Chapter 4. Bivariate Distributions

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Bivariate Distributions of the Discrete Type

$$
2 R V_{s}
$$

Discrete

Motivation

Suppose that we observe the maximum daily temperature, X, and maximum relative humidity, Y, on summer days at a particular weather station.

We want to determine a relationship between these two variables.
For instance, there may be some pattern between temperature and humidity that can be described by an appropriate curve $Y=u(X)$.

Joint distribution

Let X and Y be two random variables defined on a discrete sample space.
Let S denote the corresponding two-dimensional space of X and Y, the two random variables of the discrete type.

Definition
The function $f(x, y)=\mathbb{P}(X=x, Y=y)$ is called the joint probability mass function (joint PMF) of X and Y. "AND"

$$
f(x, y)=\mathbb{P}(\{x=x\} \cap\{Y=y\})
$$

Joint distribution

Note that

- $0 \leq f(x, y) \leq 1=\mathbb{P}(S)$
- $\sum_{(x, y) \in S} f(x, y)=1$
- $\mathbb{P}((X, Y) \in A)=\sum_{(x, y) \in A} f(x, y)$

Joint distribution

Example \& faced

Roll a pair of fair dice.
Let X denote the smaller and Y the larger outcome on the dice.
Find the joint PMF of (X, Y).

$$
\begin{align*}
& \text { PMF of }(X, Y) \text {. } \\
& f(x, y)=\mathbb{P}(x=x, Y=y) \tag{3,1}\\
& =\left\{\begin{array}{ll}
1 / 16 & \\
2 / 16 & \\
\vdots &
\end{array} \quad \begin{array}{rl}
(x, y) & =(1,1) \\
& =(1,3)
\end{array}\right.
\end{align*}
$$

$$
(2)(1)
$$

Definition
Let X and Y have the joint probability mass function $f(x, y)$.
The probability mass function of X, which is called the marginal probability mass function of X, is defined by

$$
\begin{gathered}
f_{X}(x)=\sum_{y} f(x, y)=\mathbb{P}(X=x) . \\
f_{\substack{+f_{x} \\
(x)}} \mathbb{P}(X=x)=\sum_{y} \mathbb{P}(X=x, Y=y)=\sum_{y} f(x, y)
\end{gathered}
$$

Marginal

$$
f_{y}(y)=\sum_{x}^{+} f(x, y)
$$

Def We soy

$$
\mathbb{P}\left(x \in A \mathbb{C}_{\pi_{0 \sim 1}} Y \in B\right)=\mathbb{P}(X \in A) \cdot P(Y \in B)
$$

for all "possible" A, B.

Definition (X, Y : Discrete)
We say X and Y are independent if

$$
\begin{aligned}
\text { Joint } P M F=\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)= & \begin{array}{l}
\text { Product of } \\
\\
\text { Marginal PMFs }
\end{array}
\end{aligned}
$$ for all $(x, y) \in S$.

Equivalently, $f(x, y)=f_{X}(x) f_{Y}(y)$ for all x, y.
Otherwise, we say X and Y are dependent.

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}
$$

for $x=1,2,3$ and $y=1,2$.
Find the marginal PMFs of X and Y.
Determine whether they are independent.

$$
\begin{aligned}
& f_{X}(x)=P(x=x)=\sum_{1} f(x, y) \\
&=f(x, 1)+f(x, 2)=\frac{x+1}{21}+\frac{x+2}{21} \\
&=\frac{1}{21}(2 x+3) \quad x=1,2,3 \\
& f_{Y}(y)=\sum_{x} f_{(x, y)}=f(1, y)+f(2, y)+f(3, y) \\
&=\frac{1}{21} \cdot((1+y)+(2+y)+(3+y))=\frac{3 y+6}{21}=\frac{y+3}{7} \\
& x=1,2,3 \\
& y=1,2 \\
& \frac{1}{21}(x+y)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { No. } & =\frac{1}{21} \cdot \frac{1}{7}(2 x y+\cdots) \\
x=1, y=1 & \frac{2}{21} & \neq \frac{5}{21}=\frac{3}{7}
\end{array}
$$

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x y^{2}}{30}=\underbrace{x}_{\uparrow} \cdot \frac{y^{2}}{30}
$$

for $x=1,2,3$ and $y=1,2$.
Find the marginal PMFs of X and Y.
Determine whether they are independent.

$$
\begin{aligned}
& f_{x}(x)=\sum_{y}^{y} f(x, y)=f(x, 1)+f(x, 2)=\frac{x}{30} \cdot\left(1^{2}+2^{2}\right)=\frac{x}{6} \\
& f_{y}(y)=\sum_{x}^{2} f^{\prime}(x, y)=\frac{y^{2}}{30} \cdot(1+2+3)=\frac{y^{2}}{5} \\
& f(x, y)=\frac{x \cdot y^{2}}{30}=\frac{x}{6} \cdot \frac{y^{2}}{5}=f_{x}(x) \cdot f_{y}(y) .
\end{aligned}
$$

index.

Expectations

Definition
Let X_{1} and X_{2} be random variables of the discrete type with the joint PMF $f\left(x_{1}, x_{2}\right)$ on the space S. If $u\left(X_{1}, X_{2}\right)$ is a function of these two random variables, then

$$
\mathbb{E}\left[u\left(X_{1}, X_{2}\right)\right]=\sum_{\left(x_{1}, x_{2}\right) \in S} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right)
$$

In particular, if $u\left(x_{1}, x_{2}\right)=x_{1}$, then

$$
\mathbb{E}\left[u\left(X_{1}, X_{2}\right)\right]=\mathbb{E}\left[X_{1}\right]=\sum_{\left(x_{1}, x_{2}\right) \in S} x_{1} f\left(x_{1}, x_{2}\right)=\sum_{x_{1}} x_{1} f_{X_{1}}\left(x_{1}\right)
$$

Examples

$$
\begin{aligned}
u\left(x_{1}, x_{2}\right) & =x_{1} \rightarrow \mathbb{E}\left[x_{1}\right]=\sum_{x_{1}, x_{2}} x_{1} \cdot f\left(x_{1}, x_{2}\right) \\
& =x_{2} \rightarrow \mathbb{E}\left[x_{2}\right]=\sum_{x_{1}, x_{2}} x_{2}-f\left(x_{1}, x_{2}\right) \\
& =x_{1}+x_{2} \rightarrow \mathbb{E}\left[x_{1}+x_{2}\right]=\sum_{x_{1}, x_{2}}\left(x_{1}+x_{2}\right) f\left(x_{1}, x_{2}\right) \\
& =x_{1} \cdot x_{2} \longrightarrow \mathbb{E}\left[x_{1}-x_{2}\right]=\sum_{x_{1}, x_{2}} x_{1}-x_{2} f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Example
There are eight similar chips in a bowl: three marked $(0,0)$, two marked $(1,0)$, two PNF of X_{1} marked $(0,1)$, and one marked $(1,1)$.

