## Math 3215: Intro to Probability and Statistics

## Exam 1 Solution

1. Let $A$ and $B$ be two events such that $\mathbb{P}(A)=1 / 2, \mathbb{P}(B)=1 / 4$, and $\mathbb{P}(A \cup B)=7 / 12$.
(a) (5 points) Find $\mathbb{P}(A \cap B)$.

ANS: $\mathbb{P}(A \cap B)=1 / 6$.
(b) (5 points) Find $\mathbb{P}\left(A^{c} \mid B\right)$.

ANS: $\mathbb{P}\left(A^{c} \mid B\right)=1 / 3$.
(c) (5 points) Is $A$ and $B$ independent? Justify your answer.

ANS: No, because $\mathbb{P}(A \cap B)=1 / 6 \neq \mathbb{P}(A) \mathbb{P}(B)$.
2. Consider an urn containing 12 balls, of which 5 are green and 7 are red. A sample of size 9 is to be drawn at random. Let $A$ be the event that first 3 balls are green, and $B$ the event that exactly 4 green balls are drawn.
(a) (8 points) If 9 balls are drawn with replacement, what is $\mathbb{P}(A \mid B)$ ?

ANS: $\mathbb{P}(A \mid B)=\frac{1}{21}$.
(b) (7 points) If 9 balls are drawn without replacement, what is $\mathbb{P}(A \mid B)$ ? (Hint: You may use Bayes' formula.)

ANS: $\mathbb{P}(A \mid B)=\frac{1}{21}$.
3. (10 points) A hat contains 10 coins, where 9 are fair but one is double-headed (always landing Heads). A coin is chosen uniformly at random. The chosen coin is flipped 4 times. Find the probability that the chosen coin is doubleheaded given that it lands Heads all 4 times.
ANS: Let $A$ be the event that the chosen coin is double-headed and $B$ the event that it lands Heads all 4 times. Then $\mathbb{P}(A \mid B)=\frac{16}{25}$.
4. Suppose $X$ is a random variable taking values in $S=\{0,1,2,3, \ldots\}$ with PMF

$$
f(k)= \begin{cases}c, & k=0, \\ \frac{1}{3^{k} k!}, & k=1,2, \cdots .\end{cases}
$$

(a) (5 points) Find the value of $c$ that would make this a valid probability model.

$$
\text { ANS: } c=2-e^{1 / 3}
$$

(b) (5 points) Find $\mathbb{E}[X]$.

$$
\text { ANS: } \mathbb{E}[X]=\frac{1}{3} e^{1 / 3} \text {. }
$$

(c) (5 points) Find $\mathbb{E}\left[3^{X}\right]$.
5. Let $X$ be a random variable with moment generating function given by $M(t)=c(1-2 t)^{-5}$ for $t<\frac{1}{2}$ for some constant $c$.
(a) (5 points) Find the constant $c$.

ANS: $c=1$.
(b) (5 points) Find the expectation of $X$.

$$
\text { ANS: } \mathbb{E}[X]=10
$$

(c) (5 points) Find the variance of $X$.

$$
\text { ANS: } \operatorname{Var}(X)=20
$$

6. An urn contains 4 white and 5 black balls. We randomly choose 4 balls. If 2 of them are white and 2 are black, we stop. If not, we replace the balls in the urn and again randomly select 4 balls. This continues until exactly 2 of the 4 chosen are white.
(a) (7 points) What is the probability that we shall make exactly 10 selections?
(b) (8 points) What is the probability that we select 4 balls more than 5 times?

ANS: $(11 / 21)^{9}(10 / 21)$.
ANS: $(11 / 21)^{5}$.
7. In a weekly lottery you have probability .05 of winning a prize with a single ticket. Suppose you buy 1 ticket per week for 20 weeks and let $X$ be the number of winning tickets.
(a) (5 points) Find $\mathbb{E}[X]$.

ANS: $\mathbb{E}[X]=1$.
(b) (5 points) What is the probability that among the twenty tickets you buy more than 3 winning tickets? Use the corresponding tables to find an approximate value for this probability.

ANS: $\mathbb{P}(X>3)=0.0159$.
(c) (5 points) Using a Poisson approximation, write down an expression for the probability that among the twenty tickets you buy more than 3 winning tickets. Use the corresponding tables to find an approximate value for this probability.

ANS: $\mathbb{P}(X>3)=0.019$.

