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Suppose that we observe the maximum daily temperature, X, and maximum relative
humidity, Y, on summer days at a particular weather station.

We want to determine a relationship between these two variables.

For instance, there may be some pattern between temperature and humidity that can
be described by an appropriate curve Y = u(X).
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Joint distribution

Let X and Y be two random variables defined on a discrete sample space.

Let S denote the corresponding two-dimensional space of X and Y/, the two random
variables of the discrete type.

Definition
The function f(x,y) =P(X = @/ = y) is called the joint probability mass function

(joint PMF) of X and Y. N ‘WD
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Joint distribution
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Joint distribution

Example & Coced

Roll a pair of fair dice.

Let X denote the smaller and Y the larger outcome on the dice.
Find the joint PMF of (X, Y). Pesc;LL& :
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Marginal distribution

Definition
Let X and Y have the joint probability mass function f(x, y).

The probability mass function of X, which is called the marginal probability mass

function of X, is defined by

fx(x) =) flx,y) =P(X = x).
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Marginal distribution

Definition (X .Y  DOrcere)
We say X and Y are independent if

P rodaet

Toink PN =PX=x,Y=y)=PX=x)P(Y =y) =
Jotnt ( y) =1I( y Ma@w& PUE,

for all (x,y) € S.
Equivalently, f(x,y) = fx(x)fy(y) for all x, y.

Otherwise, we say X and Y are dependent.



Marginal distribution

Example
Let the joint PMF of X and Y be defined by

X+y
f —
forx=1,2,3and y =1,2.
Find the marginal PMFs of X and Y.
Determine whether they are independent.
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Let the joint PMF of X and Y be defined by O 1
2,
2
Xy Y
f == = ’ —
(x,y) = 35 X =
forx=1,2,3and y = 1,2. T
o~
Find the marginal PMFs of X and Y. Q("W\g_ )
Determine whether they are independent.
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Expectations

Definition
Let X; and X5 be random variables of the discrete type with the joint PMF f(x1, x2)
on the space S. If u(Xy, X2) is a function of these two random variables, then

]E[U(X]_,X2)] = Z u(Xl,Xz)f(Xl,Xz).

(X]_,XQ)GS
In particular, if u(xi,x2) = x1, then

Elu(X1, X2)] = E[X1] = Z x1f(x1,x2) lefxl(xl)
(X1,X2)€5
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Expectations

Example %“A
There are eight similar chips in a bowl: three marked (0,0), two marked (1, 0), tWO{’Wi IX[
marked (0, 1), and one marked (1, 1).
A player selects a chip at random. & ! 1 JJ
Let X1 and X5 represent those two coordinates. D \ ;/8 2/8 s_?/@
Find the joint PMF. i - R/Q ]:)/?
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Exercise

Roll a pair of four-sided dice, one red and one black.
Let X equal the outcome of the red die and let Y equal the sum of the two dice.
Find the joint PMF.

Are they independent?



Section 2.
The Correlation Coefficient



Covariance and Correlation coefficient
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The covariance of X and Y is
Cov(X, Y) = E[(X — px)(Y — iy )],
The correlation coefficient of X and Y is

~ Cov(X,Y)
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Covariance and Correlation coefficient

Properties

1. If X and Y are independent, then Cov(X, Y) = 0.
2. Cov(X, Y) = E[XY] — E[X]E[Y].
3. —-1<p<Ll. N pr=t  Tphee Y = bX+c
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Covariance and Correlation coefficient

Example
Let the joint PMF of X and Y be defined by

X+ 2y
18

fix,y) =
for x=1,2and y = 1,2.
Compute Cov(X, Y) and p.
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The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two

random variables X and Y.

One of natural ways is to consider a linear relation between X and Y, that is, to figure
out the best possible slope b such that Y — uy = b(X — ux) has small errors.

We measure the error by E[((Y — uy) — b(X — ux))?].
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The Least Squares Regression Line

One can see by some calculus that the error is minimized when

gy
X

b=p

and the minimum error is 0%, (1 — p?).

The line Y — puy = pg—;(X — px) is called the line of best fit, or the least squares

—m m -

regression line.
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The Least Squares Regression Line

_ _
Loy (XY= EEYY] = -1
p= Y
Example Q\K G\K(
Let X equal the number of ones and Y the number of twos and threes when a pair of

fair four-sided dice is rolled.
Then X and Y have a trinomial distribution.

