forα = 2 depends on t∗. It is unclear whether this dependence
is necessary. Removing t∗ in (6.2.4) is an interesting open problem.

It was shown in [34] that the sharp exponent of A(D) in (6.2.7) is 2. Since the proof is based on the selection
principle of [49], the constant is not explicit. The best-known exponent with an explicit constant is 3. It is still
open to prove a sharp quantitative result of (6.2.7) with an explicit dimensional constant.

6.4.2 Symmetric stable processes

As mentioned above, it is an open problem to extend Theorems 6.2.1 and Theorem 6.2.5 to the case 0 < α < 2.
At this moment, a fractional analogue of the inequality (6.1.4) for 0 < α < 2 and 1 < p ≤ ∞ is not known. Our
approach of Theorem 6.2.1 may not work for this case since it is not obvious how to apply the coarea formula in the
fractional setting. A standard way of avoiding this difficulty is to consider the extension of Caffarelli–Silvestre [39].
Fusco, Millot, and Morini [65] considered the rearrangement inequality for the extension to show the quantitative
isoperimetric inequality for the fractional perimeter. Recently, Brasco, Cinti, and Vita [32] proved stability of
the fractional Faber–Krahn inequality using a similar argument. As a corollary, they also showed stability of the
fractional Saint-Venant inequality.

We introduce some notations. The fractional Laplacian of order α
2 is given by

(−∆) α
2 f (x) = An,α

∫
Rn

f (x) − f (y)
|x − y |n+α dy (6.4.1)

where

An,α =
2αΓ

(
n+α

2
)

π
n
2 |Γ

(
− α

2
)
|
. (6.4.2)

The space W̃α,p
0 (D) is the closure of C∞

0 (D) with respect to the norm u ,→ [u]α,p + ‖u‖Lp (D) where

[u]α,p =
( ∫
Rn

∫
Rn

|u(x) − u(y)|p
|x − y |n+αp/2

dxdy
) 1

p
.

The fractional torsional rigidity of order α is defined by ‖uαD ‖1. We have the following variational representations

Tα(D) = max
u∈$Wα,2

0 (D)\{0}

(
2‖u‖L1(D) −

An,α

2
[u]2α,2

)
= max

u∈$Wα,2
0 (D)\{0}

2
An,α

[u]−2
α,2‖u‖2

L1(D)

where An,α is given by (6.4.2). In particular, since uαD ∈ W̃α,2
0 (D) we have

Tα(D) = ‖uαD ‖L1(D) =
An,α

2
[uαD]2α,2 =

An,α

2

∫
Rn

∫
Rn

|uαD(x) − uαD(y)|2

|x − y |n+α dxdy. (6.4.3)
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Consider a solution of the equation




div(z1−α∇U) = 0, (x, z) ∈ Rn+1
+ ,

U(x, 0) = uαD(x), x ∈ Rn.

Then we have

[uαD]2α,2 = γn,α
∬
Rn+1
+

z1−α |∇U |2 dxdz

for some constant γn,α. Let U∗(x, z) = (U(·, z))∗(x) be the symmetric decreasing rearrangement of U with respect
to x, then it was shown in [65, Lemma 2.6] that

∬
Rn+1
+

z1−α |∇xU |2 dxdz ≥
∬
Rn+1
+

z1−α |∇xU∗ |2 dxdz (6.4.4)

and ∬
Rn+1
+

z1−α |∂zU |2 dxdz ≥
∬
Rn+1
+

z1−α |∂zU∗ |2 dxdz.

In [32], the authors improved (6.4.4) quantitatively as in the local case, which leads to a quantitative fractional
Saint-Venant inequality.

To generalize Theorems 6.2.1 and Theorem 6.2.5 to the α-stable processes, one might need to apply this
extension and symmetrization argument at the level of the function U, not the seminorm [uαD]α,2. Then it is
required to show that a quantitative improvement can be transferred as z tends to 0. For α = 1, this approached was
also used in [12–14] to study spectral gap estimates and properties of nodal domains. Because of its connection to
the Cauchy process and the Steklov problem, this special case may be more tractable with such an approach.

6.4.3 A fractional Pólya–Szegö inequality

We discuss stability of fractional Pólya–Szegö inequalities. The fractional α–perimeter of D is defined by

Pα(D) =
∫
D

∫
Rn\D

1
|x − y |n+α/2

dxdy =
1
2
[1D]α,1.

Note that Pα(D) ≥ Cn,α |D| 2n−α
2n by the fractional Sobolev embedding. The quantitative isoperimetric inequality

for fractional perimeter [65] states that for n ≥ 1 and α ∈ (0, 2), there exists a constant Bn,α such that for all Borel
set D ⊂ Rn with 0 < |D| < ∞,

Pα(D) ≥ Pα(D∗)(1 + Bn,αA(D) 2
α ). (6.4.5)

By layer cake representation, we obtain a fractional version of the coarea formula [35, Lemma 4.7]. Indeed, if
u ∈ L1(Rn) is a nonnegative function vanishing at ∞, then

[u]α,1 = 2
∫ ∞

0
Pα({x : u(x) > t})dt. (6.4.6)

We have a fractional version of the Pólya–Szegö inequality with a remainder term.

Proposition 6.4.1. Let α ∈ (0, 2) and D be a bounded domain in Rn with A(D) > 0. If u ∈ W̃α,1
0 (D), then there

exists t∗ > 0 such that

[u]α,1 ≥ [u∗]α,1 + Cn,αA(D) 2
α max{t∗ |D | 2n−α

2n , ‖u ∧ t∗‖ 2n−α
2n

}.
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Proof. Let Dt = {x : u(x) > t} and µ(t) = |Dt |. Using the coarea formula (6.4.6) and the quantitative isoperimetric
inequality for fractional perimeter (6.4.5), we have

[u]α,1 = 2
∫ ∞

0
Pα(Dt )dt

≥ 2
∫ ∞

0
Pα(D∗

t )dt + 2Bn,α

∫ ∞

0
Pα(D∗

t )A(Dt )
2
α dt

≥ [u∗]α,1 + Cn,α

∫ ∞

0
µ(t) 2n−α

2n A(Dt )
2
α dt

for some constant Cn,α. Let t∗ = sup{t > 0 : µ(t) ≥ |D |(1 − 1
4 A(D))}. By Lemma 6.3.1 and (6.3.1), we have

A(Dt ) ≥ 1
2 A(D) for t < t∗ and

[u]α,1 ≥ [u∗]α,1 + Cn,αt∗ |D | 2n−α
2n A(D) 2

α .

Using the inequality ( ∫ ∞

0
f (x)dx

)r
≥
∫ ∞

0
r f (x)r xr−1dx

for r ≥ 1 and a nonnegative, non-increasing function f on (0,∞) (see [93, p.49]), we get
∫ t∗

0
µ(t) 1

r dt ≥
( ∫ t∗

0
rtr−1µ(t)dt

) 1
r
= ‖u ∧ t∗‖r

where r = 2n
2n−α > 1, which implies

[u]α,1 ≥ [u∗]α,1 + Cn,α‖u ∧ t∗‖ 2n
2n−α

A(D) 2
α .

□

A natural question is a quantitative improvement of the inequality [u]α,2 ≥ [u∗]α,2 in terms of A(D). This
open problem is interesting because it yields a quantitative Saint-Venant inequality. Suppose that we have [u]α,2 ≥
[u∗]α,2 + Φ(t∗, A(D)) for some function Φ. By (6.4.3) and the rearrangement inequality [62], we get

Tα(D) ≤ 2
An,α

‖u∗‖2
1

[u∗]2
α,2 + Φ(t∗, A(D))

≤ Tα(B)
(
1 +
Φ(t∗, A(D))
[u∗]2

α,2

)−1

where u = uαD is the α–torsion function and B is a ball with |D | = |B|. Using the fact that [u∗]2α,2 ≤ [u]2α,2, we get

Tα(B) − Tα(D) ≥ Φ(t∗, A(D)).

Under mild assumption on Φ, t∗ can be removed as in Theorem 6.2.5.
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Chapter 7

The Hardy–Littlewood–Sobolev inequality

7.1 Introduction

The classical Hardy–Littlewood–Sobolev inequality [77,78,105] (the HLS inequality) states that if 0 < α < d and
1 = 1

p +
1
r − α

d , then there exists a constant Cα,p,d such that
....
∫
Rd

∫
Rd

f (x)h(y)
|x − y |d−α

dxdy
.... ≤ Cα,p,d ‖ f ‖p ‖h‖r (7.1.1)

for f ∈ Lp(Rd) and h ∈ Lr (Rd). Lieb [90] showed the existence of maximizing functions in (7.1.1) based on the
rearrangement inequalities and a compactness argument. Also, he explicitly computed the maximizing functions
f and h and so the sharp constant Cα,p,d , for the spacial cases p = r , p = 2, and r = 2. After this, there has been
many effort to find a different proof of the sharp result: competing symmetry [43], inversion positivity [60], fast
diffusion flows [42]. Frank and Lieb [61] introduced a rearrangement-free proof of the sharp HLS inequality, which
leads to an analogue of the sharp inequality on the Heisenberg group. For the recent progress on the extension of
the sharp HLS inequality, we refer to [46, 47, 54, 95, 96].

In this chapter, we give a probabilistic representation for fractional integrals for symmetric Markov semigroups
and derive an analogue of the Hardy–Littlewood–Sobolev inequality using the background radiation process, which
was exploited in [71–73], together with time reversal, to represent the Riesz transforms via harmonic extensions.
To prove the HLS inequality, we introduce a fractional analogue of the Littlewood–Paley function for symmetric
Markov semigroups and prove Littlewood–Paley type inequalities. This chapter is based on my work [84].

Our representation is a variation of the one used in [3] based on the space-time Brownian motion often used
for the second order Riesz transforms. In [3], Applebaum and Bañuelos give a probabilistic proof of the HLS
inequality onRd using their representation and the martingale inequalities of Doob and Burkholder–Davis–Gundy.
Unlike the space-time Brownian motion representation which requires the gradient of the harmonic extension in
the space variable (or a carré du champ), our representation only requires the time derivative which is well-defined
for symmetric Markov semigroups.