A player selects a chip at random.
Let X_{1} and X_{2} represent those two coordinates.
Find the joint PMF.
Compute $\mathbb{E}\left[X_{1}+X_{2}\right]$.

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \begin{cases}3 / 8 & \left(x_{1}, x_{2}\right)= \\
2 / 8 & (0,0) \\
2 / 8 & (1,0) \\
(0,1)\end{cases} \\
& \begin{array}{l}
1 / 8
\end{array}(1,1)
\end{aligned} \begin{aligned}
& \mathbb{E}\left[x_{1}+x_{2}\right]=\sum\left(x_{1}+x_{2}\right) \cdot f\left(x_{1}, x_{2}\right) \\
& =(0+0) \cdot f(0,0)+(1+0) f(1,0)+(0+1) \cdot f(0,1) \\
& =0 \cdot \frac{3}{8}+4 \cdot \frac{2}{8}+1 \cdot \frac{2}{8}+2 \cdot \frac{1}{8}+(1+1) \cdot f(1,1) \\
& =\frac{3}{4} .
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[x_{1}\right] & =\sum_{x_{1}, x_{2}}^{+} x_{1}-f\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{1}}^{1} x_{1} \cdot f_{x_{1}}\left(x_{1}\right)=0 \cdot f_{x_{1}}(0)+1 \cdot f_{x_{1}}(1) \\
& =\frac{3}{8} \\
\mathbb{E}\left[x_{2}\right] & =\frac{3}{8}, \quad \mathbb{E}\left[x_{1}+x_{2}\right]=\mathbb{E}\left[x_{1}\right]+\mathbb{E}\left[x_{2}\right]
\end{aligned}
$$

Exercise

Roll a pair of four-sided dice, one red and one black.
Let X equal the outcome of the red die and let Y equal the sum of the two dice.
Find the joint PMF.
Are they independent?

Section 2.
The Correlation Coefficient

Covariance and Correlation coefficient

Definition

$$
\begin{array}{ll}
\mu_{X}=\mathbb{E}[x], & \mu_{Y}=\mathbb{E}[Y] \\
\sigma_{X}=\sqrt{\operatorname{Var}(x)}, & \sigma_{Y}=\sqrt{\operatorname{Var}(Y)}
\end{array}
$$

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

The correlation coefficient of X and Y is

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

$$
\begin{aligned}
\operatorname{Cov}(x, Y) & =\mathbb{E}\left[\left(x-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sum_{x, y}^{1}\left(x-\mu_{x}\right) \cdot\left(y-\mu_{Y}\right) \cdot \underbrace{f(x, y)}_{\text {joint PM E. }}
\end{aligned}
$$

Note

$$
\begin{aligned}
\operatorname{Cov}(x, x) & =\mathbb{E}\left[\left(x-\mu_{x}\right)-\left(x-\mu_{x}\right)\right] \\
& =\mathbb{E}\left[\left(x-\mu_{x}\right)^{2}\right]=\operatorname{Var}(x)
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)-\left(Y-\mu_{Y}\right)\right], \mu_{X}=\mathbb{E}[X], \mu_{Y}=\mathbb{E}[Y] \\
P=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}: \text { Correlation coefficient } \\
\sigma_{X}=\sqrt{\operatorname{Var}(X)}, \sigma_{Y}=\sqrt{\operatorname{Var}(Y)}
\end{array}
$$

(i) $\quad x=Y, \operatorname{Cov}(x, y)=\mathbb{E}\left[\left(X-\mu_{x}\right)^{2}\right]=\operatorname{Var}(x)=\sigma_{x}^{2}$

$$
p=\frac{\operatorname{cov}(x, x)}{\sigma_{x} \cdot \sigma_{x}}=1
$$

(ii) $X=-Y, \operatorname{Cov}(X, Y)=-\operatorname{Var}(X)=-\sigma_{X}^{2}$

$$
p=-1
$$

(iii) $\quad Y=b \cdot X+c, \quad \operatorname{Cov}(X, Y)=b \cdot \operatorname{Cov}(X, X)=b \cdot \sigma_{X}^{2}$

$$
\underbrace{\sigma_{Y}=|b|} \sigma_{X}^{\Downarrow} \quad \rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}= \begin{cases}1, & b>0 \\ -1, & b<1\end{cases}
$$

(iv) If $X, Y \operatorname{indep} .\left(f(x, y)=f_{x}(x) \cdot f_{y}(y){ }_{x}{ }_{x}, y\right)$

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\sum_{x, y}\left(x-\mu_{x}\right) \cdot\left(y-\mu_{Y}\right) \cdot \underline{f(x, y)}=f_{X}(x) \cdot f_{Y}(y) \\
&=\left(\sum_{x}\left(x-\mu_{x}\right) f_{X}(x)\right)\left(\sum_{y}\left(y-\mu_{Y}\right) f_{Y}(y)\right) \\
&=\underbrace{\mathbb{E}\left[\left(X-\mu_{x}\right)\right]}_{\geq 0} \cdot \mathbb{E}\left[\left(Y-\mu_{Y}\right)\right] \\
&=0 \\
& \rho=0
\end{aligned}
$$

Properties

1. If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.
2. $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
3. $-1 \leq \rho \leq 1$. \& $\quad l^{2}=1$ imptes $Y=b X+c$

$$
\begin{aligned}
\operatorname{Cov}(x, Y) & =\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathbb{E}\left[X Y-\mu_{X} \cdot Y-\mu_{Y} \cdot X+\mu_{X} \mu_{Y}\right] \\
& =\mathbb{E}[X Y]-\mu_{X} \underbrace{\mathbb{E}[Y]}_{\mu_{Y}}-\mu_{Y} \underbrace{\mathbb{E}[X]}_{\mu_{X}}+\mu_{X} \mu_{Y} \\
& =\mathbb{E}[X Y]-\mu_{X} \cdot \mu_{Y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \rho^{2} \leqslant 1^{\prime \prime} \text { comes from } \\
& \left(\mathbb{E}\left[\left(x-\mu_{x}\right)\left(Y-\mu_{Y}\right)\right]\right)^{2} \leqslant \mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right] \cdot \mathbb{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]
\end{aligned}
$$

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x+2 y}{18}
$$

for $x=1,2$ and $y=1,2$.
Compute $\operatorname{Cov}(X, Y)$ and ρ.

