## Section 7.1 : Diagonalization of Symmetric Matrices

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

## Topics and Objectives

### Topics

- 1. Symmetric matrices
- 2. Orthogonal diagonalization

#### Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix,  $A = PDP^{T}$ .

### Symmetric Matrices



**Example.** Which of the following matrices are symmetric? Symbols \* and  $\star$  represent real numbers.

$$A = [*] \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 4 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 4 & 2 & 0 & 1 \\ 2 & 0 & 7 & 4 \\ 0 & 7 & 6 & 0 \\ 1 & 4 & 0 & 3 \end{bmatrix}$$

# $A^T A$ is Symmetric

A very common example: For **any** matrix A with columns  $a_1, \ldots, a_n$ ,

$$A^{T}A = \begin{bmatrix} -- & a_{1}^{T} & -- \\ -- & a_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & a_{n}^{T} & -- \end{bmatrix} \begin{bmatrix} | & | & \cdots & | \\ a_{1} & a_{2} & \cdots & a_{n} \\ | & | & \cdots & | \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}}_{\text{Entries on the data and other solutions of } A$$

Entries are the dot products of columns of A

### Symmetric Matrices and their Eigenspaces

Theorem

A is a symmetric matrix, with eigenvectors  $\vec{v}_1$  and  $\vec{v}_2$  corresponding to two distinct eigenvalues. Then  $\vec{v}_1$  and  $\vec{v}_2$  are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.

Proof:

Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda = -1, 1$$

Hint: Gram-Schmidt

## Spectral Theorem

**Recall:** If P is an orthogonal  $n \times n$  matrix, then  $P^{-1} = P^T$ , which implies  $A = PDP^T$  is diagonalizable and symmetric.

Theorem: Spectral Theorem

An  $n\times n$  symmetric matrix A has the following properties.

1. All eigenvalues of A are real.

2. The dimenison of each eigenspace is full, that it's dimension is **equal to** it's algebraic multiplicity.

3. The eigenspaces are mutually orthogonal.

4. A can be diagonalized:  $A = PDP^{T}$ , where D is diagonal and P is orthogonal.

**Proof (if time permits):** 

### Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

## Topics and Objectives

### Topics

- 1. Quadratic forms
- 2. Change of variables
- 3. Principle axes theorem
- 4. Classifying quadratic forms

### Learning Objectives

- 1. Characterize and classify quadratic forms using eigenvalues and eigenvectors.
- 2. Express quadratic forms in the form  $Q(\vec{x}) = \vec{x}^T A \vec{x}$ .
- 3. Apply the principle axes theorem to express quadratic forms with no cross-product terms.

**Motivating Question** Does this inequality hold for all x, y?

$$x^2 - 6xy + 9y^2 \ge 0$$

### Quadratic Forms



In the above,  $\vec{x}$  is a vector of variables.

Compute the quadratic form  $\vec{x}^T A \vec{x}$  for the matrices below.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix}$$

### Example 1 - Surface Plots

The surfaces for Example 1 are shown below.



Students are not expected to be able to sketch quadratic surfaces, but it is helpful to see what they look like.

Write Q in the form  $\vec{x}^T A \vec{x}$  for  $\vec{x} \in \mathbb{R}^3$ .

$$Q(x) = 5x_1^2 - x_2^2 + 3x_3^2 + 6x_1x_3 - 12x_2x_3$$

## Change of Variable

If  $\vec{x}$  is a variable vector in  $\mathbb{R}^n,$  then a change of variable can be represented as

$$\vec{x} = P\vec{y}, \quad \text{or} \quad \vec{y} = P^{-1}\vec{x}$$

With this change of variable, the quadratic form  $\vec{x}^T A \vec{x}$  becomes:

Make a change of variable  $\vec{x} = P\vec{y}$  that transforms  $Q = \vec{x}^T A \vec{x}$  so that it does not have cross terms. The orthogonal decomposition of A is given.

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} = PDP^{T}$$
$$P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
$$D = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$$

### Geometry

Suppose  $Q(\vec{x})=\vec{x}^{\,T}A\vec{x},$  where  $A\in\mathbb{R}^{n\times n}$  is symmetric. Then the set of  $\vec{x}$  that satisfies

 $C = \vec{x}^T A \vec{x}$ 

defines a curve or surface in  $\mathbb{R}^n$ .

