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Section 1.

Bivariate Distributions of the

Discrete Type
&
S
-

2 RVs
↑

Discrete
.



Motivation

Suppose that we observe the maximum daily temperature, X , and maximum relative

humidity, Y , on summer days at a particular weather station.

We want to determine a relationship between these two variables.

For instance, there may be some pattern between temperature and humidity that can

be described by an appropriate curve Y = u(X ).



Joint distribution

Let X and Y be two random variables defined on a discrete sample space.

Let S denote the corresponding two-dimensional space of X and Y , the two random

variables of the discrete type.

Definition

The function f (x , y) = P(X = x ,Y = y) is called the joint probability mass function

(joint PMF) of X and Y .

-
PMF of X

For 1 RV X, f(x) = P(X= c) )

"
AND

f(x , y) = P((X = xyndy = y))



Joint distribution

Note that

• 0  f (x , y)  1

•
P

(x ,y)2S f (x , y) = 1

• P((X ,Y ) 2 A) =
P

(x ,y)2A f (x , y)

PMF
, Join PME = 1) - >
-

=

P(S)



Joint distribution

Example

Roll a pair of fair dice.

Let X denote the smaller and Y the larger outcome on the dice.

Find the joint PMF of (X ,Y ).

↑ faced

↑
possible·

f(x
, y) = P)X = x I

Y=y)

1/16
,

(x
.y) = (1 , 1)

2/16 [ = (1
, 2) , (2X

=

E ! [

[

= (1 , 3) (3
, 1)

I =

i



Marginal distribution

Definition

Let X and Y have the joint probability mass function f (x , y).

The probability mass function of X , which is called the marginal probability mass

function of X , is defined by

fX (x) =
X

y

f (x , y) = P(X = x).

fx() =P(x = x) =
z! P)x= x ,y) = E fixyY

*
Mariginal

fy(y) = I f(x , y)
X



Marginal distribution

Definition

We say X and Y are independent if

P(X = x ,Y = y) = P(X = x)P(Y = y)

for all (x , y) 2 S .

Equivalently, f (x , y) = fX (x)fY (y) for all x , y .

Otherwise, we say X and Y are dependent.

Bef We say X
, Y are if
--

any RVs

IP) X -> A -x + B) = P(X (A) - P(Y- B)

for all "possible" A
, B.

IX. : Discrete)

Product of
Joint PMF = =

Marginal PMFs



Marginal distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find the marginal PMFs of X and Y .

Determine whether they are independent.

/

fx(x) = P(x= x) = E f(x
, y)

YO 1 , 2

= f(x
,) + f(x , 2) =#

= = (2x +3) x = 1
, 2 ,

3
1

E

fy(y) = f(x
,y)
= f(1

, y)
+ f( , y) +A(3 ,y)

= (((y) + (2+y) + 1+y)) = 3=
x=

1 ,
2 :3

· y = 1
,
2

Y
=
1
,

2

f(x
,y) = fx(x) - fy(y)

X = 1
,

2
,
3↑

(x+y) = z(2x+3) - 4 . (y+2)
*

y =
1,2



Marginal distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
xy2

30

for x = 1, 2, 3 and y = 1, 2.

Find the marginal PMFs of X and Y .

Determine whether they are independent.

No. = , (2xy + -- (

x = 1
, y = 1

E +

functio
C

F of y
2

I o =
A

(fonctions
7x(x) = f = Ax, + fx

,
2 = (+ =*

flf us=
.f.

indep



Expectations

Definition

Let X1 and X2 be random variables of the discrete type with the joint PMF f (x1, x2)

on the space S . If u(X1,X2) is a function of these two random variables, then

E[u(X1,X2)] =
X

(x1,x2)2S

u(x1, x2)f (x1, x2).

In particular, if u(x1, x2) = x1, then

E[u(X1,X2)] = E[X1] =
X

(x1,x2)2S

x1f (x1, x2) =
X

x1

x1fX1(x1).

lesu(x1
,
x2) = X , - E[X17 =

E! x1 - f(x1
,xz)

X1c X2

I = X
2

-> #(x2) = x x2 f(x ,x2)

/S - x1 + xz + E(X1 +xz) =
x

(x2+ x 2)f(x1
,
x)

I = x+ ·X2 -+ E[X1 x2] = x 41 fx, xD

i



Expectations

Example

There are eight similar chips in a bowl: three marked (0, 0), two marked (1, 0), two

marked (0, 1), and one marked (1, 1).