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\mathbb{E}[X \cdot Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
& \mathbb{E}[X Y]
\end{aligned}=\sum_{x, y} x \cdot y \cdot f(x, y) \quad \begin{aligned}
& =1 \cdot 1 f(1,1)+1 \cdot 2 \cdot f(1,2)+2 \cdot 1 f(2,1)+2 \cdot 2 f(2,2) \\
& =1 \cdot \frac{3}{18}+2 \cdot \frac{5}{18}+2 \cdot \frac{4}{18}+4 \cdot \frac{6}{18} \\
& =\frac{1}{18} \cdot(3+10+8+24)=\frac{45}{18} \\
\mathbb{E}[X]= & 1 \cdot f(1,1)+1 f(1,2)+2 f(2,1)+2 f(2,2) \\
= & 1 \cdot \frac{3}{18}+1 \cdot \frac{5}{18}+2 \cdot \frac{4}{18}+2 \cdot \frac{6}{18} \\
= & \frac{1}{18} \cdot(3+5+8+12)=\frac{28}{18}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[Y]=1 \quad f(1,1)+2 \cdot f(1,2)+1 \cdot f(2,1)+2: f(2,2) \\
&=1 \cdot \frac{3}{18}+2 \cdot \frac{5}{18}+1 \cdot \frac{4}{18}+2 \cdot \frac{6}{18} \\
&=\frac{1}{18} \cdot(3+10+4+12)=\frac{29}{18} \\
& \operatorname{Cov}(X, Y)=\frac{45}{18}-\frac{28}{18} \cdot \frac{29}{18} \\
& \rho=\operatorname{Cov}(X, Y) \\
& \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
\end{aligned}
$$

The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two random variables X and Y.

One of natural ways is to consider a linear relation between X and Y, that is, to figure out the best possible slope b such that $Y-\mu_{Y}=b\left(X-\mu_{X}\right)$ has small errors.

We measure the error by $\mathbb{E}\left[\left(\left(Y-\mu_{Y}\right)-b\left(X-\mu_{X}\right)\right)^{2}\right]$.

Find b, c so that

A+ least, we expect that

$$
\left\{\begin{array}{l}
Y \approx b X+c \\
\text { Difference between } \\
Y, b X+c
\end{array}\right.
$$

is as small as passible

$$
\begin{aligned}
& \quad \mu_{Y}=\mathbb{E}[Y]=\mathbb{E}[b X+c]=b \cdot \mu_{X}+c \\
& c=\mu_{Y}-b \mu_{X} \downarrow \\
& Y-(b X+c)=\left(Y-\mu_{Y}\right)-b\left(X-\mu_{X}\right)
\end{aligned}
$$

$A x=b$
(\|A(X)-b\| minimized $Y \approx \rho \cdot \frac{\sigma_{y}}{\sigma_{x}} \cdot\left(X-\mu_{x}\right)$

$$
y=\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)
$$

line of best fit

The Least Squares Regression Line

One can see by some calculus that the error is minimized when

$$
b=\rho \frac{\sigma_{Y}}{\sigma_{X}}
$$

and the minimum error is $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$.
The line $Y-\mu_{Y}=\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)$ is called the line of best fit, or the least squares regression line.
(east square line: $y-\mu_{y}=\rho \cdot \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)$

$$
\begin{aligned}
& \mu_{X}=\frac{1}{2} \quad \sigma_{X}=\sqrt{2 \cdot \frac{1}{4} \cdot \frac{3}{4}}=\frac{\sqrt{6}}{4} \\
& \mu_{Y}= 1 \quad \sigma_{Y}=\sqrt{2 \cdot \frac{1}{2} \cdot \frac{1}{2}}=\frac{1}{\sqrt{2}} \\
& y-1=\rho \cdot \frac{1}{\sqrt{2}} \cdot \frac{4}{\sqrt{6}}\left(x-\frac{1}{2}\right)
\end{aligned}
$$

The Least Squares Regression Line

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[X Y]-\frac{1}{2} \cdot 1 \\
\rho & =\frac{\operatorname{Cav}(X, Y}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

Example
Let X equal the number of ones and Y the number of twos and threes when a pair of fair four-sided dice is rolled.

Then X and Y have a trinomial distribution.
Find the least squares regression line.

$$
\begin{aligned}
& \underset{i}{x} \sim \operatorname{Bin}\left(2, \frac{1}{4}\right) \\
& 0,1,2 \\
& f(x, y)=\left\{\begin{array}{rll}
& \left(\frac{1}{4}\right)^{2}, & x=0, \\
2 \cdot\left(\frac{1}{4}\right), & y=0 \\
1 \cdot\left(\frac{1}{4}\right), & x=1, & y=0 \\
, & x=2, & y=0
\end{array}\right.
\end{aligned}
$$

Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective. Let p_{1}, p_{2}, p_{3} be the corresponding probabilities.

Repeat the experiment n times and let X, Y be the numbers of perfect and seconds. We say (X, Y) has the trinomial distribution.

Uncorrelated

We say X, Y are uncorrelated if $\rho=0$.
If X, Y are independent then they are uncorrelated.

However, the converse is not true.