The probabilistic representation of the fractional integrals can be thought of as a martingale transform where
the predictable sequence is not bounded. Martingale transform techniques have been used quite effectively in the
study of singular integral operators, particularly in obtaining optimal, or near optimal, inequalities. For some of this
extensive literature on this subject, we refer the reader to [5, 7, 15, 17,66,89,97] and references therein. Given the
powerful martingale and Bellman function methods pioneered by Burkholder in [37] to obtain sharp inequalities
for martingale transforms and their many subsequent uses in various problems in analysis and probability (see for
example Osȩkowski [98]), it is natural to ask if those techniques can be extended to martingale transforms with
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unbounded multipliers and provide a different proof of the sharp HLS inequalities which could be extended to
other settings. Unfortunately, as of now, we have not been able to obtain sharp results with the Bellman function
methods. This remains an interesting challenging problem.

7.2 Main results

Let S be a locally compact space with a countable base equipped with a positive Radon measure dx on S and
{Tt }t≥0 a strongly continuous symmetric Markov semigroup. We assume that the semigroup is Feller and has the
Varopoulos dimension d that we will define below. The fractional integral of order α (0 < α < d) associated to
{Tt }t≥0 is defined by

Iα( f )(x) = 1
Γ(α2 )

∫ ∞

0
t
α
2 −1Tt f (x)dt. (7.2.1)

Note that if {Tt }t≥0 is the standard heat semigroup on Rd then (7.2.1) reads

Iα( f )(x) =
Γ( d−α2 )

2απd/2Γ(α2 )

∫
Rd

f (y)
|x − y |d−α

dy,

which is called the Riesz potential associated with the symmetric Markov semigroup {Tt }. If 1
q =

1
p −

α
d , 1

q +
1
q′ = 1,

and 0 < α < d, then the HLS inequality for Iα states that

|〈Iα( f ), h〉 | ≤ Cα,p,d ‖ f ‖p ‖h‖q′ (7.2.2)

for f ∈ Lp and h ∈ Lq′ .
Suppose that (Xt )t≥0 is a stochastic process associated to {Tt }t≥0 and (Yt )t≥0 is the standard 1-dimensional

Brownian motion independent of (Xt )t≥0. Let Zt = (Xt,Yt ). Since {Tt }t≥0 is Feller, (Xt )t≥0 is right continuous
with left limits and has the strong Markov property. Fix s > 0 and assume that the initial distribution of (Zt )t≥0

is given by dx ⊗ δs . We denote by Es the expectation of (Zt )t≥0. Let τ be the hitting time of Yt at 0 and {Py}y≥0

the Poisson semigroup associated with {Tt }t≥0 (see (7.3.1)). Let u f (x, y) = Py f (x) be the harmonic extension of
f defined on S × [0,∞). We set

T s
α ( f )(x) = Es[

∫ τ

0
Yα
t

∂u f

∂y
(Zt )dYt |Xτ = x]. (7.2.3)

The main result of this chapter is to show that T s
α gives a probabilistic representation of the fractional integral,

and that it satisfies the analogue of the HLS inequality (7.2.2).

Theorem 7.2.1. Let s > 0 and f , h ∈ C0(S). If 1
q =

1
p − α

d , 1 < p < q < ∞, 0 < α < d, and q′ is the conjugate
exponent of q, then we have

..〈T s
α f , h〉

.. =
....Es

[∫ τ

0
Yα
t

∂u f

∂y
(Zt )
∂uh
∂y

(Zt ) dt
] .... ≤ Cα,p,d ‖ f ‖p ‖h‖q′ (7.2.4)

where Cα,p,d depends only on α, p and d. As a consequence, we have

lim
s→∞

T s
α ( f ) = Γ(α + 2)

2α+2 Iα( f )

in the distributional sense.

The proof of Theorem 7.2.1 relies on an auxiliary function which satisfies an HLS-type inequality. To be
specific, we define the fractional Littlewood–Paley function Gα by

Gα( f )(x) =
(∫ ∞

0
y2α+1

....∂u f

∂y
(x, y)

....
2

dy

)1/2

. (7.2.5)
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The next theorem says that the fractional Littlewood–Paley function satisfies an HLS-type inequality, which leads
to the HLS inequality for T s

α .

Theorem 7.2.2. Let 1
q =

1
p − α

d > 0, 1 < p < q < ∞, and 0 < α < d. If f ∈ Lp(S), then the fractional
Littlewood–Paley function Gα( f ) defined in (7.2.5) satisfies

‖Gα( f )‖q ≤ Cα,p,d ‖ f ‖p .

7.3 Preliminaries

7.3.1 Notations

The space of all continuous functions on S vanishing at ∞ is denoted by C0(S). We also use Cc(S) to denote the
space of all compactly supported continuous functions. The lower case letter c, c1, c2, · · · denote generic constants
which may change from line to line. We use the notation Cp,q,r to specify that the constant depends on p, q and r .
We denote the inner product by 〈 f , g〉 =

∫
S f (x)g(x)dx for notational convenience. The domain of an operator A

is denoted by Dom(A).

7.3.2 General semigroup theory

We recall some facts about semigroups that we will call upon later. Particularly, we review the definition of a
strongly continuous symmetric Markov semigroup and the construction of the Poisson semigroup used in the
probabilistic representation of the fractional integral (7.2.3).

We say that a semigroup {Tt }t≥0 on S is a symmetric Markov semigroup if it has the following properties:

(S1) If f ≥ 0, then Tt f ≥ 0.

(S2) Tt1 = 1 for all t ≥ 0.

(S3) (Symmetry) If f , g ∈ L2(S), then 〈Tt f , g〉 = 〈 f ,Ttg〉 for all t ≥ 0.

(S4) (Lp-contraction) If 1 ≤ p ≤ ∞ and f ∈ Lp(S), then ‖Tt f ‖p ≤ ‖ f ‖p for all t ≥ 0.

In what follows, we assume that there exists a symmetric Markov semigroup {Tt }t≥0 on S. We also assume that
the semigroup is strongly continuous on L2(S) and a Feller semigroup:

(S5) (Strong continuity) If f ∈ L2(S), then lim
t→0

‖Tt f − f ‖2 = 0.

(S6) (Feller) If f ∈ C0(S), then Tt f ∈ C0(S) for all t ≥ 0 and lim
t→0

‖Tt f − f ‖∞ = 0.

We assume that {Tt }t≥0 has the Varopoulos dimension d (d > 2) in the sense of [112]:

(S7) (Varopoulos dimension) If 1 ≤ p < ∞ and f ∈ Lp(S), there exists C > 0 such that

‖Tt f ‖∞ ≤ Ct−
d

2p ‖ f ‖p (7.3.1)

for all t > 0.

For instance, the heat semigroup e−t∆ on Rd (d ≥ 3) has the Varopoulos dimension d.
Given a symmetric Markov semigroup {Tt }t≥0, the Poisson semigroup associated to {Tt }t≥0 is defined in the

following ways. The first way is to use the spectral decomposition on L2(S). For f ∈ L2(S), {Tt }t≥0 can be written
as

Tt f (x) =
∫ ∞

0
e−λtdEλ f (x)
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where {Eλ : λ ≥ 0} is the spectral resolution associated to the infinitesimal generator of {Tt }t≥0. The corresponding
Poisson semigroup on L2(S) is defined by

Pt f (x) =
∫ ∞

0
e−

√
λtdEλ f (x). (7.3.2)

Another way of defining the Poisson semigroup is to subordinate {Tt }t≥0 in the sense of Bochner [28]. For
1 ≤ p ≤ ∞ and f ∈ Lp(S), the Poisson semigroup is defined by

Pt f (x) =
∫ ∞

0
Ts f (x)µt (ds) (7.3.3)

where µt (ds) = t
2
√
π

e−t
2/4ss−3/2ds. For p = 2, it follows from a direct calculation that (7.3.3) is equivalent to

(7.3.2). We notice that this construction is a special case of the subordination. Generally speaking, one obtains a
new semigroup by subordinating with a convolution measure on [0,∞), which is a Lévy process on [0,∞) from the
probabilistic point of view. In (7.3.3), we adopted the convolution measure µt (ds) called the 1

2 -stable subordinator.
The harmonic extension of f is defined by u f (x, y) = Py f (x).

Lemma 7.3.1. Let {Tt }t≥0 be a strongly continuous symmetric Markov semigroup and {Py} the Poisson semigroup
defined by (7.3.2). Then {Py} is also a strongly continuous symmetric Markov semigroup. In addition, if {Tt }t≥0

has the Varopoulos dimension d, then there exists C > 0 such that

‖Py f ‖∞ = ‖u f (·, y)‖∞ ≤ C
yd/p

‖ f ‖p (7.3.4)

for all f ∈ Lp , 1 ≤ p < ∞, and y > 0. (That is, {Py} has the Varopoulos dimension 2d)

Proof. The assumptions (S1), (S2), and (S3) follow from the definition (7.3.3). By Jensen’s inequality, we see

‖Py f ‖pp =
∫
S
|Py f (x)|pdx

≤
∫
S

∫ ∞

0
|Ts f (x)|pµy(ds)dx

=

∫ ∞

0
‖Ts f ‖pp µy(ds) ≤ ‖ f ‖pp .

Similarly, one can show that Py is strongly continuous on L2. Since {Tt }t≥0 has the dimension d, we have

|Py f (x)| =
....
∫ ∞

0
Ts f (x)µy(ds)

....
≤
∫ ∞

0
|Ts f (x)|µy(ds)

≤ C‖ f ‖p
∫ ∞

0
s−

d
2p µy(ds)

≤ Cy−
d
p ‖ f ‖p,

which yields (7.3.4) as desired. □

Note that for each x ∈ S and f ∈ Lp (1 < p < ∞), u f (x, ·) is real-analytic [107, p.67, p.72]. Next lemma is
concerned with a derivative estimate for the harmonic extension u f .

Lemma 7.3.2. Let f be a bounded measurable function on S, then there exists c1 > 0 such that....y ∂u f

∂y
(x, y)

.... ≤ c1u | f |(x,
y
√

2
).
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Proof. Let µy(ds) = 1
2
√
π
ηy(s)ds, then we have

y
∂ηy(s)
∂y

= (1 − y2

2s
)ye−y

2/4ss−3/2.

Since there exists a constant c1 such that |1 − y2

2s | ≤ c1ey
2/8s for every y > 0 and s > 0, we have

....y ∂ηy∂y (s)
.... ≤ c1ye−y

2/8ss−3/2 = c1η y√
2
(s)

for every y > 0 and s > 0. We finish the proof by interchanging the differentiation and the integral. □

Let AT and AP be the infinitesimal generators of {Tt }t≥0 and {Pt }t≥0 respectively, then we have AP = −(−AT )
1
2 .