A player selects a chip at random.

Let X1 and X2 represent those two coordinates.

Find the joint PMF.

Compute E[X1 + X2].

Marginal
-o

PMF-FX2

7(x)
, x2) =

3/8 (x1 , x z) = (0, 0)

2/8 (1 , 0)E 2/8 (O , 1)

Cl , 1)

#(x1 + x 2) = x + x2) - f(x1
,xz)

-> (0 +0) f (0 , 0) + (1+0) f(1
, 0) + (0 + 1) . f(0 , 1)

+ (1 +1) - f()
,
1)

= 0 . 8 + 1 . 7 + 7 - 2 + 2 . !
=

.



#[x1] = x1 - fix, x z

= Exe - fxe() = 0 . fx(0) +1- fx(

=
E(x2) = =8, E[X(2) = #[xi) + ELX)



Exercise

Roll a pair of four-sided dice, one red and one black.

Let X equal the outcome of the red die and let Y equal the sum of the two dice.

Find the joint PMF.

Are they independent?



Section 2.

The Correlation Coe�cient



Covariance and Correlation coe�cient

Definition

The covariance of X and Y is

Cov(X ,Y ) = E[(X � µX )(Y � µY )].

The correlation coe�cient of X and Y is

⇢ =
Cov(X ,Y )

�X�Y
.

Mx = E(X) , My = ELY]

x =a)
, Ry= arty)

Cr(X
,
Y) = # [(X-Mx)(x-x)]

= I (x -Mx) - (y -My) f(x ,y)-
X
,y joint PMF .

te Cov(X
,
X) = EL (X-MX) . (X-MX)]

= EL(x-mx)) = Var(X)



Cov(X , Y) = E [(X-Mx) - (Y-MY) , Mx = EX) , My = ELY)

p = Cox : correlation Coefficient

x =I , T = Nat

(i) X = Y Cv(X ,Y = ES (X-MXP] = Var() = N

p =
,X)

= 1
Tx - TX

(ii) X = -Y , (or(X , Y) = - Var(1 = - Ex
>

p = - t

Civic Y = b . X +
,

Cor (x ,Y = b · Cov(X
,
X) = b . +x

#

x
= (b) P = Cox = 1 ., b > 0

&
-f ,

b < /

(iv) If X , y indep .
( f(x

,p = fx(x)
· fly) x

,y)
Cov(X ,Y) = ! (x-Mx) . (y-My) f(x ,y)X

,y
--

fx(x) ·Fy(y)

= (E(x-Mx) fx(x)))(y-My) Fy(y)
= E((X -Mx)) - EL(Y-M,)]
->

o -O
=

O

p = 0



Covariance and Correlation coe�cient

Properties

1. If X and Y are independent, then Cov(X ,Y ) = 0.

2. Cov(X ,Y ) = E[XY ]� E[X ]E[Y ].

3. �1  ⇢  1.

↑

a p= 1 imples Y = bX+

Cov(x .Y ) = E((X-MX)(Y-My)]

= E[XY - Mx Y - My X +MxMy]

= E(XY7 -MXIE) -MX] -+ MxMy
- -

My MX
= E(xy) - Mx . My

"p2 1" comes from

(E[(X -Mx) (Y-My))) x E((x -MX ) - E((Y -My)]



Covariance and Correlation coe�cient

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + 2y

18

for x = 1, 2 and y = 1, 2.

Compute Cov(X ,Y ) and ⇢.

Cor(X , Y) = E[X .Y) - E[X] . ETY]

#[XY] = I x. y . flxy

= 1. 4 f (1 ,
1) + 1 . 2 -f (1 ,2) + 2./ f (2 , 1) + 2-2 f (2

,2)

= 1. 7 + 2 . 7 + 2 . + + 4 --
= +o . (3 + 10 + 8 + 24) =

E(X] = 1 · f (1 .
1) + 1 f (1 ,2) + 2 f (2, 1) + 2 f (2

,2)

= 1. 7 + 1 . + + 2. + 2: S
18

= 40 . (3 + 5 + 8 + 12) = 3



#[Y] = 1 f(1 ,
1) + 2 f (1 ,2) + 1 · f (2 , 1) + 2 : f(2

,2)

= 1. 7 + 2 . 7 + 1 . + 2-7
= to . (3 + 10 + 4 + 12) =

Cov(X
,y) = # - 28 .2

p = ssl
:



The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two

random variables X and Y .