Example
Let X and Y have the joint imf $f(x, y)=\frac{1}{3}$ for $(x, y)=(0,1),(1,0),(2,1)$.

$$
\left.\left.\begin{array}{l}
(1) \operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
\mathbb{E}[X \cdot Y]
\end{array}\right)=0 \cdot 1 \cdot f(0,1)+1 \cdot 0 \cdot f(1,0)+2 \cdot 1 \cdot f(2,1)\right] \text { } \begin{aligned}
\mathbb{E}[X] & =0 \cdot f(0,1)+1 \cdot f(1,0)+2 \cdot f(2,1) \\
& =1 \\
\mathbb{E}[Y] & =1 \cdot f(0,1)+0 \cdot f(1,0)+1 \cdot f(2,1)=\frac{2}{3} \\
\operatorname{Cov}(X, Y) & =\frac{2}{3}-1 \cdot \frac{2}{3}=0 . \quad P=0
\end{aligned}
$$

X, Y uncorrelated.
(2) In dep ?

Dependent

$$
\begin{aligned}
& \quad \frac{1}{3}=f_{(0,1)} \neq \underline{f_{x}(0)} \cdot f_{y(1)}=\frac{1}{3} \cdot \frac{7}{3} \\
& f_{x}(0)=f_{(0,1)}=\frac{1}{3} \quad f_{y(1)}=f_{(0,1)}+f_{(2,1)}=\frac{2}{3}
\end{aligned}
$$

Exercise

The joint pmf of X and Y is $f(x, y)=\frac{1}{6}, 0<x+y<2$, where x and y are nonnegative integers.

Find the covariance and the correlation coefficient.

Section 3.

Conditional Distributions

Definition
The conditional probability mass function of X, given that $Y=y$, is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\mathbb{P}(X=x \mid Y=y) \\
& =\frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(Y=y)}=\frac{f(x, y)}{f_{Y}(y)} \\
f_{Y \mid X}(y \mid x) & =\frac{f(x, y)}{f_{X}(x)}
\end{aligned}
$$

Example
Let the joint mf of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}
$$

for $x=1,2,3$ and $y=1,2$. We have shown that

$$
f_{X}(x)=\frac{2 x+3}{21}, \quad f_{Y}(y)=\frac{3 y+6}{21}
$$

Find the conditional PMFs.

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{(x, y)}}{f_{Y(y)}}=\frac{(x+y) / 21}{(3 y+6) / 21}=\frac{x+y}{3 y+6} \\
& f_{Y \mid X}(y \mid x)=\frac{f_{(x, y)}}{f_{X}(x)}=\frac{(x+y) / 21}{(2 x+3) / 21}=\frac{x+y}{2 x+3}
\end{aligned}
$$

$$
\text { In general, } E[u(y) \mid X=x]=\sum_{y}^{+} u(y) f_{y \mid x}(y(x)
$$

Conditional distribution

Definition

The conditional expectation of Y given $X=x$ is defined by

$$
\mathbb{E}[Y \mid X=x]=\sum_{y} y f_{Y \mid X}(y \mid x)
$$

The conditional variance of Y given $X=x$ is defined by

$$
\begin{aligned}
\operatorname{Var}(Y \mid X=x) & =\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right] \\
& =\mathbb{E}\left[Y^{2} \mid X=x\right]-(\mathbb{E}[Y \mid X=x])^{2}
\end{aligned}
$$

Recall
X, Y joint PMF $f(x, y)$
$Y \mid X=x \quad$ Conditional PMF

$$
\begin{aligned}
f_{Y(X}(y \mid x) & =\mathbb{P}(Y=y \mid X=x)=\frac{f(x, y)}{f_{X}(x)} \\
\mathbb{E}[u(Y) \mid X=x] & =\sum_{y} u(y) \cdot f_{Y \mid X}(y \mid x) \\
\operatorname{Var}(Y \mid X=x) & =\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right] \\
& =\mathbb{E}\left[Y^{2} \mid X=x\right]-(\mathbb{E}[Y \mid X=x])^{2}
\end{aligned}
$$

Example
Let the joint PMF of X and Y be defined by

$$
\begin{array}{ll}
f(x, y)=\frac{x+y}{21} \quad & f_{x}(x)=\frac{2 x+3}{21} \\
& f_{\text {XIx }}(y \mid x)=\frac{x+y}{2 x+3}
\end{array}
$$

for $x=1,2,3$ and $y=1,2$.
Find $\mathbb{E}[Y \mid X=3]$ and $\operatorname{Var}(Y \mid X=3)$.

$$
\begin{aligned}
\mathbb{E}[\underline{Y} \mid X=3] & =\sum_{y}^{1} y \cdot f_{Y \mid X}(y \mid 3) \\
& =1 \cdot f_{Y \mid X}(1 \mid 3)+2 \cdot f_{Y \mid X}(2 \mid 3) \\
& =1 \cdot \frac{1+3}{9}+2 \cdot \frac{2+3}{9}=\frac{14}{9} \\
\mathbb{E}\left[Y^{2} \mid X=3\right] & =\sum_{y}^{-1} y^{2} \cdot f_{Y \mid X}(y \mid 3) \\
& =1^{2} \cdot f_{Y \mid X}(1 \mid 3)+2^{2} \cdot f_{Y \mid X}(2 \mid 3) \\
& =1^{2} \cdot \frac{1+3}{9}+2^{2} \cdot \frac{2+3}{9}=\frac{24}{9} \\
\operatorname{Var}(Y \mid X=3) & =\frac{24}{9}-\left(\frac{14}{9}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& h(x)=\mathbb{E}[Y \mid x=x]=\underbrace{\sum_{y}^{1} y \cdot f_{Y \mid X}(y \mid x)}_{n_{0} y \text {, still have } x} \& \underbrace{}_{\text {a function of } x} \quad \text { "Define a new random variable } \quad h(X)^{\text {a }} \\
& h(X)=\underbrace{\mathbb{E}[Y \mid X]}_{\text {notation }}
\end{aligned}
$$

Contional expectation as a function and a random variable

One can consider $\mathbb{E}[Y \mid X=x]$ as a function of x.
Say $h(x)=\mathbb{E}[Y \mid X=x]$
We define a random variable $\mathbb{E}[Y \mid X]=h(X)$.