Let

R0 = { f ∈ Dom(AT ) : AT ( f ) ∈ Dom(AT )},

Rn =

n⋂
k=1

Dom(Ak
P) (7.3.5)

for n ≥ 1. If 1 ≤ k ≤ n and f ∈ Rn, then the ∂k

∂yk
u f ∈ Rn−k . Since {Tt }t≥0 and {Pt }t≥0 are Feller, Rn is contained

in C0(S) for every n ≥ 0, which implies that Rn is dense in Lp for p ≥ 1 and n ≥ 0. Thus it suffices to consider
C0(S) in what follows. We refer the reader to [111, p.29] and [114, Chap. IV §10, §11] for further discussion.

We recall the maximal ergodic theorem, which plays an important role in the proof of Theorem 7.2.2. Stein [107]
gives two different proofs. One is to use the Hopf–Dunford–Schwartz ergodic theorem with an interpolation
argument. The other way is to rely on the martingale inequalities via the result of Rota [101]. For the completeness,
we provide a continuous martingale version of the second proof, which is a special case of [104, Theorem 3.1].

Proposition 7.3.3 (Maximal ergodic theorem). If 1 < p ≤ ∞ and f ∈ Lp(S), then
DDD sup
y>0

|u f (·, y)|
DDD
p
≤ C(p)‖ f ‖p,

where C(p) = p
p−1 for 1 < p < ∞ and C(∞) = 1.

Proof. We prove the result for a general symmetric Markov semigroup {Qt }t≥0. Let (Xt )t≥0 be the stochastic
process corresponding to {Qt }t≥0, that is, Qt f (x) = Ex[ f (Xt )] for f ∈ Lp . We assume 1 < p < ∞ since the case
p = ∞ is trivial. Let T > 0 be fixed and {Ft : t ≥ 0} the natural filtration of Xt . By the Markov property, we have

Q2(T−t) f (XT ) = QT−t (QT−t f )(XT )
= EXT [QT−t f (XT−t )]
= Ex[QT−t f (X2T−t )|FT ].

Since
sup

0≤t≤T
|Q2(T−t) f (XT )|p ≤ Ex[ sup

0≤t≤T
|QT−t f (X2T−t )|p |FT ],

we have ∫
S
Ex[ sup

0≤t≤T
|Q2(T−t) f (XT )|p] dx ≤

∫
S
Ex[ sup

0≤t≤T
|QT−t f (X2T−t )|p] dx

=

∫
S
Ex[ sup

0≤t≤T
|QT−t f (Xt )|p] dx. (7.3.6)
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We have used the reversibility of Xt in the equality. Note that QT−t f (Xx
t ) is a martingale because QT−t f (Xt ) =

Ex[ f (XT )|Ft ]. Then Doob’s maximal inequality yields

Ex[ sup
0≤t≤T

|QT−t f (XT )|p] ≤
(

p
p − 1

)p
Ex[| f (XT )|p]. (7.3.7)

Since Qt is self-adjoint and Qt1 = 1, we have∫
S
Ex[g(XT )]dx =

∫
S

QTg(x)dx =
∫
S
g(x)dx

for any bounded measurable function g. Applying this to (7.3.6) and (7.3.7), we get

‖ sup
0≤t≤T

|Q2(T−t) f (x)|‖p ≤
(∫

S
Ex[ sup

0≤t≤T
|QT−t f (Xt )|p]dx

) 1
p

≤ p
p − 1

(∫
S
Ex[| f (XT )|p]dx

) 1
p

=
p

p − 1
‖ f ‖p .

We complete the proof by letting T → ∞. □

For a function f ∈ Lp(S) and k ≥ 1, the Littlewood–Paley function of order k is defined by

gk( f )(x) =
( ∫ ∞

0
y2k−1

...∂ku f

∂yk
(x, y)

...2dt
) 1

2
.

Proposition 7.3.4. Let 1 < p < ∞ and k ≥ 1. If f ∈ Lp(S), then gk( f ) ∈ Lp(S) and satisfies

‖gk( f )‖p ≤ Cp,k ‖ f ‖p

for some constant Cp,k depending only on p and k.

We refer the reader to [106, p.111, p.120] for the proof. In what follows, we only use the Littlewood–Paley
function of order 1.

7.3.3 Stochastic analysis

Let {Tt }t≥0 be a strongly continuous symmetric Markov semigroup of the Varopoulos dimension d and {Ht }t≥0

the heat semigroup on R defined by

Ht f (x) = 1
(2πt)1/2

∫
R

e−
(x−y)2

2t f (y)dy.

Let (Xt )t≥0 and (Yt )t≥0 be the stochastic processes on a probability space (Ω,F , P) associated with {Tt }t≥0 and
{Ht }t≥0 respectively. We assume that (Xt )t≥0 and (Yt )t≥0 are independent each other and their paths are right-
continuous with left limits a.s. Let Zt = (Xt,Yt ) ∈ S ×R. For example, if Tt is the standard heat semigroup on Rn,
then Zt is Brownian motion on Rn+1. Let τ = inf{t ≥ 0 : Yt = 0} be the hitting time of Yt at 0. From now on, we
consider the killed process (Zt∧τ)t≥0.

For fixed s > 0, we assume that the initial distribution of (Zt )t≥0 is given by dx ⊗ δs where δs is the Dirac
delta measure at fixed s > 0. In other words, (Zt )t≥0 starts at (x0, s) ∈ S × R where x0 is randomly chosen with
respect to the measure dx. The probability and expectation of Zt with the initial distribution are denoted by Es

and Ps respectively. Explicitly, we have

Es =

∫
S
E(x,s)dx, Ps =

∫
S
P(x,s)dx.
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Note that even though Ps may not be a probability measure, all the results from probability theory connected with
this context remain valid as explained in [111].

Let h ∈ L1(S) and Py be the Poisson semigroup associated with Tt . Since Py is invariant and symmetric, we
have

Es[h(Xτ)] =
∫
S
E(x,s)h(Xτ)dx =

∫
S

Psh(x)dx =
∫
S

h(x)dx.

We recall the Green function formula for Zt .

Lemma 7.3.5 ( [111, Proposition 3.1]). For a Borel measurable function f on S × R, we have

Es[
∫ τ

0
f (Zt )dt] = 2

∫ ∞

0

∫
S
(y ∧ s) f (x, y) dxdy. (7.3.8)

Definition 7.3.6. We say a stochastic process (At )t≥0 on (Ω,Ps,Ft ) is in L2(Ω,Ps) if the map A : Ω× [0,∞) → R
is jointly measurable, At ∈ Ft for every t ∈ [0,∞), and

Es[
∫ ∞

0
|At |2 dt] < ∞. (7.3.9)

Let (At )t≥0 ∈ L2(Ω,Ps). If the “probability” Ps is finite, then we define

I(A)t :=
∫ t

0
As dYs

as a L2-limit of martingale transforms using Itô’s isometry. If Ps is infinite, we decompose the Radon measure
dx into a countable family of finite measures dxn and define the stochastic integral for each finite measure dxn as
above. Then we define I(A)t by the sum of the stochastic integrals. The sum is well-defined by (7.3.9). We refer
the reader to [111, pp.37-38].

We recall the projection lemma, which is an analogue of Itô’s formula for the (d + 1)-dimensional Brownian
motion. We omit the proof and refer to [111, pp.50-59]. Let V be the set of stochastic processes in L2(Ω,Ps) of
the form (I(A)t )t≥0. Note that V is a closed subspace. Let ΦV be the orthogonal projection from L2(Ω,Ps) onto V .

Proposition 7.3.7. Let Rn be defined as in (7.3.5). If f ∈ R5, then

ΦV (u f (Zt∧τ) − u f (Z0)) =
∫ t∧τ

0

∂u f

∂y
(Zs)dYs

for all t > 0.

7.4 Proofs of the main results

7.4.1 Proof of Theorem 7.2.2

For δ > 0, we divide Gα( f )2 into two parts

Gα( f )(x)2 =
∫ ∞

0
y2α+1

....∂u f

∂y
(x, y)

....
2

dy

=

∫ δ

0
y2α+1

....∂u f

∂y
(x, y)

....
2

dy +
∫ ∞

δ
y2α+1

....∂u f

∂y
(x, y)

....
2

dy.

Applying Lemma 7.3.2 to the first integral, we obtain∫ δ

0
y2α+1

....∂u f

∂y
(x, y)

....
2

dy ≤ c1

∫ δ

0
y2α−1

....u | f |(x,
1
√

2
y)
....
2

dy

≤ Cα sup
y>0

..u | f |(x, y)
..2 δ2α .
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For the second integral, we apply Lemma 7.3.1 and Lemma 7.3.2 to see

∫ ∞

δ
y2α+1

....∂u f

∂y
(x, y)

....
2

dy ≤ c1

∫ ∞

δ
y2α−1 |u | f |(x,

1
√

2
y)|2dy ≤ Cα‖ f ‖2

pδ
2(α− d

p ),

which yields

Gα( f )(x) ≤ Cα,p,d(sup
y>0

|u | f |(x, y)|δα + ‖ f ‖pδα−
d
p )

for some constant Cα,p,d . Optimizing the RHS in δ yields

Gα( f )(x) ≤ Cα,p,d(sup
y>0

|u | f |(x, y)|)1−
αp
d ‖ f ‖

αp
d

p .

Proposition 7.3.3 yields

‖(sup
y>0

|u | f |(x, y)|)1−
αp
d ‖q = ‖ sup

y>0
|u | f |(x, y)|‖

p
q
p ≤ Cp ‖ f ‖

p
q
p

because 1 − αp
d =

p
q . Therefore, we obtain

‖Gα( f )‖q ≤ Cα,p,d ‖(sup
y>0

|u | f |(x, y)|)p/q ‖q ‖ f ‖1−p/q
p

= Cα,p,d ‖(sup
y>0

|u | f |(x, y)|)‖p/qp ‖ f ‖1−p/q
p

≤ Cα,p,d ‖ f ‖p,

which finishes the proof. □

7.4.2 Proof of Theorem 7.2.1

We claim that

Es[
∫ τ

0
Yα
t

....∂u f

∂y
(Zt )

....
....∂uh
∂y

(Zt )
.... dt] ≤ Cα,p,d ‖ f ‖p ‖h‖q′ . (7.4.1)

Applying the Green function formula (7.3.8), we see

Es[
∫ τ

0
Yα
t

....∂u f

∂y
(Zt )

....
....∂uh
∂y

(Zt )
.... dt] = 2

∫
S

∫ ∞

0
(y ∧ s)yα

....∂u f

∂y

....
....∂uh
∂y

.... dydx

≤
∫
S

∫ ∞

0
yα+

1
2

....∂u f

∂y

.... y 1
2

....∂uh
∂y

.... dydx

≤
∫
S
Gα( f )g1(h)dx

≤ ‖Gα( f )‖q ‖g1(h)‖q′ .