One of natural ways is to consider a linear relation between X and Y , that is, to figure

out the best possible slope b such that Y � µY = b(X � µX ) has small errors.

We measure the error by E[((Y � µY )� b(X � µX ))2].

AL
Find 3

,
6 so that Y 2 bX + C

E Difference between

Y, bX + C

is as small as possible
A+ least

,
we expect that

My = E(Y)
=([bX +c) = bMy +c

c = My - bMxb Minimize-
x - (bX + c) = (Y-My) - b(x-Mx)



The Least Squares Regression Line

One can see by some calculus that the error is minimized when

b = ⇢
�Y
�X

and the minimum error is �2
Y (1� ⇢2).

The line Y � µY = ⇢�Y
�X

(X � µX ) is called the line of best fit, or the least squares

regression line.

C
Ax = b

-bl minimized Y = p. . <YX-mx)

y = p(x-Mx
line of best fit

-

-



The Least Squares Regression Line

Example

Let X equal the number of ones and Y the number of twos and threes when a pair of

fair four-sided dice is rolled.

Then X and Y have a trinomial distribution.

Find the least squares regression line.

least square line : y -My = p. (x -Mx)

!
y - 1 =D.. (x - E)

Cor(X. = E[XY] - E . 1

p = x

X - Bin (2 ,) Y~ Bin (2 ,El
↑ ↑

O
,

1
,
2 0

,
1
,
2

f(x
, y) =

E
(+, x =0 < y = 0

2. (t) (*) ,
x = 1 , y =0

1 . (+ ) ,
x = 2 , y = 0

i



Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective.

Let p1, p2, p3 be the corresponding probabilities.

Repeat the experiment n times and let X , Y be the numbers of perfect and seconds.

We say (X ,Y ) has the trinomial distribution.



Uncorrelated

We say X ,Y are uncorrelated if ⇢ = 0.

If X ,Y are independent then they are uncorrelated.

However, the converse is not true.



Uncorrelated

Example

Let X and Y have the joint pmf f (x , y) = 1
3 for (x , y) = (0, 1), (1, 0), (2, 1).

① (or(x ,Y) = E(XY] - ECXJE(Y]

E [X .Y] = 0 . 1 · f(0
,
1) + 1 . 0 ·f(1 , 0) + 2- 1 · f(2 ,1)

2
-

3

E[X] = 0 . f(0 , 1) + 1 - f(1 , 0) + 2 - f (2
, 1)

= 1

E[Y3 = 1 - f (0 ,
1) + 0 . f(1

, b) + 1 - f(2 , 1) = =
.

Cor(X
,Y) = = - 1 . =0

· p = 0

X
, Y uncorrelated.

& In dep.? f(x
,y) = fx(x) - fyly)

Dependent

↓

fx(0) = f(0
, 1) = =

3. E



Exercise

The joint pmf of X and Y is f (x , y) = 1
6 , 0 < x + y < 2, where x and y are

nonnegative integers.

Find the covariance and the correlation coe�cient.



Section 3.

Conditional Distributions



Conditional distribution

Definition

The conditional probability mass function of X , given that Y = y , is defined by

fX |Y (x |y) =
f (x , y)

fY (y)
.

fx(x(y) = p(X = x / Y =y)
=

X , = 1)=+P(x=y)

fyx(y(x)=



Conditional distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. We have shown that

fX (x) =
2x + 3

21
, fY (y) =

3y + 6

21
.

Find the conditional PMFs.

f x /y(x(y) ==
fy(x(y(x) = x,Y)

Fx(x)=



Conditional distribution

Definition

The conditional expectation of Y given X = x is defined by

E[Y |X = x ] =
X

y

yfY |X (y |x).

The conditional variance of Y given X = x is defined by

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ]

= E[Y 2|X = x ]� (E[Y |X = x ])2.

In general , E(u((((X=)= yf



Conditional distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find E[Y |X = 3] and Var(Y |X = 3).

