In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors \vec{b}_1 and \vec{b}_2 .

If possible, on the grids below, draw

- (i) the two vectors and the span of the columns of A,
- (ii) the solution set of $A\vec{x} = \vec{b}_1$.
- (iii) the solution set of $A\vec{x} = \vec{b}_2$.

2. Indicate true if the statement is true, otherwise, indicate false. For the statements that are false, give a counterexample.

	true	false	$\operatorname{counterexample}$
a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{M} .	0	\bigcirc	
b) If there are some vectors $\vec{b} \in \mathbb{R}^M$ that are not in the range of $T(\vec{x}) = A\vec{x}$, then there cannot be a pivot in every row of A .	\bigcirc	\bigcirc	
c) If the transform $\vec{x} \to A\vec{x}$ projects points in \mathbb{R}^2 onto a line that passes through the origin, then the transform cannot be one-to-one.	0	0	
	>		

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A linear system that is homogeneous and has no solutions.
 - (b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_A : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
 - (c) A 3 × 7 matrix A, in RREF, with exactly 2 pivot columns, such that $A\vec{x} = \vec{b}$ has exactly 5 free variables.

4. Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(a) Express the augmented matrix $(A | \vec{b})$ in RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