Find the least squares regression line.
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Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective.
Let p1, p2, p3 be the corresponding probabilities.
Repeat the experiment n times and let X, Y be the numbers of perfect and seconds.

We say (X, Y) has the trinomial distribution.



Uncorrelated

We say X, Y are uncorrelated if p = 0.
If X,Y are independent then they are uncorrelated.

However, the converse is not true.



Uncorrelated

Example

Let X and Y have the joint pmf f(x,y) = 3 for (x,y) = (0,1),(L,0),(2,1).
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Exercise

The joint pmf of X and Y is f(x,y) = %, 0 <x+y <2, where x and y are

nonnegative integers.

Find the covariance and the correlation coefficient.
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Conditional Distributions



Conditional distribution

Definition

The conditional probability mass function of X, given that Y = y, is defined by

x|y (xly) = ff(:(’yy)) :
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Conditional distribution

Example
Let the joint pmf of X and Y be defined by

X+y
21

for x =1,2,3 and y = 1,2. We have shown that

f(Xv)/):

)= 22 h() =20
Find the conditional PMFs.
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Conditional distribution

Definition

The conditional expectation of Y given X = x is defined by

E[Y|X = x] = nyﬂx(ﬂx)-

The conditional variance of Y given X = x is defined by

Var(Y|X = x) = E[(Y — E[Y|X = x])?|X = X]
= EB[Y?X = x] — (E[Y|X = x])2.
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Conditional distribution

Example
Let the joint PMF of X and Y be defined by

Xty XX
fx,y) = —1 Foon = x
for x =1,2,3 and P, (ulsy= 254
g @ =S 2ox+-3
Find E[Y|X = 3] and Var(Y|X = 3). S~
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Contional expectation as a function and a random variable

One can consider E[Y|X = x] as a function of x.
Say h(x) = E[Y|X = x]
We define a random variable E[Y|X] = h(X).



Contional expectation as a function and a random variable

2X+3
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Example tY (:j\ = 7

Let the joint pmf of X and Y be defined by :EY\ (ylox) = 4
y = X4

Lx+-3

X+y

for x =1,2,3 and y = 1,2. One can see that E[Y|X = 1] = %3E[Y|X =2] = % .
E[Y|X =3] =3

Find the PMF of E[Y|X] and E[E[Y|X]].

Z= E(YIx) = hix)  hod= ECYIXx=x]

ﬁzcrﬂ = P Z2=2) { T xea
~ P (hox) = 2) 53
L F e i T~ PLOO=8) = Px=~4w
- 2 ( o
b——_ w S
I Ta- L TENTEN '
¢
q =
=7 9
T(zl = €( €Y= S 2 %

g
~
| =
n
o
-5~
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Contional expectation as a function and a random variable

Theorem
1. E[E[Y|X]] = E[Y]
2. Var(Y) = E[Var(Y|X)] + Var(E[Y|X])

E[ El(VIx] = % ELY (x=x] PlX=9)
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Contional expectation as a function and a random variable

X ~ EP%:TS(‘F>
YlX:c)( ~ BTn(X,P)

Example X=4

Let X have a Poisson distribution with mean 4, and let Y be a random variable
whose conditional distribution, given that X = x, is binomial with sample size
n = x 4#& and probability of success p.

Find E[Y] and Var(Y). *=4
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Linear case

v ° Pl ‘{- X
Suppose E[Y|X = x] is linear in x, that is, E[Y|X = x] = a + bx.
Then we have py = a+ bux and E[XY] = aux + bE[X?].

Solving for a,, we have
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Linear case
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Example
Let X and Y have the trinomial distribution with parameters n, px, py, that is, the
joint pmf is given by

n X n—XxX—
f(x,y) = (X y)PxP{/(l —px —py)" .

Find E[Y|X = x]. CParpy +py =1)
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Repeat N times
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Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective.

Let p1, p2, p3 be the corresponding probabilities.

Repeat the experiment n times and let X, Y be the numbers of perfect and seconds.

We say (X, Y) has the trinomial distribution.



Exercise

A miner is trapped in a mine containing 3 doors.
The first door leads to a tunnel that will take him to safety after 3 hours of travel.