Recall
-

X . Y joint PMF f(x , y)

Y /X = x Conditional PMF

fy(x(y(x) = p(y = y(x = x)=
E(u(Y)( = x] = u(y) fyx(y(x)

Var(Y(X= x ) = # [(Y - E(Y(=x])2(X= x]
2

= E(Y(X = x) - (E(Y(X = x ])

fx(x)=

O fy(x(y(x) = 3
-

#((x = 3) = y . fyx(y(3)

= 1 . fy(x (113) + 2 . fy(x(2/3)

= 1 .

3
+ 2 . 27 =9

# (Y7x = 3] = fix(y(3)
=
1

:. fy(x (113) + 2& fy(x(2/3)

= E. + 22. =9

Var (Y/X = 3) = -(



Contional expectation as a function and a random variable

One can consider E[Y |X = x ] as a function of x .

Say h(x) = E[Y |X = x ]

We define a random variable E[Y |X ] = h(X ).

h =#[Y(X = x ) = / o a function of x

-

no
y ,

still havea

"Define a new random variable h(X)"
h(X) = #[Y/X]
-> rotation



Contional expectation as a function and a random variable

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. One can see that E[Y |X = 1] = 8
5 E[Y |X = 2] = 11

7

E[Y |X = 3] = 14
9

Find the PMF of E[Y |X ] and E[E[Y |X ]].

fx(x) = &

EAge
5 3

= = #[Y(x] = h(X)
,

h() = E(Y(X = x]

&
,
x = 1

fz(z) = P(z = z)
=

E # ,
x = 2

= P(h(X) = z) ! x = 3

&
=

[
⑤

,

z = 8 p(h(X) =8) = 1x= 1)=Ex21

=
=f x(z)z=

21

E ,

z = ↳

J&# (z) = E(E(Y(x17 = = += + * *



Contional expectation as a function and a random variable

Theorem

1. E[E[Y |X ]] = E[Y ]

2. Var(Y ) = E[Var(Y |X )] + Var(E[Y |X ])

- II
= =

-

E(Y] = fuly = c.) + 2 .( =

# (E(Y(X]] = I E(Y(x = x] - P(X= x)
X

= ) - fx(x

f(x
, y) fx(x)= %
Ax

--
-

= fix
,y

= E(Y)
.

Note E [u(X)E[Y(X]] = ECY]
-

Y



Contional expectation as a function and a random variable

Example

Let X have a Poisson distribution with mean 4, and let Y be a random variable

whose conditional distribution, given that X = x , is binomial with sample size

n = x + 1 and probability of success p.

Find E[Y ] and Var(Y ).

X - Pois(*)

Y(X =x Bin(x , p)

X=4

&

x =4

#* * * x ]

S O 7

(X = # of customers a Poisson
.

Y = # of make customers

E(Y] = E [E[Y(X]]

= E(p) = p
. E(x) = 4p

Var(Y) = Var(ECYIX]) + # [Var(Y(X)]
= Var (X -p) + E [X . p(p)]
= p
! Var(X) + p(p) #(X] = 42 + plrp1 .4 = kp



Linear case

Suppose E[Y |X = x ] is linear in x , that is, E[Y |X = x ] = a+ bx .

Then we have µY = a+ bµX and E[XY ] = aµX + bE[X 2].

Solving for a,, we have

a = µY � ⇢
�Y
�X

µX , b = ⇢
�Y
�X

.

Thus,

E[Y |X = x ] = µY + ⇢
�Y
�X

(x � µX ).

#(Y(x) = a + bX

My = E[Y) =E[E(Y(x]) = a + bE(x) = a + bMx

E(XY) = E(X , E [Y(x)] = E(ax + bxz] = aE(X) + bE(x))

x
a function of x

Linear Regression.

Idea
- Least SquareSolution

minimum
error

- -

-
b -

Ax = b ↑-Cl)TS-

- inconsistent->
↑ => no solution

.L
projection on Col(A)

I

Conditional Expectation is an projection. "



Linear case

Example

Let X and Y have the trinomial distribution with parameters n, pX , pY , that is, the

joint pmf is given by

f (x , y) =

✓
n

x , y

◆
pxXp

y
Y (1� pX � pY )

n�x�y .

Find E[Y |X = x ].

