Practice Problems for Final

MATH 3215, Spring 2024

1. Let $X_{1}, X_{2}, \cdots, X_{7}$ be an i.i.d. sequence of Poisson random variables with parameter $\lambda=2$. Let $W=\sum_{i=1}^{7} X_{i}$. Find the MGF of W. How is W distributed? Find the probabilities $\mathbb{P}(W=6)$ and $\mathbb{P}\left(W=5 \mid X_{1}=2\right)$.
2. Suppose $X \sim N(1,4)$ and $Y \sim N(2,12)$ are independent normal random variables. Let $W=X+Y$. Find the MGF of W. Find the probability $\mathbb{P}(3 \leq W \leq 9)$.
3. An instructor has 50 exams that will be graded in sequence. The times required to grade the 50 exams are independent, with a common distribution that has mean 20 minutes and standard deviation 4 minutes. Approximate the probability that the instructor will grade at least 25 of the exams in the first 450 minutes of work.
4. A certain type of electrical motors is defective with probability $1 / 100$. Pick 1000 motors and let X be the number of defective ones among these 1000 motors.
(a) What is the probability that among the 1000 motors 13 or less are defective, i.e., what is $\mathbb{P}(X \leq 13)$.
(b) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 1000 mortors 13 or less are defective. Use the corresponding tables (and $\sqrt{\frac{99}{10}} \approx 3.15$) to find an approximate value for thsi probability
5. A fair die will be rolled 720 times independently.
(a) What is the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively? That is, what is $\mathbb{P}(135 \leq X \leq 150)$? Write down the probability without using the tables and approximations.
(b) Using a normal approximation, without mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
(c) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
6. If X is a random variable with mean 33 and variance 16, use Chebyshev's inequality to find
(a) A lower bound for $\mathbb{P}(23<X<43)$.
(b) An upper bound for $\mathbb{P}(|X-33| \geq 14)$.
7. Let \bar{X} be the mean of a random sample of size $n=15$ from a distribution with mean $\mu=80$ and variance $\sigma^{2}=60$. Use Chebvshev's inequality to find a lower bound for $\mathbb{P}(75<\bar{X}<85)$.
8. Let $W_{1}<W_{2}<\cdots<W_{10}$ be the order statistics of n independent observations from a $U(0,1)$ distribution.
(a) Find the PDFs of W_{1} and W_{10}.
(b) Find $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{10}\right]$.
9. Let $Y_{1}<Y_{2}<\cdots<Y_{5}$ be the order statistics of a random sample of size 5 from a distribution with PDF $f(x)=e^{-x}$ for $0<x<\infty$.
(a) Find the PDF of Y_{3}.
(b) Find the PDF of $U=e^{-Y_{3}}$.
10. Suppose that X is a discrete random variable with pmf

$$
f(x)=\frac{2+\theta(2-x)}{6}, \quad x=1,2,3
$$

where the unknown parameter θ belongs to the parameter space $\Omega=\{-1,0,1\}$. Suppose further that a random sample $X_{1}, X_{2}, X_{3}, X_{4}$ is taken from this distribution, and the four observed values are $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $(3,2,3,1)$. Find the maximum likelihood estimate of θ.
11. A random sample of size 16 from the normal distribution $N(\mu, 25)$ yielded $\bar{X}=73.8$. Find a 95% confidence interval for μ.