The claim follows from Proposition 7.3.4 and Theorem 7.2.2.
For N > 0, we define

T s,N
α ( f )(x) = Es[

∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt |Xτ = x].
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By Lemma 7.3.5, we have

〈T s,N
α ( f ), h〉 = Es[T s,N

α ( f )(Xτ)h(Xτ)]

= Es[Es[
∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt |Xτ]h(Xτ)]

= Es[Es[h(Xτ)
∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt |Xτ]]

= Es[h(Xτ)
∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt ].

Note that

It :=
∫ t∧τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt ∈ L2(Ω,Ps).

Indeed, it follows from the Green formula (7.3.8) that

Es[
∫ t∧τ

0
(Y2α

t ∧ N2)
....∂u f

∂y
(Zt )

....
2

dt] ≤ 2N2
∫ ∞

0

∫
S
y

....∂u f

∂y
(x, y)

....
2

dxdy

= 2N2‖g1( f )‖2
2

≤ cN2‖ f ‖2
2 < ∞.

Furthermore, It ∈ V , where V is the closed subspace of L2(Ω,Ps) of stochastic integrals with respect to (Yt )t≥0.
Thus, Proposition 7.3.7 yields that

〈T s,N
α ( f ), g〉 = Es[

(∫ τ

0

∂uh
∂y

(Zt )dYt

) (∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )dYt

)
]

= Es[
∫ τ

0
(Yα

t ∧ N)
∂u f

∂y
(Zt )
∂uh
∂y

(Zt )dt].

By (7.4.1), the dominated convergence theorem, and letting N → ∞, we obtain

〈T s
α ( f ), h〉 = Es[

∫ τ

0
Yα
t

∂u f

∂y
(Zt )
∂uh
∂y

(Zt )dt].

Finally, we show that T s
α f converges to cαIα( f ) as s tends to ∞ in the distributional sense. By (7.2.4) and the

Green function formula (7.3.8), we see

〈T s
α f , h〉 = 2

∫ ∞

0

∫
S
(y ∧ s)yα

∂u f

∂y
(x, y)∂uh

∂y
(x, y)dxdy.

Thus it suffices to show

〈Iα f , h〉 = Cα

∫ ∞

0

∫
S
yα+1 ∂u f

∂y
(x, y)∂uh

∂y
(x, y)dxdy.

Since f and g are in L2, it follows from (7.3.2) that
∫
S

∂u f

∂y
(x, y)∂uh

∂y
(x, y)dx =

〈
∂u f

∂y
(·, y), ∂uh

∂y
(·, y)

〉

=

〈∫ ∞

0
λ1/2e−λ

1/2ydEλ f ,
∫ ∞

0
λ1/2e−λ

1/2ydEλh
〉

=

∫ ∞

0
λe−2λ1/2yd〈Eλ f , Eλh〉.
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By Fubini’s theorem, we get
∫ ∞

0

∫
S
yα+1 ∂u f

∂y
(x, y)∂uh

∂y
(x, y)dxdy =

∫ ∞

0
yα+1

〈
∂u f

∂y
(·, y), ∂uh

∂y
(·, y)

〉
dy

=

∫ ∞

0
yα+1

(∫ ∞

0
λe−2λ1/2yd〈Eλ f , Eλh〉

)
dy

=

∫ ∞

0
λ

(∫ ∞

0
yα+1e−2λ1/2ydy

)
d〈Eλ f , Eλh〉

=
Γ(α + 2)

2α+2

∫ ∞

0
λ−α/2d〈Eλ f , Eλh〉

= Cα〈Iα f , h〉,

which completes the proof. □
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Chapter 8

Hardy–Stein identity for non-symmetric
Lévy processes and Fourier multipliers

8.1 Introduction

Littlewood–Paley square (quadratic) functions have been of interest for many years with many applications in
harmonic analysis and probability. On the analysis side, these include the classical square functions obtained from
the Poisson semigroup as in [106] and more general heat semigroups as in [107]. On the probability side, these
correspond to the celebrated Burkholder–Gundy inequalities which are of fundamental importance in modern
stochastic analysis.

In [10], the authors extend some of the classical Littlewood–Paley Lp inequalities for 1 < p < ∞ to symmetric
pure jump Lévy processes and apply them to prove Lp bounds for a certain class of Fourier multipliers that arise
from transformations of symmetric Lévy processes. The key to the proof in [10] is a Hardy–Stein identity, which
is proved from properties of the semigroup. In the classical case of the Laplacian, such Hardy–Stein identity
follows from, essentially, Green’s theorem and the chain rule as in Lemmas 1 and 2 in [106, pp.86-87]. In the case
of Brownian motion, a probabilistic Burkholder–Gundy type version of this Hardy–Stein identity can be proved
(see [5], [100, p.152]) as a simple application of Itô’s formula.

The goal of this chapter is to extend the results of [10] to non-symmetric pure jump Lévy processes. The
first result is a Hardy–Stein identity for non-symmetric Lévy measure (Theorem 8.3.1). The proof is based on the
Itô’s formula for jump processes (Theorem 8.2.1). It turns out that this method gives a Hardy–Stein type identity
for uniformly integrable martingales ((Theorem 8.3.5). Furthermore, the proof contains additional information,
further illuminating the origins of the function F(a, b; p) (see (8.3.1)) used in [10].

In the second part, we introduce a certain class of the Fourier multipliers for non-symmetric pure jump Lévy
measures and prove the Lp boundedness of the Fourier multipliers (Theorem 8.4.1). It is important to emphasize
that although the Hardy–Stein identity holds for non-symmetric Lévy measures, the full comparability of the
Lp-norms between the function itself and its Littlewood–Paley square function proved in [10] requires symmetry
and hence the main application given there to the boundedness of the Fourier multipliers requires it too. Thus we
use a symmetrization of the Littlewood–Paley function (see (8.4.2) and (8.4.3)) to obtain the Lp inequalities for
the Littlewood–Paley functions (Lemma 8.4.2), which leads to the Lp boundedness of the Fourier multipliers.

This chapter is based on joint work with Rodrigo Bañuelos [11].
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8.2 Preliminaries

8.2.1 Notations

The indicator function of a set A is denoted by 1A. For a, b ∈ R, we denote by a∧ b = min{a, b}. The real part of a
complex number ξ is denoted by Re(ξ) = x where ξ = x + iy. For a set B ⊆ Rd , we define −B = {−x : x ∈ B}. An
open ball in Rd of radius r , centered at x0 ∈ Rd is denoted by Br (x0). We denote by Br (0) = Br . For f , g ∈ L2(Rd),
we define the inner product of f and g in L2(Rd) by 〈 f , g〉 =

∫
Rd

f (x)g(x)dx. Let S(Rd) be the Schwartz space
on Rd and f ∈ S(Rd). We define the Fourier transform and the inverse Fourier transform of f by

F ( f )(ξ) = f̂ (ξ) =
∫
Rd

f (x)e−ix ·ξ dx,

F −1( f )(x) = f ∨(x) = (2π)−d
∫
Rd

f (ξ)eiξ ·x dξ .

With our definition, Parseval’s formula takes the form∫
Rd

f (x)g(x) dx =
1

(2π)d

∫
Rd

f̂ (ξ)ĝ(ξ) dξ, (8.2.1)

for f , g ∈ L2(Rd). Let N0 = N ∪ {0}. For a multi-index α ∈ Nd
0 , we use the notations |α | = α1 + · · · + αd and

∇α = ∂α1
1 · · · ∂αd

d
. The space of continuous functions vanishing at infinity is denoted by C0(Rd). For k ∈ N,

Ck
0 (R

d) is the space of functions f ∈ Ck(Rd) such that ∇α f ∈ C0(Rd) for all α ∈ Nd
0 with |α | ≤ k, and C∞

0 (Rd) is
the intersection of all Ck

0 (R
d) over k ∈ N.

8.2.2 Lévy processes

A d-dimensional stochastic process (Xt )t≥0 defined on a filtered probability space (Ω,F , P) is called a Lévy process
if

(i) for 0 ≤ t0 < t1 < · · · < tn < ∞, {Xtk − Xtk−1 }k≥1 are independent,

(ii) for 0 < s < t < ∞ and a Borel set A ⊆ Rn, P(Xt − Xs ∈ A) = P(Xt−s ∈ A), and

(iii) for all δ > 0 and s ≥ 0,

lim
t→s
P(|Xt − Xs | > δ) = 0. (8.2.2)

The characteristic exponent ψ(ξ) of a Lévy process (Xt )t≥0 is defined by E[eiξ ·Xt ] = e−tψ(ξ) for ξ ∈ Rd . The
Lévy–Khintchine theorem tells us that (Xt )t≥0 is a Lévy process with characteristic exponent ψ(ξ) if and only if
there exists a triplet (b, A, ν) such that

ψ(ξ) = ib · ξ + 1
2
ξ · Aξ +

∫
Rd

(1 − eiξ ·y + iξ · y1B1 (y)) ν(dy),

where b ∈ Rd , A is a positive semi-definite d × d matrix, and ν is a σ-finite Borel measure on Rd \ {0} satisfying
∫
Rd\{0}

(1 ∧ |y |2) ν(dy) < ∞.

We call ν the Lévy measure. This gives a large class of stochastic processes that have been extensively studied. For
instance, Brownian motion is the case where b = 0, ν = 0, and A is the identity matrix. We say that (Xt )t≥0 is a
pure jump Lévy process if b = 0 and A = 0, and symmetric if ν is symmetric. We refer the reader to [2] for further
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information on these processes. The jump of Xt at time s is denoted by ∆Xs = Xs − Xs−. For t ≥ 0 and a Borel
subset A ⊆ Rn \ {0}, we define the jump measure of (Xt )t≥0 by

N(t, A) = the number of jumps during time [0, t] of size in A

= #{s ∈ [0, t] : ∆Xs ∈ A}.