( ) =

!
= ( % ) .(

(px + Py + pz = 1)

Experiment ol three outcomes A
, B ,

PX Py Pz

Repeatn times

X = # of A happens X~ Bin(n , Px)
Y = # of B happens Y ~ Bin (n , Pr)
Y(X = x v ??

Example n = 6
,
x = 2 Y(X=2 Bin(,P

DI A I A

4 Experiments. PCB happens / A does not happen (
=

z



Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective.

Let p1, p2, p3 be the corresponding probabilities.

Repeat the experiment n times and let X , Y be the numbers of perfect and seconds.

We say (X ,Y ) has the trinomial distribution.

Y Bm
P
= 1 -xx

E(XY] = E [X . E(Y(X]]
= E[X . (n- x ). ] Fr(,) = ?
= ( ) E[X(n-x)) =

...



Exercise

A miner is trapped in a mine containing 3 doors.

The first door leads to a tunnel that will take him to safety after 3 hours of travel.

The second door leads to a tunnel that will return him to the mine after 5 hours of

travel.

The third door leads to a tunnel that will return him to the mine after 7 hours.

If we assume that the miner is at all times equally likely to choose any one of the

doors, what is the expected length of time until he reaches safety?

I 5 hr X = length of fire until
Y= 22 A E[x] = ?

safety

mine-Osafety3 hr

↳
Thr

E(x) =
E(E [ X (Y]]

= E(X(y= 17 : 1(Y= 1) +E(x(=2) P(Y=2)

+ E(X(Y=3]IP(Y=3)

= 5 (E(X((= 1) + E(X(y=2) + #(x(y=37)



= (3 + (5 + E(x)) + (7 + E(x)))

3 E(x) = 15 + 2E(x] :
.
E[x] = 15

.

= h(x)# (Y(x = x) =

=
ELY /x] = h(X)

E(Y) = E[E(Y(X]]

E[XY] = E[X . ESY(X]]

VarlY)E E((Y -my] = E ( E((Y -My (X)])
= E (Var(Y/x(7 + Var(E[Y(x) (

If X
, Y indep. E (Y(X] = ESY]

f(x
,y) = fx(x) · fy(y)(fy(x(y(x) = Frsly)

(
# (x(X = x) = x #[X(X) = X

E(x +Y] = E(X) + E [Y]

Var(X +Y) = # ((x +y(x) - (E(X+y])2
= E(xz+ 2xy + YY - ((X) + 2E(X)ECY)

+ (EMS) (
= Var(x) + Wr(Y) + 2 Cov(X, Y)

Cov(X
,x)= E(XY) - E(X) #+ [Y)

If X
,
Y indep, CoV(X,4) =0

Var(X) = Var(I +VarLY)



Section 4.

Bivariate Distributions of the

Continuous Type



Joint PDF

Definition

An integrable function f (x , y) is the joint probability density function of two

random variables X ,Y if

• f (x , y) � 0

•
RR

f (x , y) dxdy = 1

• P((X ,Y ) 2 A) =
RR

A f (x , y) dxdy

The marginal density functions for X ,Y are

fX (x) =

Z
f (x , y) dy , fY (y) =

Z
f (x , y) dx .

Recall X is Conti . RV if it has a PDF,
-

joint PDF



Joint PDF

Example

Let X and Y have the joint PDF

f (x , y) =
4

3
(1� xy)

for 0 < x , y < 1. Find fX , fY , and P(Y  X
2 ).
inequalities support

Is

· X , y > 1 defines a region

X> 0 where f(x
,y) > o:

X

EI
O 1

H

X=0 , y =0 , x= 1
, y= 1

fx(x) = ( f(x ,y) by
give the blu

= 1. ( - xydy = (8 - Ex !=
O(XXI

fy(y) = (1 -E) for sy <



C E

(4) El = /S, fixy) dydx
= (((x

,(c)) = (A f(x y) dxdy
y⒗

a&



Joint PDF

Example

Let X and Y have the joint PDF

f (x , y) =
3

2
x2(1� |y |)

for �1 < x , y < 1.

Find E[X ] and E[Y ].