### Principle Axes Theorem



#### Proof (if time permits):

Compute the quadratic form  $Q = \vec{x}^T A \vec{x}$  for  $A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$ , and find a change of variable that removes the cross-product term. A sketch of Q is below.



# Classifying Quadratic Forms



## Quadratic Forms and Eigenvalues



**Proof (if time permits):** 

We can now return to our motivating question (from first slide): does this inequality hold for all x, y?

$$x^2 - 6xy + 9y^2 \ge 0$$

### Section 7.3 : Constrained Optimization

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

## Topics and Objectives

### Topics

- $1. \ \mbox{Constrained optimization}$  as an eigenvalue problem
- 2. Distance and orthogonality constraints

#### Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems that are subject to distance and orthogonality constraints.

The surface of a unit sphere in  $\mathbb{R}^3$  is given by

$$1=x_1^2+x_2^2+x_3^2=||\vec{x}||^2$$

Q is a quantity we want to optimize

$$Q(\vec{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$



Find the largest and smallest values of Q on the surface of the sphere.

### A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

$$Q(\vec{x}) = \vec{x}^T A \vec{x}$$

subject to

$$||\vec{x}|| = 1$$

That is, we want to find

$$m = \min\{Q(\vec{x}) : ||\vec{x}|| = 1\}$$
$$M = \max\{Q(\vec{x}) : ||\vec{x}|| = 1\}$$

This is an example of a **constrained optimization** problem. Note that we may also want to know where these extreme values are obtained.

## Constrained Optimization and Eigenvalues



#### **Proof:**

Calculate the maximum and minimum values of  $Q(\vec{x}) = \vec{x}^T A \vec{x}$ ,  $\vec{x} \in \mathbb{R}^3$ , subject to  $||\vec{x}|| = 1$ , and identify points where these values are obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3$$

The image below is the unit sphere whose surface is colored according to the quadratic from the previous example. Notice the agreement between our solution and the image.



## An Orthogonality Constraint

Theorem Suppose  $Q = \vec{x}^T A \vec{x}$ , A is a real  $n \times n$  symmetric matrix, with eigenvalues  $\lambda_1 > \lambda_2 \ldots > \lambda_n$ and associated eigenvectors  $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ Subject to the constraints  $||\vec{x}|| = 1$  and  $\vec{x} \cdot \vec{u}_1 = 0$ , • The maximum value of  $Q(\vec{x}) = \lambda_2$ , attained at  $\vec{x} = \vec{u}_*$ . • The minimum value of  $Q(\vec{x}) = \lambda_n$ , attained at  $\vec{x} = \vec{u}_n$ . Note that  $\lambda_2$  is the second largest eigenvalue of A.

Calculate the maximum value of  $Q(\vec{x}) = \vec{x}^T A \vec{x}$ ,  $\vec{x} \in \mathbb{R}^3$ , subject to  $||\vec{x}|| = 1$  and to  $\vec{x} \cdot \vec{u}_1 = 0$ , and identify a point where this maximum is obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3, \qquad \vec{u}_1 = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$$

## Example 4 (if time permits)

Calculate the maximum value of  $Q(\vec{x}) = \vec{x}^T A \vec{x}$ ,  $\vec{x} \in \mathbb{R}^3$ , subject to  $||\vec{x}|| = 5$ , and identify a point where this maximum is obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3$$

### Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

## Topics and Objectives

### Topics

1. The Singular Value Decomposition (SVD) and some of its applications.

#### Learning Objectives

- $1. \ \mbox{Compute the SVD}$  for a rectangular matrix.
- 2. Apply the SVD to
  - estimate the rank and condition number of a matrix,
  - construct a basis for the four fundamental spaces of a matrix, and
  - construct a spectral decomposition of a matrix.

The linear transform whose standard matrix is

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{2} & 0\\ 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 2 & -1\\ 2 & 1 \end{pmatrix}$$

maps the unit circle in  $\mathbb{R}^2$  to an ellipse, as shown below. Identify the unit vector  $\vec{x}$  in which  $||A\vec{x}||$  is maximized and compute this length.