Contional expectation as a function and a random variable

for $x=1,2,3$ and $y=1,2$. One can see that $\mathbb{E}[Y \mid X=1]=\frac{8}{5} \mathbb{E}[Y \mid X=2]=\frac{11}{7}$, $\mathbb{E}[Y \mid X=3]=\frac{14}{9}$
Find the PMF of $\mathbb{E}[Y \mid X]$ and $\mathbb{E}[\mathbb{E}[Y \mid X]]$.

$$
\begin{aligned}
& Z=\mathbb{E}[Y \mid x]=h(X), \quad h(x)=\mathbb{E}[Y \mid X=x] \\
& = \begin{cases}\frac{8}{5} & , x=1 \\
\frac{11}{7} & , x=2 \\
\frac{14}{9}, & x=3\end{cases} \\
& =\mathbb{P}(h(X)=z) \\
& = \begin{cases}\frac{5}{21}, z=\frac{8}{5} \\
\frac{7}{21}, & \mathbb{P}\left(h(x)=\frac{8}{5}\right)=\mathbb{P}(x=1)=f_{x}(1) \\
\frac{9}{21}, z & =\frac{11}{7}, \\
& =\frac{5}{21}\end{cases} \\
& f_{z}(z)=\mathbb{P}(z=z) \\
& \mathbb{E}[Z]=\mathbb{E}[\mathbb{E}[Y \mid X]]=\frac{\sqrt{7}}{21} \cdot \frac{8}{5}+\frac{7}{21} \cdot \frac{11}{7}+\frac{9}{21} \cdot \frac{14}{9}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{33}{21}=\frac{11}{7} \\
\mathbb{E}[Y]=\sum_{y}^{+} y \cdot f_{y}(y) & =1 \cdot \frac{(1+2)^{7}}{7}+2 \cdot \frac{(2+2)}{7}=\frac{11}{7}
\end{aligned}
$$

Contional expectation as a function and a random variable

Theorem

1. $\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]$
2. $\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])$

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[Y \mid x]] & =\sum_{x}^{1} \mathbb{E}[Y \mid x=x] \cdot \mathbb{P}(x=x) \\
& =\sum_{x}\left(\sum_{y} y f_{Y \mid x}(y \mid x)\right) \cdot f_{x}(x) \\
& =\sum_{x, y} y \cdot \frac{f_{(x, y)}}{f_{x}(x)} \cdot f_{x}(x) \\
& =\sum_{x y} y \cdot f(x, y)=\mathbb{E}[Y] .
\end{aligned}
$$

Note $\mathbb{E}[u(X) \mathbb{E}[Y \mid X]]=\mathbb{E}[u(X) Y]$

Contional expectation as a function and a random variable

$$
\begin{aligned}
& x \sim P_{\text {Dis }}(f) \\
& Y \mid X=x \sim \operatorname{Bin}(x, p)
\end{aligned}
$$

Example

$$
\lambda=4
$$

Let X have a Poisson distribution with mean 4, and let Y be a random variable whose conditional distribution, given that $X=x$, is binomial with sample size $n=x$ and probability of success p.
Find $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[\mathbb{E}[Y \mid X]] \\
& =\mathbb{E}[X \cdot p]=p \cdot \mathbb{E}[X)=4 p \\
\operatorname{Var}(Y) & =\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}[\operatorname{Var}(Y(X)] \\
& =\operatorname{Var}(X \cdot p)+\mathbb{E}[X \cdot p(1-p)] \\
& =p^{2} \cdot \operatorname{Var}(X)+p(1-p) \mathbb{E}[X]=4 p^{2}+p(1-p) 4=4 p
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{E}[Y \mid X]=a+b X \\
M_{Y}=\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]]=a+b \mathbb{E}[X]=a+b \mu_{X} \\
\mathbb{E}[X Y]=\mathbb{E}[X \cdot \mathbb{E}[Y \mid X]]=\mathbb{E}\left[a X+b X^{2}\right]=a \mathbb{E}[X]+b \mathbb{E}\left[X^{2}\right]
\end{gathered}
$$

Linear case
(s) a function if x

Suppose $\mathbb{E}[Y \mid X=x]$ is linear in x, that is, $\mathbb{E}[Y \mid X=x]=a+b x$.
Then we have $\mu_{Y}=a+b \mu_{X}$ and $\mathbb{E}[X Y]=a \mu_{X}+b \mathbb{E}\left[X^{2}\right]$.
Solving for a,, we have

$$
a=\mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}, \quad b=\rho \frac{\sigma_{Y}}{\sigma_{X}}
$$

Thus,
$\mathbb{E}[Y \mid X=x]=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) . \quad$ Linear Regression.

Idea
Least Square Solution
inconsistent $=$ no solution. projection on $\operatorname{Col}(A)$

Conditional Expectation is ar "projection".

$$
\binom{n}{x, y}=\frac{n!}{x!y!(n-x-y)!}=\binom{n}{x} \cdot\binom{n-x}{y}
$$

Example
Let X and Y have the trinomial distribution with parameters n, p_{X}, p_{Y}, that is, the joint mf is given by

$$
f(x, y)=\binom{n}{x, y} p_{X}^{x} p_{Y}^{y}\left(1-p_{X}-p_{Y}\right)^{n-x-y}
$$

Find $\mathbb{E}[Y \mid X=x]$.

$$
\left(p_{X}+p_{Y}+p_{Z}=1\right)
$$

Experiment w/ three outcomes

$$
A, B, C
$$

$P_{X} \quad P_{y} \quad P_{Z}$
Repeat n times
$X=\#$ of A happens $\quad X \sim B_{i n}\left(n, p_{x}\right)$
$Y=\#$ of B happens $\quad Y \sim \operatorname{Bin}\left(n, P_{Y}\right)$
$Y \mid X=x \sim ? ?$
Example $\quad n=6, x=2$

$$
\square
$$

A

4 Experiments. $\mathbb{P}(B$ happens $\mid A$ does not happen $)$

$$
=\frac{P_{Y}}{P_{Y}+P_{Z}}
$$

$Y \left\lvert\, X=x \sim \operatorname{Bin}\left(n-x, \frac{P_{Y}}{P_{Y}+P_{Z}}\right)\right.$

$$
\Rightarrow \mathbb{E}[Y \mid X=x]=(n-x)
$$

$$
\begin{aligned}
\mathbb{E}[X Y] & =\mathbb{E}[X \cdot \mathbb{E}[Y \mid X]] \\
& =\mathbb{E}\left[X \cdot(n-X) \cdot \frac{P_{Y}}{1-P_{X}}\right] \\
& =\left(\frac{P_{Y}}{1-P_{X}}\right) \cdot \mathbb{E}[X(n-X)]=\ldots
\end{aligned}
$$

$$
\operatorname{Cov}(x, y)=?
$$

Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective. Let p_{1}, p_{2}, p_{3} be the corresponding probabilities.