It/l

#(x) = ()x - f(x ,y)dx dy
+-

=

lyldady-

= (1, x3dx) dy = 0
.

me
o

1! I dy = 1

- 1-



#[Y] = Si y fixcy) dxdy t-
= z(S!, y1 +1Ddy)(S= ax)* = 0

- -

= 2)! x+dx = E

On
y(1 +y)

y(1 - (y)) = (y(
-y) if 30

y((+y) if <o

joty >1 - lyde= S : y(ry)dy + ( y(1 +y)dy = 0

-

-!. x( +-x)dx y = - x

f is even if f( x) = fx)

9 fixdx = 2). fax
-

↑ is odd if f(- x) = - f(x)

Jafax =



Independent random variables

Definition

Two random variables X ,Y with joint pdf are independent if and only if

f (x , y) = fX (x)fY (y).



Independent random variables

Example

Let X and Y have the joint pdf f (x , y) = 2 for 0 < x < y < 1.

Compute P(0 < X ,Y < 1
2).

Are they independent?

fx(X) =S
I

S
↑

2 dy=

= 2(1- x) :
fily) = 2y = J ! 2dy = 24

X> 0 X

47 x y= x

1)yy = /

No
. -I/

Y=X

//
-A

TP(0(X ,Y < El #--·*= () x 2 dady
=
y

Method
1 &= 25 1dx dy)

giethod F= 2 . (Area of A) =

&



X . Y have joint PDF

f(x
, y) > O

E Flxcy) axdy = 1

↑((X ,Y) = A) = ()
x
f(x

,y)dxdy

X
,

with PDF fx (until

((x = 5) = 0 =

+m)5
*

-x(x) 0x
&to 5- E

X I have joint PDF

+ P(x = y) = 0 = ()
+
f(x

,y) dx dy

Ho
If X Contin Y = X Conti

·

(x-4) do not have joint PDF .

fx = 9 f(xcy)dy ,
fy(y) = Pf(x ,y)dx

-> &
A

in terms of 4 in terms of

Y



Conditional densities and Conditional Expectation

Definition

The conditional density of Y given X = x is defined by

fY |X (y |x) =
f (x , y)

fX (x)
.

As in the discrete case, the conditional expectation and the conditional variance are

defined by

E[Y |X = x ] =

Z
yfY |X (y |x) dy ,

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ].

Var(Y) = E(Var(Y(X)] + Var(E(Y(x])

#[Y] = E[E(Y (X]]



Conditional densities and Conditional Expectation

Example

Let X and Y have the joint PDF f (x , y) = 2 for 0 < x < y < 1.

Then, fX (x) = 2(1� x) for 0 < x < 1 and fY (y) = 2y for 0 < y < 1.

Find E[X |Y = y ] and E[Y |X = x ].

x
defined

f(x ,y)
> o

↓ "Support"
or
"domain"

1 + X
=

E

50SX < y < 14 defines the region where

f(x -y)= 2
otherwise f(x ,y) = 0 .

Three They
X > 0 X = 08 y -axis

E Y > X =>> Sy = y define the bary

-x(x) = (
+

f(x
,y)dy = 2) +- x)

Y < I y = 1

·
y
= x

-*
fixed

*

L y=1
>
=
=> //

fy Cy1 = j f(x .y)dx = 2y ->
↑
fixed Y



I A
E(x(y = y) = (4x . fx(x(y)dx

↑
&

-
fixed X.Y)

x = fyly)
/Y

dx
2Y

= So X
Y

&= =
fixed

=
f(x -Y)

for osy < /

to
&

0 < X Yfx1y(x() =
24

= !
#

O
(

=y(y)

XY=

y distribution ?

·X 1 =

y
~ Unif (o , y) I

E(X(y=y) = I

A

O
I

I

Y~ Uniflo , 1)



Conditional densities and Conditional Expectation

Example

Let X be U(0, 1), and let the conditional distribution of Y , given X = x be U(x , 2x).

Find E[Y ] and Var(Y ).

y=2x

*
II
1 li

&& = x
fixyl= f fx(X)L
Excl =( = 101 do

&

fyly) =

-
O X 7

2
Y(X= x n P(x , 2x)

# (Y) = #(EX(X)]
= E(((X +2x)] = EE(x) =

.



Exercise

Let f (x , y) = 2e�x�y , 0 < x  y < 0 , be the joint pdf of X and Y .

Find fX (x) and fY (y). Are X and Y independent?



Section 5.