# Example 1 - Solution

### Singular Values

The matrix  $A^T A$  is always symmetric, with non-negative eigenvalues  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ . Let  $\{\vec{v}_1, \ldots, \vec{v}_n\}$  be the associated orthonormal eigenvectors. Then

$$||A\vec{v}_j||^2 =$$

If the A has rank r, then  $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$  is an orthogonal basis for ColA: For  $1 \le j < k \le r$ :

$$(A\vec{v}_j)^T A\vec{v}_k =$$

**Definition:**  $\sigma_1 = \sqrt{\lambda_1} \ge \sigma_2 = \sqrt{\lambda_2} \cdots \ge \sigma_n = \sqrt{\lambda_n}$  are the singular values of A.

## The SVD

Theorem: Singular Value Decomposition A  $m \times n$  matrix with rank r and non-zero singular values  $\sigma_1 \geq 1$  $\sigma_2 \geq \cdots \geq \sigma_r$  has a decomposition  $U\Sigma V^T$  where  $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & \vdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \dots & \sigma_r & \mathbf{0} \end{bmatrix}$ U is a  $m \times m$  orthogonal matrix, and V is a  $n \times n$  orthogonal matrix.



### Algorithm to find the SVD of $\boldsymbol{A}$

Suppose A is  $m \times n$  and has rank  $r \leq n$ .

1. Compute the squared singular values of  $A^T A$ ,  $\sigma_i^2$ , and construct  $\Sigma$ .

2. Compute the unit singular vectors of  $A^T A$ ,  $\vec{v_i}$ , use them to form V.

3. Compute an orthonormal basis for ColA using

$$\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i, \quad i = 1, 2, \dots r$$

Extend the set  $\{\vec{u}_i\}$  to form an orthonomal basis for  $\mathbb{R}^m$ , use the basis for form U.

Example 2: Write down the singular value decomposition for

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} =$$



Section 7.4 Slide 42

# Applications of the SVD

The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the first four).

- Estimating the rank and condition number of a matrix
- Constructing bases for the four fundamental spaces
- Computing the pseudoinverse of a matrix
- Linear least squares problems
- Non-linear least-squares https://en.wikipedia.org/wiki/Non-linear\_least\_squares
- Machine learning and data mining https://en.wikipedia.org/wiki/K-SVD
- Facial recognition https://en.wikipedia.org/wiki/Eigenface
- Principle component analysis https://en.wikipedia.org/wiki/Principal\_component\_analysis
- Image compression

Students are expected to be familiar with the  $1^{st}$  two items in the list.

## The Condition Number of a Matrix

If A is an invertible  $n\times n$  matrix, the ratio

 $\frac{\sigma_1}{\sigma_n}$ 

is the **condition number** of A.

Note that:

- The condition number of a matrix describes the sensitivity of a solution to  $A\vec{x} = \vec{b}$  is to errors in A.
- We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course.

For  $A=U\Sigma V^*,$  determine the rank of A, and orthonormal bases for Null A and  $({\rm Col}A)^{\perp}.$ 

$$\mathbf{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{\Sigma} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{V}^* = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix}$$

# Example 4 - Solution

### The Four Fundamental Spaces



**FIGURE 4** The four fundamental subspaces and the action of A.

- 1.  $A\vec{v}_s = \sigma_s \vec{u}_s$ .
- 2.  $\vec{v}_1, \ldots, \vec{v}_r$  is an orthonormal basis for RowA.
- 3.  $\vec{u}_1, \ldots, \vec{u}_r$  is an orthonormal basis for ColA.
- 4.  $\vec{v}_{r+1}, \ldots, \vec{v}_n$  is an orthonormal basis for NullA.
- 5.  $\vec{u}_{r+1}, \ldots, \vec{u}_n$  is an orthonormal basis for Null $A^T$ .

### The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for any matrix with rank  $\boldsymbol{r}$ 

$$A = \sum_{s=1}^{r} \sigma_s \vec{u}_s \vec{v}_s^T,$$

where  $\vec{u}_s, \vec{v}_s$  are the  $s^{th}$  columns of U and V respectively.

For the case when  $A = A^T$ , we obtain the same spectral decomposition that we encountered in Section 7.2.