Note that N(t, A) is a Poisson random measure with intensity dt ⊗ dν. By the Lévy–Itô decomposition theorem [2,
Theorem 2.4.16], one can decompose Xt into

Xt = bt + Gt +

∫
|x |≥1

x N(t, dx) +
∫
|x |<1

x Ñ(t, dx),

where b ∈ Rd , Gt is a Gaussian process, and Ñ(t, A) = N(t, A) − tν(A). Following the standard terminology,
we call Ñ(t, A) the compensated jump measure. Let Pt f (x) = Ex[ f (Xt )], then the semigroup Pt has the Feller
property: for f ∈ C0(Rd), Pt f ∈ C0(Rd) and limt→0 |Pt f (x) − f (x)| = 0 uniformly in x (see [19, Theorem 3.1.9]
and [22, p.19]). The infinitesimal generator L for the semigroup (Pt )t≥0 is given by

L f (x) = lim
t↓0

Pt f (x) − f (x)
t

whenever the limit exists. Here the limit is taken in the supremum norm. Let D(L) be the domain of L, then
C2

0 (R
d) ⊂ D(L) and L can be explicitly written as

L f (x) = b · ∇ f (x) + 1
2

d∑
i, j=1

Ai j
∂2 f
∂xi∂xj

(x)

+

∫
Rd

( f (x + y) − f (x) − y · ∇ f (x)1B1 (y)) ν(dy) (8.2.3)

for f ∈ C2
0 (R

d), where (b, A, ν) is the triplet of Xt (see [102, Theorem 31.5]).

8.2.3 Itô’s formula

We recall Itô’s formula for a general stochastic process Zt from [81, Theorem 5.1, p. 66]. Let Mt be a continuous
square integrable local martingale and At a continuous adapted process of bounded variation with A0 = 0. Let
(Xt )t≥0 be a Lévy process with its jump measure N(t, ·). Let G(t, x) = (G1(t, x), · · · ,Gd(t, x)) and H(t, x) =
(H1(t, x), · · · ,Hd(t, x)) be d-dimensional predictable processes such that Gi(t, x)Hj(t, x) = 0,

∫ t

0

∫
Rd

|Gi(s, x)| N(ds, dx) < ∞ a.s., (8.2.4)

and

E
[ ∫ t

0

∫
Rd

|Hi(s ∧ τn, x)|2 ν(dx)ds
]
< ∞, (8.2.5)

for all t > 0 and i, j = 1, 2, · · · , d, where (τn) is a sequence of stopping times such that τn → ∞ as n → ∞ almost
surely. Let (Zt )t≥0 be the d-dimensional stochastic process defined by

Zt = Z0 + Mt + At +

∫ t

0

∫
Rd

G(s, x) N(ds, dx) +
∫ t

0

∫
Rd

H(s, x) Ñ(ds, dx). (8.2.6)

Theorem 8.2.1. Let (Zt )t≥0 be given by (8.2.6) and ϕ ∈ C2(Rd). Assume that for all 1 ≤ i, j ≤ d and T > 0,

sup
0≤t≤T

sup
x∈Rd

|H(t, x)| < ∞ (8.2.7)
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almost surely. Then we have

ϕ(Zt ) − ϕ(Z0) =
∫ t

0
∇ϕ(Zs) · dMs (8.2.8)

+

∫ t

0
∇ϕ(Zs) · dAs +

1
2

∫ t

0
D2ϕ(Zs) · d[M]s

+

∫ t

0

∫
Rd

(ϕ(Zs− + G(s, y)) − ϕ(Zs−)) N(ds, dy)

+

∫ t

0

∫
Rd

(ϕ(Zs− + H(s, y)) − ϕ(Zs−)) Ñ(ds, dy)

+

∫ t

0

∫
Rd

(ϕ(Zs− + H(s, y)) − ϕ(Zs−) − H(s, y) · ∇ϕ(Zs−)) ν(dy)ds

where [M]t is the quadratic variation of Mt .

8.2.4 Hartman–Wintner condition

In what follows, we assume that (Xt )t≥0 is a pure jump Lévy process with càdlàc path and its Lévy measure ν
satisfies the Hartman–Wintner condition

lim
|ξ |→∞

Re(ψ(ξ))
log(1 + |ξ |) = ∞. (HW)

In [87, Theorem 2.1], Knopova and Schilling proved that a Lévy process (Xt )t≥0 satisfies (HW) if and only if for
all t > 0, the transition density pt (x, y) = pt (y − x) exists and pt,∇αpt ∈ C∞

0 (Rd) ∩ L1(Rd), for all α ∈ Nd
0 . By

(HW), Pt is an Lp-contraction for 1 ≤ p ≤ ∞ and Pt f ∈ Lp(Rd) ∩ C∞
0 (Rd) for f ∈ Lp(Rd) and 1 ≤ p < ∞

(see [87, Theorem 2.1] and [10, p. 466]).

8.2.5 Fourier multipliers

Let m : Rn → C be a function in L∞. For 1 ≤ p ≤ ∞ and f ∈ L2 ∩ Lp , we define an operator Tm by
T̂m f (ξ) = m(ξ) f̂ (ξ). If ‖Tm f ‖p ≲ ‖ f ‖p for all f ∈ L2 ∩ Lp , then Tm can be extended to all of Lp uniquely. We
say Tm is an Lp-Fourier multiplier operator with symbol m. For many of the classical examples of Lp–Fourier
multipliers, we refer the reader to [106].

8.3 The Hardy–Stein identity

The purpose of this section is to give a proof of the Hardy–Stein identity based on Itô’s formula. For a, b ∈ R,
ε > 0, and p ∈ (1,∞), we define

F(a, b; p) = |b|p − |a|p − pa|a|p−2(b − a) (8.3.1)

and

Fε(a, b; p) = (b2 + ε2)
p
2 − (a2 + ε2)

p
2 − pa(a2 + ε2)

p−2
2 (b − a). (8.3.2)

We note that F(a, b; p) and Fε(a, b; p) are the second-order Taylor remainders of the maps x ,→ |x |p and
x ,→ (x2 + ε2)

p
2 respectively. Since the maps are convex, it follows from Taylor’s theorem that F(a, b; p) ≥ 0 and

Fε(a, b; p) ≥ 0 for any a, b ∈ R.
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Theorem 8.3.1 (The Hardy–Stein identity). Let 1 < p < ∞ and F(a, b; p) be defined as in (8.3.1). If f ∈ Lp(Rd),
then we have ∫

Rd
| f (x)|p dx =

∫
Rd

∫ ∞

0

∫
Rd

F(Pt f (x), Pt f (x + y); p) ν(dy)dtdx. (8.3.3)

Again we note that our proof of this result does not require that ν is symmetric as is the case in [10]. Before we
present the proof of Theorem 8.3.1, we give the following lemmas. The first lemma concerns basic properties of
F and Fε which allow us to use a limiting argument when we consider the case 1 < p < 2. This lemma is proved
in [30].

Lemma 8.3.2 ( [30, Lemma 6, p.198]). Let p > 1, F(a, b; p) = |b|p − |a|p − pa|a|p−2(b − a), and K(a, b; p) =
(b − a)2(|a| ∨ |b|)p−2. Then we have

cpK(a, b; p) ≤ F(a, b; p) ≤ CpK(a, b; p),

for some positive constants cp,Cp that depend only on p. If 1 < p < 2, then we have

0 ≤ Fε(a, b; p) ≤ 1
p − 1

F(a, b; p)

for all ε > 0 and a, b ∈ R.

Next lemma is an application of Itô’s formula, which is presented in [10, (4.4)] and [3, p. 1118] for general
Lévy processes without proof. For the completeness, we give a proof.

Lemma 8.3.3. Let T > 0, t ∈ [0,T), 1 ≤ p < ∞, and f ∈ Lp(Rd). For Pt f (x) = Ex[ f (Xt )] and Yt = PT−t f (Xt ),
we have

Yt = Y0 +

∫ t

0

∫
Rd

(PT−s f (Xs− + y) − PT−s f (Xs−)) Ñ(ds, dy) (8.3.4)

for t ∈ [0,T), where Ñ is the compensated jump measure of (Xt )t≥0.

Proof. Fix t > 0 and choose r ∈ (0,T − t). Let T̃ = T − r and g(x) = Pr f (x), then it follows from (HW)
and [87, Theorem 2.1] that g ∈ C∞

0 (Rd) ∩ Lp(Rd). Since (8.3.4) can be written as

P"T−tg(Xt ) = P"Tg(X0) +
∫ t

0

∫
Rd

(P"T−sg(Xs− + y) − P"T−sg(Xs−)) Ñ(ds, dy),

it suffices to prove (8.3.4) for f ∈ C∞
0 (Rd) ∩ Lp(Rd).

We claim that if h(x) is C0(Rd) then the map (s, x) ,→ PT−sh(x) is C0([0, t]×Rd). Let (s0, x0) ∈ [0, t]×Rd and
ε > 0. By the Feller property, PT−sh is continuous in s uniformly in x, and PT−sh(x) is continuous in x for each s.
Thus there exists δ > 0 such that for (s, x) ∈ Bδ((s0, x0)), a (d + 1)-dimensional ball of radius δ centered at (s0, x0),

|PT−sh(x) − PT−s0 h(x0)| (8.3.5)

≤ |PT−sh(x) − PT−s0 h(x)| + |PT−s0 h(x) − PT−s0 h(x0)| + |PT−sh(x0) − PT−s0 h(x0)|
< ε,

which proves the claim.
Let ϕ(s, x) = PT−s f (x). Since f ∈ C0(Rd), we have ϕ(s, x) ∈ C([0, t] × Rd). Let i ∈ {1, 2, · · · , d}. For h > 0

and i = 1, · · · , d, we have

1
h
(PT−s f (x + hei) − PT−s f (x)) =

∫
Rd

( f (x + y + hei) − f (x + y)
h

)
pT−s(y) dy.
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Since f ∈ C∞
0 (Rd), we have

... f (x + y + hei) − f (x + y)
h

... ≤ DDD ∂ f
∂xi

DDD
∞
< ∞.