Repeat the experiment n times and let X, Y be the numbers of perfect and seconds. We say (X, Y) has the trinomial distribution.

Exercise

A miner is trapped in a mine containing 3 doors.
The first door leads to a tunnel that will take him to safety after 3 hours of travel.
The second door leads to a tunnel that will return him to the mine after 5 hours of travel.

The third door leads to a tunnel that will return him to the mine after 7 hours.
If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?

$$
\begin{aligned}
& =\frac{1}{3}(\mathbb{E}[X \mid Y=1]+\mathbb{E}[X \mid Y=2]+\mathbb{E}[X \mid Y=3])
\end{aligned}
$$

If x, Y indep. $\mathbb{E}[Y \mid x]=\mathbb{E}[Y]$

$$
\begin{aligned}
& \binom{f(x, y)=f_{X}(x) \cdot f_{Y}(y)}{f_{Y \mid X}(y \mid x)=f_{Y}(y)} \\
& \mathbb{E}[X \mid X=x]=x \quad \mathbb{E}[X \mid x]=X
\end{aligned}
$$

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

$$
\operatorname{Var}(X+Y)=\mathbb{E}\left[(X+Y)^{2}\right)-(\mathbb{E}[X+Y])^{2}
$$

$$
=\mathbb{E}\left[x^{2}+2 x y+Y^{2}\right]-\left((\mathbb{E}[x])^{2}+2 \mathbb{E}[x] \mathbb{E}[Y]\right.
$$

$$
\left.+(\mathbb{E}(Y))^{2}\right)
$$

$$
=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

If X, Y indep, $\operatorname{cov}(X, Y)=0$

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Varl} Y)
$$

$$
\begin{aligned}
& =\frac{1}{3}(3+(5+\mathbb{E}[x])+(7+\mathbb{E}[x])) \\
& 3 \mathbb{E}[x]=15+2 E[x] \quad \therefore E[x]=15 . \\
& \mathbb{E}[Y \mid X=x]=\sum_{y}^{1} y \cdot \underbrace{f_{Y \mid}(y \mid x)}_{f(x, y)}=h(x) \\
& \mathbb{E}[Y(X]=h(X) \\
& \mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]] \\
& \mathbb{E}[X Y]=\mathbb{E}[X \cdot \mathbb{E}[Y \mid X]] \\
& \operatorname{Var}(Y)\left(=\mathbb{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(Y-\mu_{Y}\right)^{2} \mid X\right]\right]\right) \\
& =E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])
\end{aligned}
$$

Section 4. Bivariate Distributions of the Continuous Type

Recall X is Conti.RV if it has a PDF.

Joint PDF

Definition

An integrable function $f(x, y)$ is the joint probability density function of two random variables X, Y if

- $f(x, y) \geq 0$
- $\iint f(x, y) d x d y=1$
- $\mathbb{P}((X, Y) \in A)=\iint_{A} f(x, y) d x d y$

The marginal density functions for X, Y are

$$
f_{X}(x)=\int f(x, y) d y, \quad f_{Y}(y)=\int f(x, y) d x
$$

Example
Let X and Y have the joint PDF

$$
f(x, y)=\frac{4}{3}(1-x y)
$$

for $0<x, y<1$. Find f_{X}, f_{Y}, and $\mathbb{P}\left(Y \leq \frac{X}{2}\right)$.
 $0<x, y<1$ defines a region"

$$
\begin{aligned}
& \left\{\begin{array}{l}
x>0 \\
y>0 \\
x<1 \\
y<1
\end{array}\right. \\
& \begin{array}{l}
\Downarrow \\
x=0, y=0, x(x, y)>0
\end{array} \\
& \quad, \quad x=1, y=1
\end{aligned}
$$

$$
\begin{aligned}
f_{x}(x) & =\int f(x, y) d y \\
& =\int_{0}^{1} \frac{4}{3}(1-x y) d y=\frac{4}{3}\left[y-\frac{x}{2} y^{2}\right]_{0}^{1}=\frac{4}{3}\left(1-\frac{x}{2}\right) . \\
f_{y}(y) & =\frac{4}{3}\left(1-\frac{y}{2}\right) \quad \text { for } \quad 0<y<1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left(Y \leqslant \frac{x}{2}\right)=\int_{0}^{1} \int_{0}^{\frac{x}{2}} f(x, y) d y d x \\
& =\mathbb{P}((x, y) \in \underset{A}{A})=\iint_{A} f(x, y) d x d y \\
& \text { (ond } \\
& \int_{0}^{\frac{1}{2}} \int_{2 y}^{x} d x d y=\int_{0}^{1} \int_{0}^{\frac{x}{2}} \frac{4}{3}(1-x y) d y d x
\end{aligned}
$$

Example
Let X and Y have the joint PDF

$$
f(x, y)=\frac{3}{2} x^{2}(1-|y|)
$$

for $-1<x, y<1$.
Find $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{-1}^{1} \int_{-1}^{1} x \cdot f(x, y) d x d y \\
& =\int_{-1}^{1} \int_{-1}^{1} \frac{3}{2} x^{3}(1-|y|) d x d y \\
& =\frac{3}{2} \int_{-1}^{1} \underbrace{(1-1 y 1)}(\underbrace{\int_{-1}^{1} x^{3} d x}) d y=0
\end{aligned}
$$

$$
\int_{-1}^{1}(1-|y|) d y=1
$$

$$
\begin{aligned}
E[Y] & =\int_{-1}^{1} \int_{-1}^{1} y f(x, y) d x d y \\
& =\frac{3}{2}(\underbrace{\int_{-1}^{1} y(1-|y| 1)} d y) \underbrace{\int_{-1}^{1} x^{2} d x})^{\int_{-1}^{1}|-|y|)}=2 \int_{0}^{1} x^{2} d x=\frac{2}{3}
\end{aligned}
$$

