
Midterm 3 Lecture Review Activity, Math 1554

1. Indicate true if the statement is true, otherwise, indicate false.

true false

a) If S is a two-dimensional subspace of R50, then the dimension of
S? is 48.

� �

b) An eigenspace is a subspace spanned by a single eigenvector. � �

c) The n⇥ n zero matrix can be diagonalized. � �

d) A least-squares line that best fits the data points
(0, y1), (1, y2), (2, y3) is unique for any values y1, y2, y3.

� �

2. If possible, give an example of the following.

2.1) A matrix, A, that is in echelon form, and dim
�
(RowA)?

�
= 2, dim

⇣
(ColA)?

⌘
= 1

2.2) A singular 2 ⇥ 2 matrix whose eigenspace corresponding to eigenvalue � = 2 is the line
x1 = 2x2. The other eigenspace of the matrix is the x2 axis.

2.3) A subspace S, of R4, that satisfies dim(S) = dim(S?) = 3.

2.4) A 2⇥ 3 matrix, A, that is in RREF. (RowA)? is spanned by
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· Row(Al = Col(AT) t = Nul ((A)T) = Nul(A)
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3. Circle possible if the set of conditions are create a situation that is possible, otherwise, circle
impossible. For the situations that are possible give an example.

3.1) A is n⇥ n, A~x = A~y for a particular ~x 6= ~y, ~x and ~y are in Rn, and dim((RowA)?) 6= 0.

possible impossible

3.2) A is n⇥ n, � 2 R is an eigenvalue of A, and dim((Col(A� �I))?) = 0.

possible impossible

3.3) proj~v~u = proj~u~v, ~v 6= ~u, and ~u 6= ~0, ~v 6= ~0.

possible impossible

4. Consider the matrix A.

A =

0

@
1 �3 0 2
0 0 1 �3
0 0 0 0

1

A

Construct a basis for the following subspaces and state the dimension of each space.

4.1) (RowA)?

4.2) ColA

4.3) (ColA)?

Of
: B =5(J . []} in R*

: p=&(6) , 187)

C
= Nul(/T)

farm
.

Row(Alt = Col(AT)
+
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At Rmxn

Col(A)" = Nul(AT(

E
Nul(A(+ = 2) (AT)

Row(A) = Col(AT)

dimRow(A)) = dim) Col(A))

dim (Nul(A)) + dim(ColcAl) = n

dim(() + dim(w) = n WinRh
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② If x -> Nul (AT#)
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↑= (1) = /T
X=? def (A - XI) = x2 -2x + 2 =0

(x - 1)2 = - 1

x = 1 I

eip= i

= Cost + SinD . i = rotation.
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A : diagonalizable
- A = P . D . p +

I
Didagol
-~ p : invertible

.

=T

D : D = DT . D
↑
Dot product

(Ax) : (Ay)=xT · (A - x)

↑
Matrix Multiplication

- XT
.

AT . A . X


