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Topics and Objectives

Topics

We will cover these topics in this section.

1. Markov chains

2. Steady-state vectors

3. Convergence

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Construct stochastic matrices and probability vectors.

2. Model and solve real-world problems using Markov chains (e.g. -
find a steady-state vector for a Markov chain)

3. Determine whether a stochastic matrix is regular.
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Example 1

A small town has two libraries, A and B.

After 1 month, among the books checked out of A,
I 80% returned to A
I 20% returned to B

After 1 month, among the books checked out of B,
I 30% returned to A
I 70% returned to B

If both libraries have 1000 books today, how many books does each
library have after 1 month? After one year? After n months? A place to
simulate this is http://setosa.io/markov/index.html

A B

0.2

0.8

0.3

0.7
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Example 1 Continued

The books are equally divided by between the two branches, denoted by

~x0 =


.5
.5

�
. What is the distribution after 1 month, call it ~x1? After two

months?

After k months, the distribution is ~xk, which is what in terms of ~x0?
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Markov Chains

A few definitions:

A probability vector is a vector, ~x, with non-negative elements that
sum to 1.

A stochastic matrix is a square matrix, P , whose columns are
probability vectors.

A Markov chain is a sequence of probability vectors ~xk, and a
stochastic matrix P , such that:

~xk+1 = P~xk, k = 0, 1, 2, . . .

A steady-state vector for P is a vector ~q such that P~q = ~q.
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Example 2

Determine a steady-state vector for the stochastic matrix

✓
.8 .3
.2 .7

◆
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Convergence

We often want to know what happens to a process,

~xk+1 = P~xk, k = 0, 1, 2, . . .

as k ! 1.

Definition: a stochastic matrix P is regular if there is some k such that
P k only contains strictly positive entries.

If P is a regular stochastic matrix, then P has a unique steady-
state vector ~q, and ~xk+1 = P~xk converges to ~q as k ! 1.

Theorem
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Example 3

A car rental company has 3 rental locations, A, B, and C. Cars can be
returned at any location. The table below gives the pattern of rental and
returns for a given week.

rented from
A B C

returned to
A .8 .1 .2
B .2 .6 .3
C .0 .3 .5

There are 10 cars at each location today.

a) Construct a stochastic matrix, P , for this problem.

b) What happens to the distribution of cars after a long time? You
may assume that P is regular.
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A B

C

.2

.8

.1

.6

.3
.2

.5

.3

P =

2

4
.8 .1 .2
.2 .6 .3
.0 .3 .5

3

5
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Eigenvectors, eigenvalues, eigenspaces

2. Eigenvalue theorems

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Verify that a given vector is an eigenvector of a matrix.

2. Verify that a scalar is an eigenvalue of a matrix.

3. Construct an eigenspace for a matrix.

4. Apply theorems related to eigenvalues (for example, to characterize
the invertibility of a matrix).
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Eigenvectors and Eigenvalues

If A 2 Rn⇥n, and there is a ~v 6= ~0 in Rn, and

A~v = �~v

then ~v is an eigenvector for A, and � 2 C is the corresponding
eigenvalue.

Note that

We will only consider square matrices.

If � 2 R, then
I when � > 0, A~v and ~v point in the same direction
I when � < 0, A~v and ~v point in opposite directions

Even when all entries of A and ~v are real, � can be complex (a
rotation of the plane has no real eigenvalues.)

We explore complex eigenvalues in Section 5.5.

Section 5.1 Slide 3



Example 1

Which of the following are eigenvectors of A =

✓
1 1
1 1

◆
? What are the

corresponding eigenvalues?

a) ~v1 =

✓
1
1

◆

b) ~v2 =

✓
1
�1

◆

c) ~v3 =

✓
0
0

◆
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Example 2

Confirm that � = 3 is an eigenvalue of A =

✓
2 �4
�1 �1

◆
.
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Eigenspace

Suppose A 2 Rn⇥n. The eigenvectors for a given � span a
subspace of Rn called the �-eigenspace of A.

Definition

Note: the �-eigenspace for matrix A is Nul(A� �I).

Example 3

Construct a basis for the eigenspaces for the matrix whose eigenvalues
are given, and sketch the eigenvectors.

✓
5 �6
3 �4

◆
, � = �1, 2
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Theorems

Proofs for the most these theorems are in Section 5.1. If time permits,
we will explain or prove all/most of these theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues.