By the dominated convergence theorem and the claim, we conclude that ∂ϕ
∂xi

(s, x) = PT−s(∂i f )(x) ∈ C([0, t]×Rd).
Since Xt is a pure jump Lévy process, L f can be written as

L f (x) =
∫
Rd

( f (x + y) − f (x) − y · ∇ f (x)1B1 (y)) ν(dy)

by (8.2.3). By Taylor’s theorem, we have

| f (x + y) − f (x) − y · ∇ f (x)1B1 (y)| ≤ 2‖ f ‖∞1Rd\B1 (y) +
1
2
|y |2

d∑
i, j=1

DDD ∂2 f
∂xi∂xj

DDD
∞
1B1 (y).

Since the RHS is integrable with respect to the Lévy measure ν, L f is C0(Rd) by the dominated convergence
theorem. It then follows from

∂ϕ

∂s
(s, x) = ∂

∂s
PT−s f (x) = −LPT−s f (x) = −PT−sL f (x), (8.3.6)

that ∂ϕ
∂s ∈ C([0, t] × Rd). Therefore we have ϕ ∈ C1([0, t] × Rd).

Note that Xt can be written as

Xt =

∫
|x |≥1

x N(t, dx) +
∫
|x |<1

x Ñ(t, dx)

by the Lévy–Itô decomposition. Since Xt has no continuous martingale part, we can apply Theorem 8.2.1 for
ϕ ∈ C1([0, t] × Rd) and the process Zt = (t, Xt ). Note that Zt is a (d + 1)-dimensional stochastic process of the
form (8.2.6) and satisfies the assumptions of Theorem 8.2.1. Thus we have

ϕ(t, Xt ) − ϕ(0, X0) =
∫ t

0

∂ϕ

∂s
(s, Xs−) ds

+

∫ t

0

∫
|y |≥1

(ϕ(s, Xs− + y) − ϕ(s, Xs−)) N(ds, dy)

+

∫ t

0

∫
|y |<1

(ϕ(s, Xs− + y) − ϕ(s, Xs−)) Ñ(ds, dy)

+

∫ t

0

∫
|y |<1

(ϕ(s, Xs− + y) − ϕ(s, Xs−) − y · ∇xϕ(s, Xs−)) ν(dy)ds

=

∫ t

0

∂ϕ

∂s
(s, Xs−) ds +

∫ t

0

∫
Rd

(ϕ(s, Xs− + y) − ϕ(s, Xs−)) Ñ(ds, dy)

+

∫ t

0
Lϕ(s, Xs−) ds.

The result follows from (8.3.6). □

Although not explicitly written, the next lemma follows from [87]. Since its proof is quite simple, we present
it here for the completeness.

Lemma 8.3.4. The semigroup Pt defined by Pt f (x) = Ex[ f (Xt )] is ultracontractive on Lp , 1 ≤ p < ∞. That is,
for every t > 0, there exists a constant Ct > 0 such that for all f ∈ Lp(Rd),

‖Pt f ‖∞ ≤ C
1
p

t ‖ f ‖p . (8.3.7)

Furthermore, Ct converges to zero as t tends to ∞.
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Proof. Fix t > 0. Note that e−tψ(ξ) = E0[eiξ ·Xt ] = (2π)dF −1(pt (·))(ξ). Since pt is in L1(Rd), one sees that e−tψ(ξ)

belongs to L∞(Rd). We claim that e−tψ(ξ) is in L1(Rd). To see this, it suffices to show that e−t Reψ(ξ) ∈ L1(Rd).
Let h : Rd → R be a function satisfying Reψ(ξ) = log(1 + |ξ |)h(ξ). Since we have h(ξ) → ∞ as |ξ | → ∞ by the
Hartman–Wintner condition (HW), there exists R > 0 such that th(ξ) > d + 1 holds whenever |ξ | ≥ R. Let BR be
an open ball centered at 0 and radius R. Denote its Lebesgue measure by |BR |. Using the definition of h, one sees
that ∫

Rd\BR

e−t Reψ(ξ) dξ =
∫
|ξ |≥R

1
(1 + |ξ |)th(ξ)

dξ ≤
∫
|ξ |≥R

1
(1 + |ξ |)d+1 dξ .

Since we have

e−t Reψ(ξ) = |e−tψ(ξ) | =
...
∫
Rd

eiξ ·xpt (x) dx
... ≤ 1, (8.3.8)

we obtain ∫
Rd

e−t Reψ(ξ) dξ ≤
∫
|ξ |≥R

1
(1 + |ξ |)d+1 dξ + |BR | < ∞.

So we have e−tψ(ξ) ∈ L1(Rd) as desired. By the Fourier inversion formula, we have

pt (x) =
1

(2π)d
F (e−tψ(ξ)) = 1

(2π)d

∫
Rd

e−tψ(ξ)e−ix ·ξ dξ

and pt ∈ L∞(Rd). Define

Ct =
1

(2π)d

∫
Rd

e−t Reψ(ξ) dξ, (8.3.9)

then it is obvious to see that Ct is finite and |pt (x)| ≤ Ct for all x ∈ Rd . Using Jensen’s inequality, we obtain that

|Pt f (x)| =
...
∫
Rd

f (y)pt (x, y) dy
... ≤ ...

∫
Rd

| f (y)|ppt (x, y) dy
... 1
p ≤ C

1
p

t ‖ f ‖p,

for any x ∈ Rd , which yields (8.3.7).
We now prove the second assertion that Ct → 0 as t → ∞. First, we note that Reψ(ξ) is nonnegative by (8.3.8)

and in fact the Lebesgue measure of the set {ξ : Reψ(ξ) = 0} is zero (see [9, §3]). Thus e−t Reψ(ξ) tends to 0,
a.e., as t → ∞. Since e−t Reψ(ξ) is integrable for all t ≥ 1 and bounded by e−Reψ(ξ), it follows from the dominated
convergence theorem that

lim
t→∞

Ct = lim
t→∞

1
(2π)d

∫
Rd

e−t Reψ(ξ)dξ = 0.

□

We are ready to prove the Hardy–Stein identity.

Proof of Theorem 8.3.1. Let p ≥ 2. Fix T > 0 and let 0 < T0 < T . Consider ϕ(x) = |x |p , Yt = PT−t f (Xt ), and
H(t, x) = PT−t f (Xt− + x) − PT−t f (Xt−) for 0 ≤ t ≤ T0 and x ∈ Rd . It follows from Lemma 8.3.3 that

Yt = Y0 +

∫ t

0

∫
Rd

H(s, y) Ñ(ds, dy)

for 0 ≤ t ≤ T0. By Lemma 8.3.4,

E|Yt |2 = E|PT−t f (Xt )|2 ≤ C
2
p

T−T0
‖ f ‖2

p < ∞
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for 0 ≤ t ≤ T0 and H(t, x) satisfies (8.2.5) and (8.2.7). Applying Itô’s formula to ϕ(Yt ), we obtain

ϕ(Yt ) − ϕ(Y0) =
∫ t

0

∫
Rd

(ϕ(Ys− + H(s, y)) − ϕ(Ys−)) Ñ(ds, dy)

+

∫ t

0

∫
Rd

(ϕ(Ys− + H(s, y)) − ϕ(Ys−) − H(s, y) · ∇ϕ(Ys−)) ν(dy)ds (8.3.10)

for all 0 ≤ t ≤ T0. Note that Ys− + H(s, y) = PT−s f (Xs− + y), Ys− = PT−s f (Xs−), and

E|Yt − Y0 |2 = E
[ ∫ t

0

∫
Rd

|PT−s f (Xs− + y) − PT−s f (Xs−)|2 ν(dy)ds
]
< ∞ (8.3.11)

for all 0 ≤ t ≤ T0. By Lemma 8.3.4, we have

|ϕ(Ys− + H(s, y)) − ϕ(Ys−)| = | |PT−s f (Xs− + y)|p − |PT−s f (Xs−)|p |
≤ p|PT−s f (Xs− + y)|p−1 |PT−s f (Xs− + y) − PT−s f (Xs−)|

≤ pC(p−1)/p
T−T0

‖ f ‖p−1
p |PT−s f (Xs− + y) − PT−s f (Xs−)|.

Here we used the fact that the constant Ct in (8.3.9) is decreasing in t. By (8.3.11), we see that

E
[ ∫ t

0

∫
Rd

|ϕ(Ys− + H(s, y)) − ϕ(Ys−)|2 ν(dy)ds
]

≤ p2C2(p−1)
T−T0

‖ f ‖2(p−1)
p E

[ ∫ t

0

∫
Rd

|PT−s f (Xs− + y) − PT−s f (Xs−)|2 ν(dy)ds
]
< ∞

for t ∈ [0,T0], which implies that
∫ t

0

∫
Rd

(ϕ(Ys− + H(s, y)) − ϕ(Ys−)) Ñ(ds, dy) is a martingale for t ∈ [0,T0]. Note
that

ϕ(Ys− + H(s, y)) − ϕ(Ys−) − H(s, y) · ∇ϕ(Ys−)
= |PT−s f (Xs− + y)|p − |PT−s f (Xs−)|p

− pPT−s f (Xs−)|PT−s f (Xs−)|p−2(PT−s f (Xs− + y) − PT−s f (Xs−))
= F(PT−s f (Xs− + y), PT−s f (Xs−); p).

Putting t = T0 and taking the expectation of both sides in (8.3.10), we have

Ex |YT0 |p − Ex |Y0 |p = Ex
[ ∫ T0

0

∫
Rd

F(PT−s f (Xs− + y), PT−s f (Xs−); p) ν(dy)ds
]
. (8.3.12)

Integrating both sides in (8.3.12), we see

‖PT−T0 f ‖pp − ‖PT f ‖pp

=

∫
Rd
Ex

[ ∫ T0

0

∫
Rd

F(PT−s f (Xs− + y), PT−s f (Xs−); p) ν(dy)ds
]

dx

=

∫
Rd

∫
Rd

∫ T0

0

∫
Rd

F(PT−s f (z + y), PT−s f (z); p)ps(x, z) ν(dy)dsdzdx

=

∫
Rd

∫ T0

0

∫
Rd

F(PT−s f (z + y), PT−s f (z); p) ν(dy)dsdz

=

∫
Rd

∫ T

T−T0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz.
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First, we let T → T0. Since F(a, b; p) is nonnegative, we have

lim
T→T0

∫
Rd

∫ T

T−T0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz

=

∫
Rd

∫ T

0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz.