$y(1+y) \quad y(1-y)$

$$
\begin{aligned}
& y(1-|y|)= \begin{cases}y(1-y) & \text { if } y \geqslant 0 \\
y(1+y) & \text { if } \quad y<0\end{cases} \\
& \int_{-1}^{1} y((-|y|) d y=\int_{0}^{1} y(1-y) d y+\underbrace{\int_{-1}^{0} y(1+y) d y}_{\pi}=0 \\
& -\int_{0}^{1} x(1-x) d x \quad y=-x
\end{aligned}
$$

f is even if $f(-x)=f x)$

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

f is odd if $f(-x)=-f(x)$

$$
\int_{-a}^{a} f(x) d x=0
$$

Independent random variables

Definition

Two random variables X, Y with joint pdf are independent if and only if $f(x, y)=f_{X}(x) f_{Y}(y)$.

$$
\begin{aligned}
f_{x}(x) & =\int f_{(x, y) d y}^{1} 2 d y \\
& =\int_{x}^{1} 2 d \\
& =2(1-x) \\
f_{Y}(y) & =2 y=\int_{0}^{y} 2 d x=2 y
\end{aligned}
$$

Independent random variables

$$
\left(\begin{array}{c}
\text { Method 2 } \\
=
\end{array} 2 \cdot(\text { Area of } A)=\frac{1}{4}\right)
$$

$X . Y$ have joint PDF

$$
\left\{\begin{array}{l}
f(x, y) \geqslant 0 \\
\iint_{\mathbb{R}} f(x, y) d x d y=1 \\
\mathbb{P}((x, y) \in A)=\iint_{A} f(x, y) d x d y
\end{array}\right.
$$

x, with PDF f_{x} (Eanti,)

$$
\mathbb{P}(x=5)=0 \quad=\operatorname{ling}_{\varepsilon+0)_{5-\varepsilon}^{5+\varepsilon}}^{f_{x}(x) d x}
$$

X, Y have joint $P D F$

$$
\rightarrow \mathbb{P}(X=Y)=0=\iint_{A} f(x, y) d x d y
$$

If X contr. $Y=X$ coati.
(X,Y) do not have joint PDF.

$$
f_{x}(x)=\int_{\rightarrow 0}^{0} f(x, y) d y, f(y)=\int_{0}^{\infty} f(x, y) d x
$$

in terms of x

Conditional densities and Conditional Expectation

Definition
The conditional density of Y given $X=x$ is defined by

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

As in the discrete case, the conditional expectation and the conditional variance are defined by

$$
\begin{gathered}
\mathbb{E}[Y \mid X=x]=\int y f_{Y \mid X}(y \mid x) d y \\
\operatorname{Var}(Y \mid X=x)=\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right] \\
\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid x]) \\
\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]]
\end{gathered}
$$

Example
Let X and Y have the joint $\operatorname{PDF} f(x, y)=2$ for $0<x<y<1$.
Then, $f_{X}(x)=2(1-x)$ for $0<x<1$ and $f_{Y}(y)=2 y$ for $0<y<1$.
Find $\mathbb{E}[X \mid Y=y]$ and $\mathbb{E}[Y \mid X=x]=\frac{1+x}{2}$
$\{0<x<y<1\}$ defines the region where

$$
f(x, y)=2
$$

Three They. otherwise $f(x, y)=0$.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x > 0 } \\
{ y > x } \\
{ y < 1 }
\end{array} \quad \left\{\begin{array}{l}
x=0^{* y-a x i s} \\
y=x \\
y=1
\end{array} \quad\right.\right. \text { define the dry } \\
& f_{x}\left({\underset{\text { fixed }}{x}}_{x}^{x}\right)=\int_{x}^{1} f(x, y) d y=2(1-x) \\
& f_{y}\left(y_{R}\right)=\int_{\text {fixed }}^{y} f(x, y) d x=2 y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{y} \frac{x}{y} d x \\
& =\frac{1}{4} \frac{1}{2} y^{2}=\frac{y}{2}
\end{aligned}
$$

$$
f_{x \mid y}(x \mid y)^{\frac{f_{x+e d}}{2 y}}=\frac{2^{=f(x, y)}}{z_{y}}=\frac{1}{y}
$$

$X I Y=y \quad$ distribution?
$X \mid Y=y \sim \operatorname{Unif}(0, y)$

$$
\mathbb{E}[x \mid Y=y]=\frac{4}{2}
$$

$Y \sim$ Enif $(0,1)$

$$
\begin{aligned}
& f(x, y)=\frac{\frac{1}{x}}{f_{y \mid x}(y \mid x) \cdot\left(f_{x}(x)\right.}=\frac{1}{x} \\
& f_{Y(y)}=\int f_{(x, y)} d x=\int_{0}^{0} \frac{1}{x} d x
\end{aligned}
$$

Conditional densities and Conditional Expectation

$$
f_{Y}(y)=
$$

Example
Let X be $U(0,1)$, and let the conditional distribution of Y, given $X=x$ be $U(x, 2 x)$.
Find $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[\mathbb{E}[Y \mid X]] \\
& =\mathbb{E}\left[\frac{1}{2}(X+2 x)\right]=\frac{3}{2} \mathbb{E}[X]=\frac{3}{4} .
\end{aligned}
$$

Exercise

Let $f(x, y)=2 e^{-x-y}, 0<x \leq y<0$, be the joint pdf of X and Y.
Find $f_{X}(x)$ and $f_{Y}(y)$. Are X and Y independent?

Section 5.

The Bivariate Normal Distribution

Motivation

Let X be a random variable.
We construct a random variable Y in the following way:
The conditional distribution of Y given $X=x$ satisfies
(1.) it is normal for each x
2. $\mathbb{E}[Y \mid X=x]$ is linear in x
3. $\operatorname{Var}(Y \mid X=x)$ is constant in x mean variance
linear regpession

$$
\mathbb{E}\left[Y[X=x]=b x+c=\frac{=}{\uparrow} \rho \cdot \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}\right.
$$ + previous class

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}[\underbrace{\operatorname{Var}(Y \mid X)}_{\text {Canst. }}]
$$

$\Rightarrow \quad \operatorname{Var}(Y \mid X=x)=\sigma_{Y}^{2}\left(1-p^{2}\right) \approx$ size of error