2. A invertible , 0 is not an eigenvalue of A.

3. Stochastic matrices have an eigenvalue equal to 1.

4. If ~v1,~v2, . . . ,~vk are eigenvectors that correspond to distinct
eigenvalues, then ~v1,~v2, . . . ,~vk are linearly independent.
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Warning!

We can’t determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Example: suppose A =


1 1
1 1

�
. The eigenvalues are � = 2, 0, because

A


1
1

�
=


1 1
1 1

� 
1
1

�
=

A


1
�1

�
=


1 1
1 1

� 
1
�1

�
=

But the reduced echelon form of A is:

The reduced echelon form is triangular, and its eigenvalues are:
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Topics and Objectives

Topics

We will cover these topics in this section.

1. The characteristic polynomial of a matrix

2. Algebraic and geometric multiplicity of eigenvalues

3. Similar matrices

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Construct the characteristic polynomial of a matrix and use it to
identify eigenvalues and their multiplicities.

2. Characterize the long-term behaviour of dynamical systems using
eigenvalue decompositions.
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The Characteristic Polynomial

Recall:

� is an eigenvalue of A , (A� �I) is not

Therefore, to calculate the eigenvalues of A, we can solve

det(A� �I) =

The quantity det(A� �I) is the characteristic polynomial of A.

The quantity det(A� �I) = 0 is the characteristic equation of A.

The roots of the characteristic polynomial are the of A.
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Example

The characteristic polynomial of A =

✓
5 2
2 1

◆
is:

So the eigenvalues of A are:
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Characteristic Polynomial of 2⇥ 2 Matrices

Express the characteristic equation of

M =

✓
a b
c d

◆

in terms of its determinant. What is the equation when M is singular?
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Algebraic Multiplicity

The algebraic multiplicity of an eigenvalue is its multiplicity
as a root of the characteristic polynomial.

Definition

Example

Compute the algebraic multiplicities of the eigenvalues for the matrix
0

BB@

1 0 0 0
0 0 0 0
0 0 �1 0
0 0 0 0

1

CCA
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Geometric Multiplicity

The geometric multiplicity of an eigenvalue � is the dimension
of Null(A� �I).

Definition

1. Geometric multiplicity is always at least 1. It can be smaller than
algebraic multiplicity.

2. Here is the basic example:
✓
0 1
0 0

◆

� = 0 is the only eigenvalue. Its algebraic multiplicity is 2, but the
geometric multiplicity is 1.
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Example

Give an example of a 4⇥ 4 matrix with � = 0 the only eigenvalue, but
the geometric multiplicity of � = 0 is one.
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Recall: Long-Term Behavior of Markov Chains

Recall:

We often want to know what happens to a Markov Chain

~xk+1 = P~xk, k = 0, 1, 2, . . .

as k ! 1.

If P is regular, then there is a

Now lets ask:

If we don’t know whether P is regular, what else might we do to
describe the long-term behavior of the system?

What can eigenvalues tell us about the behavior of these systems?
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Example: Eigenvalues and Markov Chains

Consider the Markov Chain:

~xk+1 = P~xk =

✓
0.6 0.4
0.4 0.6

◆
~xk, k = 0, 1, 2, 3, . . . , ~x0 =

✓
1
0

◆

This system can be represented schematically with two nodes, A and B:

A B

0.4

0.6

0.4

0.6

Goal: use eigenvalues to describe the long-term behavior of our system.
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What are the eigenvalues of P?

What are the corresponding eigenvectors of P?
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Use the eigenvalues and eigenvectors of P to analyze the long-term
behaviour of the system. In other words, determine what ~xk tends to as
k ! 1.
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Similar Matrices

Two n⇥n matrices A and B are similar if there is a matrix P so that
A = PBP�1.

Definition

If A and B similar, then they have the same characteristic polynomial.

Theorem

If time permits, we will explain or prove this theorem in lecture. Note:

Our textbook introduces similar matrices in Section 5.2, but doesn’t
have exercises on this concept until 5.3.

Two matrices, A and B, do not need to be similar to have the same
eigenvalues. For example,

✓
0 1
0 0

◆
and

✓
0 0
0 0

◆
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Additional Examples (if time permits)

1. True or false.
a) If A is similar to the identity matrix, then A is equal to the identity

matrix.
b) A row replacement operation on a matrix does not change its

eigenvalues.

2. For what values of k does the matrix have one real eigenvalue with
algebraic multiplicity 2?

✓
�3 k
2 �6

◆
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