We claim that ‖PT−T0 f ‖p → ‖ f ‖p as T → T0. It suffices to show that ‖Pt f − f ‖p → 0 as t → 0. Let ε > 0. Using
the continuity of the translation operator on Lp(Rd), we choose δ > 0 small enough such that ‖Ty f − f ‖pp < ε
where Ty f (x) = f (x + y). By (8.2.2), there exists t0 > 0 such that for all t ∈ [0, t0]

P0(|Xt | > δ) =
∫
|y |>δ

pt (y) dy < ε.

For 0 ≤ t ≤ t0, we get

‖Pt f − f ‖pp ≤
∬

| f (x + y) − f (x)|ppt (y) dydx

≤ 2p−1‖ f ‖pp
∫
|y |>δ

pt (y) dy +
∫
|y |≤δ

‖Ty f − f ‖pp pt (y) dy

≤ (2p−1‖ f ‖pp + 1)ε,

which proves the claim and yields

‖ f ‖pp − ‖PT f ‖pp =
∫
Rd

∫ T

0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz.

Let f ∗(x) = supt |Pt f (x)|, then it follows from Proposition 7.3.3 that ‖ f ∗‖p ≤ p
p−1 ‖ f ‖p . Since |PT f (x)| ≤ | f ∗(x)|

and PT f (x) → 0, as T → ∞ for each x ∈ Rd by Lemma 8.3.4, the dominated convergence theorem yields
‖PT f ‖p → 0 as T → ∞. Since F(a, b; p) is nonnegative, we have

‖ f ‖pp =
∫
Rd

∫ ∞

0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz (8.3.13)

as desired.
Let 1 < p < 2 and ε > 0. Following the same argument as in the case p > 2 with the function ϕ(x) =

(|x |2 + ε2)
p
2 , we arrive at

∫
Rd

(
(| f (x)|2 + ε2)

p
2 − (|PT f (x)|2 + ε2)

p
2

)
dx

=

∫
Rd

∫ T

0

∫
Rd

Fε(Ps f (z + y), Ps f (z); p) ν(dy)dsdz,

where Fε is the function defined by (8.3.2). Since the function x ,→ x
p
2 is p

2 -Hölder continuous on [0,∞) for
1 < p < 2, we have (| f (x)|2 + ε2)

p
2 − εp ≤ Cp | f (x)|p and (|PT f (x)|2 + ε2)

p
2 − εp ≤ Cp |PT f (x)|p . Thus the

left hand side converges to ‖ f ‖pp − ‖PT f ‖pp as ε → 0 by the dominated convergence theorem. On the other hand,
0 ≤ Fε(a, b; p) → F(a, b; p), as ε → 0, and 0 ≤ Fε(a, b; p) ≤ 1

p−1 F(a, b; p), by Lemma 8.3.2. Since the integral

I(ε,T) =
∫
Rd

∫ T

0

∫
Rd

Fε(Ps f (z + y), Ps f (z); p) ν(dy)dsdz

is bounded for each ε > 0, Fatou’s lemma and the dominated convergence theorem give (see [30, p.199]) that

lim
ε→0

I(ε,T) =
∫
Rd

∫ T

0

∫
Rd

F(Ps f (z + y), Ps f (z); p) ν(dy)dsdz.

We finish the proof by letting T → ∞. □
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Following the same argument, we obtain a more general result for martingales of which Theorem 8.3.1 is a
special case.

Theorem 8.3.5 (A Hardy–Stein identity for martingales). Let 1 < p < ∞ and H(t, x) be a d-dimensional
predictable process satisfying (8.2.5) and (8.2.7). Assume that a martingale Mt defined by

Mt = M0 +

∫ t

0

∫
Rd

H(s, y) Ñ(ds, dy)

is uniformly integrable in L2 ∩ Lp , that is,

sup
t>0
E|Mt |max{2,p} < ∞.

Then we have

E|M∞ |p − E|M0 |p =
∫ ∞

0

∫
Rd
E[F(Ms−,Ms− + H(s, y); p)] ν(dy)ds. (8.3.14)

Proof. Let p ≥ 2. Let T > 0 and ϕ(x) = |x |p . By Itô’s formula, we have

ϕ(Mt ) − ϕ(M0) =
∫ t

0

∫
Rd

(ϕ(Ms− + H(s, y)) − ϕ(Ms−)) Ñ(ds, dy)

+

∫ t

0

∫
Rd

(ϕ(Ms− + H(s, y)) − ϕ(Ms−) − H(s, y) · ∇ϕ(Ms−)) ν(dy)ds

for 0 ≤ t ≤ T . Since

|ϕ(Ms− + H(s, y)) − ϕ(Ms−)|2 ≤ p222p−3(|Ms− |2p−2 + |H(s, y)|2p−2)|H(s, y)|2

≤ C(p,T)|H(s, y)|2

for 0 ≤ s ≤ T , we get

E
[ ∫ t

0

∫
Rd

|ϕ(Ms− + H(s, y)) − ϕ(Ms−)|2 ν(dy)ds
]

≤ C(p,T)E
[ ∫ t

0

∫
Rd

|H(s, y)|2 ν(dy)ds
]

= C(p,T)E|Mt − M0 |2

< ∞,

which implies that
∫ t

0

∫
Rd

(ϕ(Ms− + H(s, y)) − ϕ(Ms−)) Ñ(ds, dy) is a martingale and its expectation is zero. Since
F(a, b; p) ≥ 0 and ν is σ-finite, it follows from Fubini–Tonelli theorem that

E|Mt |p − E|M0 |p =
∫ t

0

∫
Rd
E[ϕ(Ms− + H(s, y)) − ϕ(Ms−) − H(s, y) · ∇ϕ(Ms−)] ν(dy)ds

=

∫ t

0

∫
Rd
E[F(Ms−,Ms− + H(s, y); p)] ν(dy)ds.

Letting t → ∞, we get the result.
Suppose 1 < p < 2. Let ε > 0, T > 0, and ϕε(t) = (t2 + ε2)

p
2 . By Itô’s formula, we have

E[ϕε(Mt )] − E[ϕε(M0)] =
∫ t

0

∫
Rd
E[Fε(Ms−,Ms− + H(s, y); p)] ν(dy)ds

for 0 ≤ t ≤ T . Since ϕε(t) ≤ Cp |t |p + εp and supt≥0 E|Mt |p < ∞, we have

lim
ε→0

(E[ϕε(Mt )] − E[ϕε(M0)]) = E|Mt |p − E|M0 |p .

Let I(ε, t) =
∫ t

0

∫
Rd
E[Fε(Ms−,Ms− + H(s, y); p)] ν(dy)ds, then lim infε→0 I(ε, t) < ∞ by Lemma 8.3.2. Using

Fatou’s lemma, we have I(0, t) < ∞. Thus the result follows from ϕε(t) ≤ Cp |t |p + εp and the dominated
convergence theorem. □
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8.4 Fourier multipliers and square functions

The main application of the results in [10] was to show the Lp boundedness of the Fourier multipliers introduced
in [8], 1 < p < ∞, without appealing to martingale transforms. Of course, a disadvantage of such a proof is that
we do not obtain the sharp bounds given in [8,9], which follow from Burkholder’s sharp inequalities. In addition,
the Littlewood–Paley inequalities proved in [10] only apply to symmetric pure jump Lévy processes and therefore
the Fourier multiplier proof given there also has this restriction. In this section, we prove, via a symmetrization of
the Littlewood–Paley inequalities, the general result for Fourier multipliers.

We recall that (Xt )t≥0 is a pure jump Lévy process with càdlàc path and ν is its Lévy measure that satisfies the
Hartman–Wintner condition

lim
|ξ |→∞

Re(ψ(ξ))
log(1 + |ξ |) = ∞. (HW)

Let Pt be a semigroup defined by Pt f (x) = Ex[ f (Xt )]. Let φ : (0,∞)×Rd → R be a bounded measurable function
and 1 < p, q < ∞ with 1

p +
1
q = 1. Let m : Rd → C be a measurable function. The Fourier multiplier operator

with symbol m is denoted by Tm. Note that Tm is determined by F (Tm f )(ξ) = m(ξ) f̂ (ξ). For f , g ∈ L2(Rd), we
denote by 〈 f , g〉 =

∫
Rd

f g dx. By Parseval’s formula (8.2.1), we have

〈Tm f , g〉 =
∫
Rd

Tm f (x)g(x) dx

=
1

(2π)d

∫
Rd

F (Tm f )(ξ)F (g)(ξ) dξ

=
1

(2π)d

∫
Rd

m(ξ) f̂ (ξ)ĝ(ξ) dξ .

We are ready to state our result on Fourier multipliers.

Theorem 8.4.1. Let φ : (0,∞) × Rd → R be a bounded measurable function, p ∈ (1,∞), and q the conjugate
exponent of p. Then for f ∈ L2(Rd) ∩ Lp(Rd) and g ∈ L2(Rd) ∩ Lq(Rd),

Λφ( f , g) =
∫
Rd

∫ ∞

0

∫
Rd

(Pt f (x + y) − Pt f (x))(Ptg(x + y) − Ptg(x))φ(t, y) ν(dy)dtdx (8.4.1)

is well-defined. Furthermore, there is a unique bounded linear operator Sφ on Lp(Rd) such that Λφ( f , g) =
〈Sφ( f ), g〉 and Sφ = Tmφ with symbol mφ given by

mφ(ξ) =
∫ ∞

0

∫
Rd

|eiξ ·y − 1|2e−2t Re(ψ(ξ))φ(t, y) ν(dy)dt.

When ν is symmetric, this result was proved in [10] as an application of the boundedness on Lp of the
Littlewood–Paley square functions which itself was the main application of the Hardy–Stein inequality, completely
bypassing the martingale transform arguments used earlier. The question left open in [10] was whether Littlewood–
Paley arguments can be used to prove the result for general ν. We answer this in the affirmative.