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma_{Y} \sqrt{1-p^{2}}} \exp \left(-\frac{1}{2 \sigma_{Y}\left(1-p^{2}\right)}(x-\quad)^{2}\right)
$$

$$
\begin{aligned}
& \mu_{x}=\mathbb{E}[X], \quad \mu_{y}=\mathbb{E}[Y], \sigma_{x}^{2}=V_{\alpha r}(X), \sigma_{Y}^{2}=\operatorname{Var}(Y] \\
& \rho=\text { correlation coefficient }=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}=\frac{\mathbb{E}[X Y]-\mu_{x} \mu_{Y}}{\sigma_{X} \cdot \sigma_{Y}}
\end{aligned}
$$

Then, $Y \mid X=x$ is normal with mean $\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)$ and variance $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$. The conditional density is

$$
\begin{aligned}
& f_{Y \mid X}(y \mid x)= \frac{1}{\sigma_{Y} \sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(-\frac{\left(y-\left(\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)\right)\right)^{2}}{2 \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\right) \\
&+ \\
& x \sim N\left(\mu_{X}, \sigma_{X}^{2}\right) \\
& f(x, y)= f_{Y \mid x}(y \mid x)-\frac{f{ }_{x}(x)}{11} \\
& \frac{1}{\sqrt{2 \pi} \cdot \sigma_{X}} e^{-\frac{1}{2 \sigma_{X}^{2}}\left(x-\mu_{X}\right)^{2}}
\end{aligned}
$$

Bivariate normal distribution

If X itself has normal distribution, (X, Y) is called a bivariate normal random variables.

$$
\begin{aligned}
& \mathbb{E}(Y \mid X=x) \rightarrow N\left(X=x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)\right. \\
& =b x+c) \\
& \operatorname{Var}\left(Y(x=x) \quad \sim N\left(\mu_{x}\right)\right. \\
& =\text { constant }
\end{aligned}
$$

Bivariate normal distribution

$$
\begin{aligned}
& \begin{array}{l}
\text { Definition } \\
\text { We say }(X, Y) \text { has a bivariate normal distribution with mean sect } \\
\text { covariance matrix }\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right) \stackrel{\sum^{1}}{\text { if its joint pdf is given by }}
\end{array} \\
& f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\bar{x}^{2}}{\sigma_{X}^{2}}-2 \frac{\rho \bar{x} \bar{y}}{\sigma_{X} \sigma_{Y}}+\frac{\bar{y}^{2}}{\sigma_{Y}^{2}}\right)\right) \\
& \text { where } \bar{x}=x-\mu_{X} \text { and } \bar{y}=y-\mu_{Y} \text {. } \\
& -\frac{1}{2}\left(\begin{array}{ll}
x-\mu_{x} & \left.y-\mu_{Y}\right) \\
\Sigma_{+}^{-1}
\end{array}\binom{x-\mu_{x}}{y-\mu_{Y}}\right.
\end{aligned}
$$

(X, Y) bivariate Normal

$$
\begin{cases}Y \mid x=x & \sim N\left(\rho \frac{\sigma_{Y}}{\sigma_{x}}\left(x-\mu_{x}\right)+\mu_{Y},\right. \\ x & \sim N\left(\sigma_{Y}^{2}\left(1-\rho^{2}\right)\right) \\ Y & \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)\end{cases}
$$

Example
Let us assume that in a certain population of college students, the respective grade point averages, say X and Y, in high school and the first year of college have a bivariate normal distribution with parameters $\mu_{X}=2.9, \mu_{Y}=2.4, \sigma_{X}=0.4$, $\sigma_{Y}=0.5$, and $\rho=0.6$.
Find $\mathbb{P}(2.1<Y<3.3 \mid X=3.2)$.

$$
p \cdot \frac{\sigma_{y}}{\sigma_{x}}\left(3.2-\mu_{x}\right)+\mu_{y}=m
$$

$$
\begin{aligned}
& \mathbb{P}(2.1<Y<3.3 \mid X=3.2) \\
= & \mathbb{P}(2.1<W<3.3) \sim N(0.1) \\
= & \mathbb{P}\left(\frac{2.1-m}{s}<\left(\frac{W-m}{s}\right)<\frac{3.3-m}{s}\right) \\
= & \Phi\left(\frac{3.3-m}{s}\right)-\Phi\left(\frac{2.1-m}{s}\right)
\end{aligned}
$$

$$
\sigma_{Y}^{2}\left(1-\rho^{2}\right)=s^{2}
$$

Use the table.

Recall
(X,Y) Bivariate Normal
(1) $\quad Y \left\lvert\, X=x \sim N\left(p \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}, \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right)\right.$
(2) $\quad x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$

$$
\begin{gathered}
f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-p^{2}}} \exp \left(-\frac{1}{2\left(1-p^{2}\right)}\left(\frac{\bar{x}^{2}}{\sigma_{x}^{2}}-2 p \frac{\bar{x}}{\sigma_{x}} \cdot \frac{\bar{y}}{\sigma_{y}}+\frac{\bar{y}_{y}^{2}}{\sigma_{y}^{2}}\right)\right) \\
\bar{x}=x-\mu_{x} \quad \bar{y}=y-\mu_{y} .
\end{gathered}
$$

- X, Y uncorrelated if $\left\{\begin{array}{l}\rho=0=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \\ \operatorname{Cov}(X, Y)=0\end{array}\right.$

$$
\left(\begin{array}{cccc}
\text { posifinaly correlated } & \text { if } & \rho>0 \\
\text { negatively } & " & \text { if } & \rho<0
\end{array}\right)
$$

X, Y indep $\quad \Rightarrow \quad X, Y$ uncorrelated
*in general

- (X,Y) Bivariate Normal \& $P=0$
$\Rightarrow(X, Y)$ Tndep.

Bivariate normal distribution

Theorem

If X and Y have a bivariate normal distribution with correlation coefficient ρ, then X and Y are independent if and only if $\rho=0$.

Exercise

For a female freshman in a health fitness program, let X equal her percentage of body fat at the beginning of the program and Y equal the change in her percentage of body fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with
$\mu_{X}=24.5, \mu_{Y}=-0.2, \sigma_{X}=4.8, \sigma_{Y}=3$, and $\rho=-0.32$.
Find $\mathbb{P}(1.3<Y<5.8), \mathbb{E}[Y \mid X=x]$, and $\operatorname{Var}(Y \mid X=x)$.

