Practice Problems for Final

MATH 3215, Spring 2024

- 1. Let X_1, X_2, \dots, X_7 be an i.i.d. sequence of Poisson random variables with parameter $\lambda = 2$. Let $W = \sum_{i=1}^7 X_i$. Find the MGF of W. How is W distributed? Find the probabilities $\mathbb{P}(W = 6)$ and $\mathbb{P}(W = 5|X_1 = 2)$.
- 2. Suppose $X \sim N(1,4)$ and $Y \sim N(2,12)$ are independent normal random variables. Let W = X + Y. Find the MGF of W. Find the probability $\mathbb{P}(3 \le W \le 9)$.
- 3. An instructor has 50 exams that will be graded in sequence. The times required to grade the 50 exams are independent, with a common distribution that has mean 20 minutes and standard deviation 4 minutes. Approximate the probability that the instructor will grade at least 25 of the exams in the first 450 minutes of work.
- 4. A certain type of electrical motors is defective with probability 1/100. Pick 1000 motors and let X be the number of defective ones among these 1000 motors.
 - (a) What is the probability that among the 1000 motors 13 or less are defective, i.e., what is $\mathbb{P}(X \leq 13)$.
 - (b) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 1000 mortors 13 or less are defective. Use the corresponding tables (and $\sqrt{\frac{99}{10}} \approx 3.15$) to find an approximate value for this probability
- 5. A fair die will be rolled 720 times independently.
 - (a) What is the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively? That is, what is $\mathbb{P}(135 \le X \le 150)$? Write down the probability without using the tables and approximations.
 - (b) Using a normal approximation, without mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
 - (c) Using a normal approximation, with mid-point correction, write down an expression for the probability that among the 720 rolls the number 6 will appear between 135 and 150 times inclusively. Use the corresponding tables to find an approximate value for this probability.
- 6. If X is a random variable with mean 33 and variance 16, use Chebyshev's inequality to find
 - (a) A lower bound for $\mathbb{P}(23 < X < 43)$.
 - (b) An upper bound for $\mathbb{P}(|X 33| \ge 14)$.
- 7. Let \overline{X} be the mean of a random sample of size n = 15 from a distribution with mean $\mu = 80$ and variance $\sigma^2 = 60$. Use Chebvshev's inequality to find a lower bound for $\mathbb{P}(75 < \overline{X} < 85)$.
- 8. Let $W_1 < W_2 < \cdots < W_{10}$ be the order statistics of n independent observations from a U(0,1) distribution.
 - (a) Find the PDFs of W_1 and W_{10} .
 - (b) Find $\mathbb{E}[W_1]$ and $\mathbb{E}[W_{10}]$.
- 9. Let $Y_1 < Y_2 < \cdots < Y_5$ be the order statistics of a random sample of size 5 from a distribution with PDF $f(x) = e^{-x}$ for $0 < x < \infty$.

- (a) Find the PDF of Y_3 .
- (b) Find the PDF of $U = e^{-Y_3}$.
- 10. Suppose that X is a discrete random variable with pmf

$$f(x) = \frac{2 + \theta(2 - x)}{6}, \qquad x = 1, 2, 3,$$

where the unknown parameter θ belongs to the parameter space $\Omega = \{-1, 0, 1\}$. Suppose further that a random sample X_1, X_2, X_3, X_4 is taken from this distribution, and the four observed values are $(x_1, x_2, x_3, x_4) = (3, 2, 3, 1)$. Find the maximum likelihood estimate of θ .

11. A random sample of size 16 from the normal distribution $N(\mu, 25)$ yielded $\overline{X} = 73.8$. Find a 95% confidence interval for μ .