The second door leads to a tunnel that will return him to the mine after 5 hours of

travel.
The third door leads to a tunnel that will return him to the mine after 7 hours.

If we assume that the miner is at all times equally likely to choose any one of the
doors, what is the expected length of time until he reaches safety?
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Section 4.
Bivariate Distributions of the
Continuous Type



Real T Cwh. RV 7k 0 ks o PDR

Joint PDF

Definition Jomi POE
An integrable function f(x, y) is the joint probability density function of two

random variables X, Y if

o f(x,y)>0

o [[f(x,y)dxdy =1
o P((X,Y) e A) = [[,f(x,y) dxdy

The marginal density functions for X, Y are

fi(x) = / Ard, ) = / ol



Joint PDF

Example
Let X and Y have the joint PDF

4

f(x,y) = 5(1 — xy)

for 0 < x,y < 1. Find fx, fy, and P(Y < £).
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Joint PDF

Example ‘4— ; :Z // l

Let X and Y have the joint PDF

Fxy) = (1~ Iy

for -1 < x,y <1.

Find E[X] and E[Y].
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Independent random variables

Definition
Two random variables X, Y with joint pdf are independent if and only if
f(x,y) = fx(x)fy(y).



Independent random variables

Example Y S X Y= x
Let X and Y have the joint pdf f(x,y) =2for0 < x <y < L.

Compute P(0 < X, Y < 3).

Are they independent? ),
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Conditional densities and Conditional Expectation

Definition

The conditional density of Y given X = x is defined by

f(x,y)
fyix(vIx) = >
| fi(x)
As in the discrete case, the conditional expectation and the conditional variance are

defined by

E[Y|X = x] = / Ve (v1x) dy,

Var(Y|X = x) = E[(Y — E[Y|X = x])?|X = x].

\/WWB: E( \/a/x/(\(k)()] + Vc‘xr(E[Y\)f]}
E(yl = E(EY K1)



Conditional densities and Conditional Expectation
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Example JJ QU'W :
Let X and Y have the joint PDF f(x,y) =2for 0 < x <y < 1.
Then, fx(x) =2(1 —x) for 0 < x <1 and fy(y) =2y for 0 < y < 1.

Find E[X|Y = y] and E[Y|X = x].= —5X.
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Example

Let X be U(0, 1), and let the conditional distribution of Y, given X = x be U(x, 2x)
Find IE[Y] and Var(Y).

ElyYy = E
=



Exercise

Let f(x,y) =27 ,0< x <y <0, be the joint pdf of X and Y.
Find fx(x) and fy(y). Are X and Y independent?



Section 5.
The Bivariate Normal Distribution
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Motivation

Let X be a random variable.
We construct a random variable Y in the following way:

The conditional distribution of Y given X = x satisfies
@ it is normal for each x

2. E[Y|X = x] is linear in x
3. Var(Y|X = x) is constant in x
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Then, Y|X = x is normal with mean p1y + pg~(x — px) and variance o3, (1 — p?).

The conditional density is

fyix(y|x) = ! exp <_(y_ (“Y+P§—§(X—ux)))2>
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Bivariate normal distribution

If X itself has normal distribution, (X, Y) is called a bivariate normal random
variables.
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Bivariate normal distribution

et |
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We say (X, Y) has a bivariate normal distribution with mean vector 'lLX) and

if its joint pdf is given by
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Bivariate normal distribution

Example

Let us assume that in a certain population of college students, the respective grade
point averages, say X and Y, in high school and the first year of college have a
bivariate normal distribution with parameters ux = 2.9, uy = 2.4, ox = 0.4,

oy = 0.5, and p = 0.6.

Find P(2.1 < Y < 3.3]X =3.2). P—Y-@&—ﬁx\ S =0
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Bivariate normal distribution

Theorem
If X and Y have a bivariate normal distribution with correlation coefficient p, then X
and Y are independent if and only if p = 0.



Exercise

For a female freshman in a health fitness program, let X equal her percentage of body
fat at the beginning of the program and Y equal the change in her percentage of body

fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with
pux =245, pny = —0.2, ox =4.8, oy =3, and p = —0.32.
Find P(1.3 < Y <5.8), E[Y|X = x], and Var(Y|X = x).






