

In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true	false	Ax=b mxn (N3m)
\bigotimes	\bigcirc	If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.
\bigcirc	\otimes	A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues.
\bigotimes	\bigcirc	$x^2 - 2xy + 4y^2 \ge 0$ for all real values of x and y. A= $\begin{bmatrix} 1 & 1 \\ -1 & 4 \end{bmatrix}$
\otimes	\bigcirc	If matrix A has linearly dependent columns, then $\dim((\operatorname{Row} A)^{\perp}) > 0$.
\bigotimes	\bigcirc	If λ is an eigenvalue of A , then dim $(\text{Null}(A - \lambda I)) > 0$.
\bigotimes	\bigcirc	If A has QR decomposition $A = QR$, then $ColA = ColQ$.
\bigotimes	\bigcirc	If A has LU decomposition $A = LU$, then $rank(A) = rank(U)$.
\bigotimes	\bigcirc	If A has LU decomposition $A = LU$, then $\dim(\operatorname{Null} A) = \dim(\operatorname{Null} U)$).
		4

2. Give an example of the following.

ive an example of the following. i) A 4 × 3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by $\left[\begin{array}{c} 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \end{array}\right] = \widetilde{A}^{\uparrow}$ the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (1) (1 - 1 - 2 - 3)ii) A 3×4 matrix A, that is in RREF, and satisfies dim $((Row A)^{\perp}) = 2$ and dim $((Col A)^{\perp}) = 1$

3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) Col(A), and b) the eigenspace corresponding to eigenvalue $\lambda = 5$.

Egn Vour

- 4. Fill in the blanks.
 - (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have?
 - (b) Consider the following linear transformation.

Consider the following linear transformation.

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}) = A \cdot \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$
The domain of T is _____. The image of $\vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ under $T(\vec{x})$ is $\begin{pmatrix} \\ \end{pmatrix}$. The co-domain of T is _____. The range of T is:

$$\begin{bmatrix} \int (A) & A = \begin{bmatrix} T(e_{1}) & T(e_{2}) & = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 & 1 \end{bmatrix}$$

5. Four points in \mathbb{R}^2 with coordinates (t, y) are (0, 1), $(\frac{1}{4}, \frac{1}{2})$, $(\frac{1}{2}, -\frac{1}{2})$, and $(\frac{3}{4}, -\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y = c_1 \cos(2\pi t) + c_2 \sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below.

$$c_1 =$$

$$1 = (1 \cdot C_{05}(0)) + (2 STn(0)) = 1 \cdot C_{1} + 0 \cdot C_{2}$$

$$\frac{1}{2} = C_{1} \cdot C_{05}(T) + C_{2} STn(T) = 0 \cdot C_{1} + 1 \cdot C_{2}$$

$$-\frac{1}{2} = C_{1} \cdot C_{05}(T) + C_{2} STn(T) = -1 \cdot C_{1} + 0 \cdot C_{2}$$

$$-\frac{1}{2} = C_{1} \cdot C_{05}(T) + C_{2} STn(T) = 0 \cdot C_{1} - 1 \cdot C_{2}$$

$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} A_{2} X = b$$

$$I$$

$$A^{T}A_{3} X = A^{T}b.$$
Normal Eqn.

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false. true false

\bigotimes	\bigcirc	For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W , the vector $\vec{v} = \vec{y} - \text{proj}_W \vec{y}$ is orthogonal to W .
\bigcirc	\bigotimes	If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
\bigcirc	$\langle\!$	If a matrix is invertible it is also diagonalizable. $\begin{bmatrix} 1 & k \\ 0 & l \end{bmatrix} = \begin{bmatrix} 1 & k \\ 0 & l \end{bmatrix}$
\bigotimes	\bigcirc	If E is an echelon form of A, then $\operatorname{Null} A = \operatorname{Null} E$.
\bigcirc	\bigotimes	If the SVD of $n \times n$ singular matrix A is $A = U\Sigma V^T$, then $\operatorname{Col} A = \underbrace{\operatorname{Col} U}_{n \times n}$.
0	\bigcirc	If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, $r = \operatorname{rank} A$, then the first r columns of V give a basis for Null A .

2. Give an example of:

a) a vector
$$\vec{u} \in \mathbb{R}^3$$
 such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} a\\2\\c \end{pmatrix}$

b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- c) A 3 × 4 matrix, A, and Col(A)^{\perp} is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$.
- d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate

- 1. $A(\vec{v}_1 + 4\vec{v}_2)$
- 2. A^{10}
- 3. $\lim_{k \to \infty} A^k (\vec{v}_1 + 4\vec{v}_2)$

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible	impossible		
0	0	$Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A .	
\bigcirc	\bigcirc	The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.	
\bigcirc	\bigcirc	The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.	
\bigcirc	0	A is 2 × 2, the algebraic multiplicity of eigenvalue $\lambda = 0$ is 1, and $\dim(\operatorname{Col}(A)^{\perp})$ is equal to 0.	
\bigcirc	0	Stochastic matrix P has zero entries and is regular.	
\bigcirc	\bigcirc	${\cal A}$ is a square matrix that is not diagonalizable, but ${\cal A}^2$ is diagonalizable.	
\bigcirc	\bigcirc	The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m < n$.	

2. Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

- 3. Fill in the blanks.
 - (a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^2 clockwise by $\pi/2$ radians about the origin, then reflects them through the line $x_1 = x_2$. What is the value of det(A)?
 - (b) *B* and *C* are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?
 - (c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?
 - (d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?
 - (e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?
 - (f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is .
- 4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.

Diagonalization

A ZVI, ---, Val eigenvector la basis for IR" $A = P \cdot D \cdot P^{-1}$ $[v_{1}, ---, v_{n}] \qquad (\lambda_{1}, 0)$ $(\lambda_{2}, 0)$ -) P=PT (=> Pis an orthogonal matrix Spectral Thm. A: Symm. \Rightarrow $A = P \cdot D \cdot P^T$