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Topics and Objectives

Topics
1. Symmetric matrices

2. Orthogonal diagonalization

Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix,
A= PDPT.
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Symmetric Matrices

Definition
Matrix A is symmetric if AT = A. ]

Example. Which of the following matrices are symmetric? Symbols *
and x represent real numbers.

(0 1] 4 0
A =¥ B__1 0| C‘[oo}
- 4 2 0 1

4 2
11 2 0 7 4
D[oo} E*88 F=10 7 6 o0
Lo 1 4 0 3
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AT A is Symmetric

A very common example: For any matrix A with columns aq,...,a,,
S -
SO
A" A= ) ) . ai as -+ ap
S
T T T
al al al a2 cte al CL"
T T T
a3 a1 Q5a2 -+ A5 0p
T T T
GnQ1 QpQ2 -+ GGy

Entries are the dot products of columns of A

Section 7.1 Slide 4



Symmetric Matrices and their Eigenspaces

r—‘ Theorem

A is a symmetric matrix, with eigenvectors ¢, and ¥ corresponding
to two distinct eigenvalues. Then ¢, and v are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are
orthogonal subspaces.

\.

Proof:
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Example 1

Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.
0 0 1
A=(0 1 0}, Ax=-1,1
100

Hint: Gram-Schmidt
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Spectral Theorem

Recall: If P is an orthogonal n x n matrix, then P~! = PT which
implies A = PDP7 is diagonalizable and symmetric.

A Theorem: Spectral Theorem }

An n X n symmetric matrix A has the following properties.

1. All eigenvalues of A are real.

2. The dimenison of each eigenspace is full, that it's
dimension is equal to it's algebraic multiplicity.

3. The eigenspaces are mutually orthogonal.

4. A can be diagonalized: A = PDPT, where D is diagonal
and P is orthogonal.

\.

Proof (if time permits):
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Topics and Objectives

Topics
1. Quadratic forms
2. Change of variables
3. Principle axes theorem
4. Classifying quadratic forms

Learning Objectives

1. Characterize and classify quadratic forms using eigenvalues and
eigenvectors.

2. Express quadratic forms in the form Q(Z) = # T A%

3. Apply the principle axes theorem to express quadratic forms with no
cross-product terms.

Motivating Question Does this inequality hold for all x, y?
z? — 6xy + 9y® >0

Section 7.2 Slide 9



Quadratic Forms

r—‘ Definition

A quadratic form is a function Q : R™ — R, given by

a1 a2 -+ Qin

. ST 4o a2 Q2 -+ G2p
Q@) =2" A% = [331 Tg - xn]

A1p  A2n st Qpp

Matrix A is n X n and symmetric.

\.

In the above, Z is a vector of variables.

Section 7.2 Slide 10



Example 1

Compute the quadratic form 27 AZ for the matrices below.

el
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Example 1 - Surface Plots

The surfaces for Example 1 are shown below.

100

100

7
7/
7
G
L]
LI

7
7

= 7
S
%

0 N 7,

Students are not expected to be able to sketch quadratic surfaces, but it
is helpful to see what they look like.
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Example 2

Write @ in the form #7 A% for ¥ € R3.

Q(r) = 5xf - l’% + 3x§ + 62123 — 1229203
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Change of Variable

If 7 is a variable vector in R™, then a change of variable can be
represented as
=Py, or j=P %

With this change of variable, the quadratic form 77 AZ becomes:
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Example 3

Make a change of variable & = Py that transforms Q = T AZ so that it
does not have cross terms. The orthogonal decomposition of A is given.

— 3 2 _ T
A_(2 6>_PDP

(3
(1)

S N ot
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Geometry

Suppose Q () = ¥T A%, where A € R™*" is symmetric. Then the set of
Z that satisfies
C=zTAZ

defines a curve or surface in R™.
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Principle Axes Theorem

Theorem

If Ais a matrix then there exists an
orthogonal change of variable # = Pj/ that transforms 7 A% to
ZT DZ with no cross-product terms.