The Bivariate Normal Distribution



Motivation

Let X be a random variable.

We construct a random variable Y in the following way:

The conditional distribution of Y given X = x satisfies

1. it is normal for each x

2. E[Y |X = x ] is linear in x

3. Var(Y |X = x) is constant in x

"F -

&... (y(x = x]
-

-

I

= bx+ c
-

.

x
E

&

mean variance
linear

Y/X =
N (MU ,

PAY)
↓

resession
line

E(Y(X = x] = bx + c = p. (x-Mx) + My
+ previous class

5 = Var(Y) = Var(ESY(X]) + EaY#]
Const

.

=> Var(Y/X = x 1 = j (1-p4) # size of error .

fl(y(x)= expert i)



Motivation

Then, Y |X = x is normal with mean µY + ⇢�Y
�X

(x � µX ) and variance �2
Y (1� ⇢2).

The conditional density is

fY |X (y |x) =
1

�Y
p
2⇡
p

1� ⇢2
exp

 
�
(y � (µY + ⇢�Y

�X
(x � µX )))2

2�2
Y (1� ⇢2)

!

Mx = #(x) , My = # [Y) T = Var()
, j = VarlY)

↑= correlation coefficient ==Me

+

X - N(Mx , rx)

f(x
,y) = fy(x(y(x) fx(x)
-

I

X-Mx



Bivariate normal distribution

If X itself has normal distribution, (X ,Y ) is called a bivariate normal random

variables.

E(Y(X=
M
-> Y(X =x - N)

,

J

=bx
+

Var(Y(X=
x) X - N(Mx,

=
constant



Bivariate normal distribution

Definition

We say (X ,Y ) has a bivariate normal distribution with mean vector

 
µX

µY

!
and

covariance matrix

 
�2
X ⇢�X�Y

⇢�X�Y �2
Y

!
if its joint pdf is given by

f (x , y) =
1

2⇡�X�Y
p

1� ⇢2
exp

✓
� 1

2(1� ⇢2)

✓
x̄2

�2
X

� 2
⇢x̄ ȳ

�X�Y
+

ȳ2

�2
Y

◆◆

where x̄ = x � µX and ȳ = y � µY .

ME )
= I

2
-j - !(x -My 4-my) MVar(X)

I
Cov(X"

,
X) CoV(X

, Y)

CVar(Y)
/

CoV(Y
,
X> Cor(Y

,Y)



Bivariate normal distribution

Example

Let us assume that in a certain population of college students, the respective grade

point averages, say X and Y , in high school and the first year of college have a

bivariate normal distribution with parameters µX = 2.9, µY = 2.4, �X = 0.4,

�Y = 0.5, and ⇢ = 0.6.

Find P(2.1 < Y < 3.3|X = 3.2).

(X ,
4) bivariate Normal

Y/X - N((XML MY
, /PY)

E X ~ N(Mx , +)

Y ~ N(My ,R

& (3
.

2 -MX) +My = m

↓ ⑪Y(X = 3
.
2 NL m 52 I

-

--

* 5 (1-p7) = 52

1(2 . 1 < Y (3
.

3 /x = 3
.

2)

=1 (2 .
1 <W < 3 .3)

~
N(0 .
1

-

= P( ,

= (3) - E(
Use the table

.



Recall
-

CX ,Y) Bivariate Normal

& Y/X = x
- N( X +My , 55(1-4)

& X v N (Mx
,
+x

f(x
, y) == exp )2 -2+ )

x = x - x Y = y -My .

& X
, Y uncorrelated if

& p =0=
Cov(X

,y) = 0

positively correlated if >0C negatively Il if & < (

X
,
4 indep => X

,
Y uncorrelated

*
in general

· CX ,Y) Bivariate Normal & p = 0

=> CX , Y) indep



Bivariate normal distribution

Theorem

If X and Y have a bivariate normal distribution with correlation coe�cient ⇢, then X

and Y are independent if and only if ⇢ = 0.



Exercise

For a female freshman in a health fitness program, let X equal her percentage of body

fat at the beginning of the program and Y equal the change in her percentage of body

fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with

µX = 24.5, µY = �0.2, �X = 4.8, �Y = 3, and ⇢ = �0.32.

Find P(1.3 < Y < 5.8), E[Y |X = x ], and Var(Y |X = x).
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