Let us introduce the dual process and the symmetrization of the Lévy process (Xt )t≥0 with the Lévy measure
ν. Let (X̂t )t≥0 be a càdlàg stochastic process having the same finite dimensional distribution as (−Xt )t≥0, and
independent of (Xt )t≥0. The process (X̂t )t≥0 is said to be the dual process of (Xt )t≥0. Note that (X̂t )t≥0 is a Lévy
process with triplet (0, 0, ν(−dx)). We define its semigroup by P̂t f (x) = Ex[ f (X̂t )]. Note that for any Borel function
f and g, we have ∫

Rd
Pt f (x)g(x) dx =

∫
Rd

f (x)P̂tg(x) dx,

which explains why (X̂t )t≥0 is called the dual of (Xt )t≥0.
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Let X̃t = X t
2
+ X̂ t

2
for t ≥ 0. We define ψ̃(ξ) = Re(ψ(ξ)) and ν̃(B) = 1

2 (ν(B) + ν(−B)) for any measurable set
B in Rd . Since we have

E[eiξ ·"Xt ] = E[eiξ ·X t
2 ]E[eiξ ·

%X t
2 ] = e−

t
2ψ(ξ)e−

t
2ψ(−ξ) = e−t"ψ(ξ)

and

ψ̃(ξ) =
∫
Rd

(1 − cos(ξ · y)) ν(dy)

=

∫
Rd

(1 − cos(ξ · y)) ν̃(dy)

=

∫
Rd

(1 − eiξ ·y + iξ · y1{ |y |≤1}) ν̃(dy),

the process X̃t is a Lévy process with characteristic exponent ψ̃(ξ) and the Lévy measure ν̃. We say that X̃t is the
symmetrization of Xt . Define P̃t f (x) = Ex[ f (X̃t )]. The Fourier transform of P̃t f is given by

F (P̃t f )(ξ) = e−t"ψ(ξ) f̂ (ξ) = e−t Re(ψ(ξ)) f̂ (ξ).

Since X̃t is a symmetric pure jump Lévy process and the measure ν̃ satisfies (HW) condition, it leads us
to apply the result of [10] for the symmetrization X̃t . In particular, we obtain two side estimates for the square
functions of X̃t . We define the square functions of the symmetrized process X̃t by

G̃( f )(x) =
( ∫ ∞

0

∫
Rd

...P̃t f (x + y) − P̃t f (x)
...2 ν̃(dy)dt

) 1
2
, (8.4.2)

G̃∗( f )(x) =
( ∫ ∞

0

∫
A(t,x, f )

...P̃t f (x + y) − P̃t f (x)
...2 ν̃(dy)dt

) 1
2 (8.4.3)

where A(t, x, f ) = {y ∈ Rd : |P̃t f (x)| > |P̃t f (x + y)|}. The following lemma is found in [10, Theorem 4.1,
Corollary 4.4 ].

Lemma 8.4.2. Let 2 ≤ p < ∞ and f ∈ Lp(Rd). Then there are constants cp and Cp depending only on p such
that

cp ‖ f ‖p ≤ ‖G̃( f )‖p ≤ Cp ‖ f ‖p .

If 1 < p < ∞ and f ∈ Lp(Rd), then we have

dp ‖ f ‖p ≤ ‖G̃∗( f )‖p ≤ Dp ‖ f ‖p,

for some dp and Dp depending only on p.

For a function f and a measure µ, the essential supremum of f with respect to the measure µ is denoted by
‖ f ‖∞,µ.

Lemma 8.4.3. Let ν(B) = 1
2 (ν(B) − ν(−B)) for any measurable set B ⊆ Rd . Then, there is a measurable function

r(y) such that ν(dy) = r(y)ν̃(dy). Furthermore, the function r(y) is bounded ν̃-a.s. with ‖r ‖∞,"ν ≤ 1.

Proof. Note that ν is σ-finite since ν({0}) = 0 and
∫
Rd

(1 ∧ |x |2)ν(dx) < ∞. So are ν̃ and ν. Suppose that B ⊆ Rd

is a measurable set such that ν̃(B) = 0. Since ν is a positive measure, we have ν(B) = ν(−B) = 0, which implies
ν(B) = 0. Thus ν is absolutely continuous with respect to ν̃. By the Radon-Nikodym theorem, we conclude that
there is a measurable function r(y) such that ν(dy) = r(y)ν̃(y).

To see r(y) is bounded, we consider the set Bε := {y ∈ Rd : |r(y)| > 1 + ε} for an arbitrary ε > 0. From the
relation ν(dy) = r(y)ν̃(y) obtained above, we have ν(Bε) > (1+ε)ν̃(Bε). It then yields εν(Bε)+ (2+ε)ν(−Bε) < 0
so that ν(Bε) = ν(−Bε) = 0. Therefore, r(y) is bounded ν̃-a.s. and ‖r ‖∞,"ν ≤ 1. □
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Proof of Theorem 8.4.1. The first argument is directly obtained by Theorem 8.3.1. Indeed, since F(a, b; 2) =
|a − b|2, Theorem 8.3.1 yields that

‖ f ‖2
2 =

∫
Rd

∫ ∞

0

∫
Rd

F(Pt f (x), Pt f (x + y); 2) ν(dy)dtdx

=

∫
Rd

∫ ∞

0

∫
Rd

|Pt f (x) − Pt f (x + y)|2 ν(dy)dtdx.

It then follows from the Cauchy-Schwartz inequality that

|Λφ( f , g)| ≤ ‖φ‖∞
∫
Rd

∫ ∞

0

∫
Rd

|Pt f (x + y) − Pt f (x)| |Ptg(x + y) − Ptg(x)| ν(dy)dtdx

≤ ‖φ‖∞‖ f ‖2‖g‖2.

Since f , g ∈ L2(Rd), Theorem 8.3.1 implies that Λφ( f , g) is absolutely convergent. To see the second assertion,
we use Parseval’s formula (8.2.1) so that

Λφ( f , g)

=
1

(2π)d

∭
F (Pt f (· + y) − Pt f (·))(ξ)F (Ptg(· + y) − Ptg(·))(ξ)φ(t, y) dξν(dy)dt

=
1

(2π)d

∭
(eiξ ·y − 1)e−tψ(ξ) f̂ (ξ)(eiξ ·y − 1)e−tψ(ξ)ĝ(ξ)φ(t, y) dξν(dy)dt

=
1

(2π)d

∭
|eiξ ·y − 1|2e−2t Re(ψ(ξ)) f̂ (ξ)ĝ(ξ)φ(t, y) dξν(dy)dt

where ψ(ξ) is the characteristic exponent of (Xt )t≥0. In the second equality, we have used the fact that

F (Pt f (· + y) − Pt f (·))(ξ) = (eiξ ·y − 1)F (Pt f )(ξ) = (eiξ ·y − 1)e−tψ(ξ) f̂ (ξ).

By Lemma 8.4.3, there is a measurable function r(y) such that ν(dy) = r(y)ν̃(dy)with ‖r ‖∞,"ν ≤ 1. Using ν = ν̃+ν,
we have

Λφ( f , g) = 1
(2π)d

∫ ∞

0

∫
Rd

∫
Rd

|eiξ ·y − 1|2e−2t Re(ψ(ξ)) f̂ (ξ)ĝ(ξ)φ(t, y) dξν̃(dy)dt

+
1

(2π)d

∫ ∞

0

∫
Rd

∫
Rd

|eiξ ·y − 1|2e−2t Re(ψ(ξ)) f̂ (ξ)ĝ(ξ)φ(t, y) dξν(dy)dt .

If we define η(t, y) = φ(t, y)(1 + r(y)), then η is bounded ν̃-a.s.; thus, we obtain

Λφ( f , g) = 1
(2π)d

∫ ∞

0

∫
Rd

∫
Rd

|eiξ ·y − 1|2e−2t Re(ψ(ξ)) f̂ (ξ)ĝ(ξ)η(t, y) dξν̃(dy)dt.

We consider X̃t and P̃t , the symmetrization of Xt and Pt . Since the characteristic exponent of X̃t is the real part of
ψ(ξ), ψ̃(ξ) = Re(ψ(ξ)), and

F (P̃t f (· + y) − P̃t f (·))(ξ) = (eiξ ·y − 1)F (P̃t f )(ξ) = (eiξ ·y − 1)e−t Re(ψ(ξ)) f̂ (ξ),

it follows from Parseval’s formula (8.2.1) that

Λφ( f , g) =
∫
Rd

∫ ∞

0

∫
Rd

(P̃t f (x + y) − P̃t f (x))(P̃tg(x + y) − P̃tg(x))η(t, y) ν̃(dy)dtdx

=: Λ̃η( f , g). (8.4.4)
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To show the boundedness of Λφ( f , g), we use the square functions defined in (8.4.2). It is enough to show the
case p > 2 and 1 < q < 2. Note that ‖η‖∞,"ν is finite and ‖η‖∞,"ν ≤ 2‖φ‖∞. Let A(t, x, g) := {y ∈ Rd : |P̃tg(x)| >
|P̃tg(x + y)|}. Note that it follows from the symmetry of ν̃ that

∫
Rd

∫ ∞

0

∫
A(t,x,g)

|P̃t f (x + y) − P̃t f (x)| |P̃tg(x + y) − P̃tg(x)| ν̃(dy)dtdx

=

∫
Rd

∫ ∞

0

∫
Rd\A(t,x,g)

|P̃t f (x + y) − P̃t f (x)| |P̃tg(x + y) − P̃tg(x)| ν̃(dy)dtdx.

Applying Cauchy-Schwartz and Hölder’s inequalities, we have

|Λ̃η( f , g)|

≤ ‖η‖∞,"ν
∫
Rd

∫ ∞

0

∫
Rd

|P̃t f (x + y) − P̃t f (x)| |P̃tg(x + y) − P̃tg(x)| ν̃(dy)dtdx

≤ 2‖η‖∞,"ν
∫
Rd

∫ ∞

0

∫
A(t,x,g)

|P̃t f (x + y) − P̃t f (x)| |P̃tg(x + y) − P̃tg(x)| ν̃(dy)dtdx

≤ 2‖η‖∞,"ν
∫
Rd

G̃( f )(x)G̃∗(g)(x) dx

≤ 2‖η‖∞,"ν ‖G̃( f )‖p ‖G̃∗(g)‖q .

It follows from Lemma 8.4.2 and (8.4.4) that

Λφ( f , g) ≤ 4CpDq ‖φ‖∞‖ f ‖p ‖g‖q .

Therefore, the Riesz representation theorem yields that there is a unique linear operator Sφ satisfying Λφ( f , g) =
〈Sφ( f ), g〉. □
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