Proof (if time permits):
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Example 5

Compute the quadratic form Q = £TAZ for A = ; ; , and find a
change of variable that removes the cross-product term. A sketch of Q) is

below.
T2 semi-minor axis

Z1

semi-major axis
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Classifying Quadratic Forms

Section 7.2

24 g2
Q = o]+ x5

’t,,’nm.,.

4
.
Yy /e
/;;;;I/’l,”nnu
W

]

r—‘ Definition

A quadratic form @ is B
1. positive definite if for all & # 0.
2. negative definite if for all Z # 0.
3. positive semidefinite if for all 2.
4. negative semidefinite if for all Z.
5. indefinite if
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Quadratic Forms and Eigenvalues

r—‘ Theorem

\.

If Ais a

then Q = ZT A% is
1. positive definite iff \;
2. negative definite iff )\;

3. indefinite iff \;

matrix with eigenvalues \;,

Proof (if time permits):
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Example 6

We can now return to our motivating question (from first slide): does
this inequality hold for all =, y?

22 — 6y + 9y >0
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Topics and Objectives

Topics
1. Constrained optimization as an eigenvalue problem

2. Distance and orthogonality constraints

Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems
that are subject to distance and orthogonality constraints.
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Example 1

The surface of a unit sphere in R? is

given by 1
05
_ .2 2 2 _ 122
1 =27+ a3 +a3 = ||| 0
. . . . _05
Q@ is a quantity we want to optimize 1 ’
0 0
Q(Z) = 9273 + 423 + 323 17

Find the largest and smallest values of () on the surface of the sphere.
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A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

subject to

That is, we want to find

m = min{Q() : ||| = 1}
M = max{Q(#) : ||| = 1}

This is an example of a constrained optimization problem. Note that
we may also want to know where these extreme values are obtained.
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Constrained Optimization and Eigenvalues

r—‘ Theorem

If Q=27 AZ, Ais a real n x n symmetric matrix, with eigenvalues
A > Ao >\,

and associated normalized eigenvectors

Then, subject to the constraint ||Z|| = 1,
e the maximum value of Q(Z) = \q, attained at ¥ = + ;.

¢ the minimum value of Q(Z) = \,,, attained at & = +,,.

Proof:
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Example 2

Calculate the maximum and minimum values of Q(¥) = ¥T A%, ¥ € R?,
subject to ||Z]| = 1, and identify points where these values are obtained.

Q(Z) = 22 + 2xo23
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Example 2

The image below is the unit sphere whose surface is colored according to
the quadratic from the previous example. Notice the agreement between
our solution and the image.

2
1,
1
0.5
& 0 0
-0.5
-1
-1
1 \/-1
0 0 2
11
X2 X1
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An Orthogonality Constraint

r—‘ Theorem
Suppose Q = £TAZ, A is a real n x n symmetric matrix, with

eigenvalues
A1 Z>\2 2/\71,

and associated eigenvectors

U, Uy« vy Up

Subject to the constraints ||Z|| =1 and Z - @; =0,
e The maximum value of Q(Z) = Ao, attained at & = .
U,

e The minimum value of Q(&) = A, attained at & =

Note that A, is the second largest eigenvalue of A
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Example 3

Calculate the maximum value of Q(%) = ¥ A%, ¥ € R3, subject to
[|Z]| =1 and to & - @y = 0, and identify a point where this maximum is
obtained.
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Example 4 (if time permits)

Calculate the maximum value of Q(%) = ¥ A%, ¥ € R3, subject to
||Z]| = 5, and identify a point where this maximum is obtained.

Q(T) = 22 + 2xo23
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Topics and Objectives

Topics
1. The Singular Value Decomposition (SVD) and some of its
applications.

Learning Objectives

1. Compute the SVD for a rectangular matrix.
2. Apply the SVD to

> estimate the rank and condition number of a matrix,
> construct a basis for the four fundamental spaces of a matrix, and
> construct a spectral decomposition of a matrix.

Section 7.4 Slide 33



Example 1
The linear transform whose standard matrix is
1 /1 -1\ [/2V/2 0 2 -1
A= — -
V21 1 0 V2 2 1
maps the unit circle in R? to an ellipse, as shown below. Identify the unit

vector Z in which ||AZ|| is maximized and compute this length.

€2 Z2

s

/\ . multiply by)A /
/
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Example 1 - Solution
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Singular Values

The matrix AT A is always symmetric, with non-negative eigenvalues
AL > Ay > > A, >0. Let {#,...,7,} be the associated orthonormal
eigenvectors. Then

| Ag;|* =
If the A has rank r, then {A¥y, ..., AU} is an orthogonal basis for Col A:
Fori1<j<k<r:
(A{;'j)TAfD'k =
Definition: 01 = VA1 > 02 = VAo -+ > 0, = /A, are the singular

values of A.
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The SVD

\

A Theorem: Singular Value Decomposition

]

A m X n matrix with rank r and non-zero singular values o1 >
09 > --- > o, has a decomposition ULV where

g1 0 O
5 D 0 B 0 g9 0
10 0 :
mXxXn
0O 0 ... o
0 0

U is a m x m orthogonal matrix, and V is a n x n orthogonal

matrix.
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~ &

U

— <
—_—

M=UYX-V*

-
N
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Algorithm to find the SVD of A

Suppose A is m x n and has rank r < n.

2
i

1. Compute the squared singular values of AT A, 02, and construct X.

2. Compute the unit singular vectors of AT A, ;, use them to form V.

3. Compute an orthonormal basis for ColA using

L, r .
U = —Av;, i=1,2,...7
i

Extend the set {@;} to form an orthonomal basis for R, use the
basis for form U.
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Example 2: Write down the singular value decomposition for

20
0 —3| _
0 0"
0 0
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Example 3: Construct the singular value decomposition of
1 -1

A=1-2 2.
2 =2

(It has rank 1.)
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Applications of the SVD

The SVD has been applied to many modern applications in CS,
engineering, and mathematics (our textbook mentions the first four).

e Estimating the rank and condition number of a matrix
e Constructing bases for the four fundamental spaces

e Computing the pseudoinverse of a matrix

e Linear least squares problems

e Non-linear least-squares
https://en.wikipedia.org/wiki/Non-linear_least_squares

e Machine learning and data mining
https://en.wikipedia.org/wiki/K-SVD

e Facial recognition
https://en.wikipedia.org/wiki/Eigenface

e Principle component analysis
https://en.wikipedia.org/wiki/Principal_component_analysis

e Image compression

Students are expected to be familiar with the 15¢ two items in the list.
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The Condition Number of a Matrix

If A is an invertible n X n matrix, the ratio
01

On

is the condition number of A.

Note that:

e The condition number of a matrix describes the sensitivity of a
solution to AZ = b is to errors in A.

e We could define the condition number for a rectangular matrix, but
that would go beyond the scope of this course.
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Example 4

For A = UXV*, determine the rank of A, and orthonormal bases for
NullA and (ColA)*.

001 0
010 0
U=1000 -1
100 0
40 0 00
s_[03 0 00
“looVv5oo0
00 0 00
[0 100 0
0 010 0
vi=|v02 00 0 VO3
0 001 0
|[-v08 0 0 0 V02
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Example 4 - Solution
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The Four Fundamental Spaces

Multiplication
by A

FIGURE 4 The four fundamental subspaces and the

action of A.
1. AV = o,is.
2. ¥1,...,U, is an orthonormal basis for RowA.
3. 11,...,1U, is an orthonormal basis for ColA.
4. VUpy1,...,U, is an orthonormal basis for Null A.
5. @yi1,. ..,y is an orthonormal basis for NullAT'.
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The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for
any matrix with rank r

T

- T

A= E OsUsUy ,
s=1

where 1, U, are the s'" columns of U and V respectively.

For the case when A = AT, we obtain the same spectral decomposition
that we encountered in Section 7.2.
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