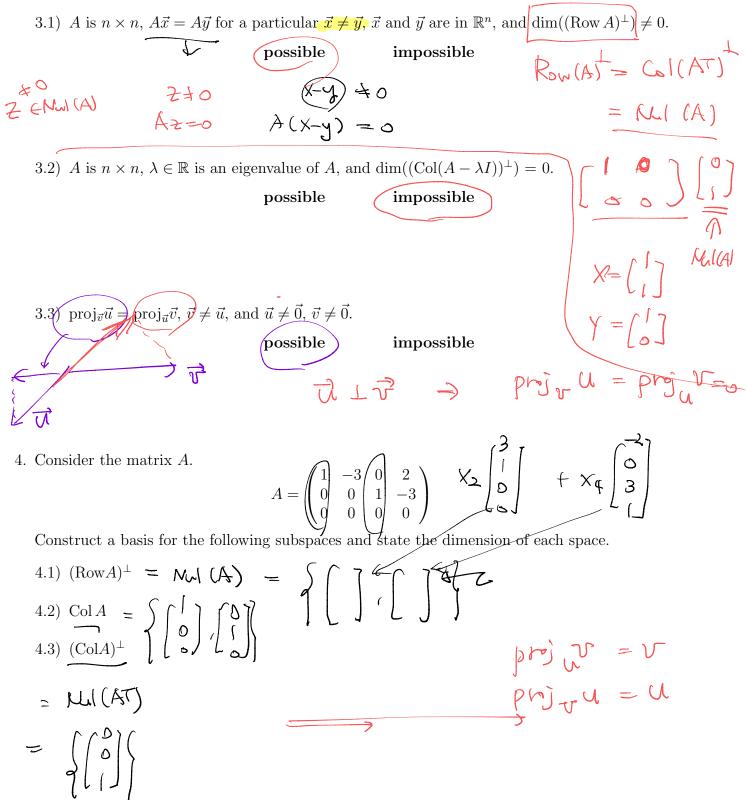
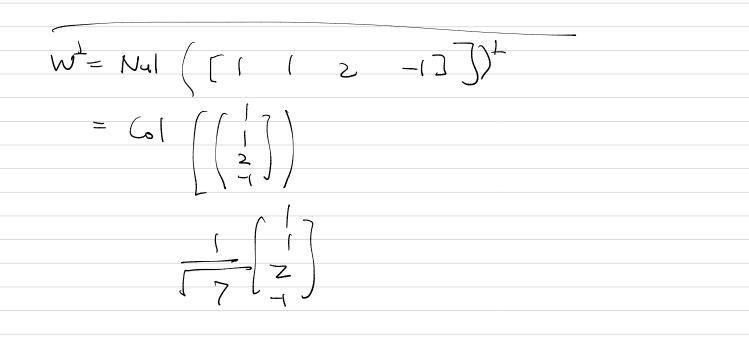
W subspace  $Tn R^{h}$  $dTm(W) + dTm(W^{\perp}) = n$ 


Midterm 3 Lecture Review Activity, Math1554

1. Indicate **true** if the statement is true, otherwise, indicate **false**.

true false  
a) If S is a two-dimensional subspace of 
$$\mathbb{R}^{20}$$
, then the dimension of  $\mathbb{N}$   
b) An eigenspace is a subspace spanned by a single eigenvector.  
c) The  $n \times n$  zero matrix can be diagonalized.  
d) A least-squares line that best fits the data points  $\mathbb{N}$  of  $\mathbb{N}$   
(0, y<sub>1</sub>), (1, y<sub>2</sub>), (2, y<sub>3</sub>) is unique for any values  $y_1, y_2, y_3$ .  
2. If possible, give an example of the following.  
2.1) A matrix, A, that is in cchelon form, and dim ((RowA)<sup>⊥</sup>) = 2, dim ((Col A)<sup>⊥</sup>) = 1  
2.2) A fingular  $\mathbb{N} \times 2$  matrix phose eigenspace corresponding to eigenvalue  $\lambda = 2$  is the line  $x_1 = 2x_7$ . The other eigenspace of the matrix is the  $x_2$  axis.  
(A) =  $\mathbb{P} \cdot \mathbb{D}$   $\mathbb{P}^4 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$   
2.3) A subspace S, of  $\mathbb{R}^4$  that satisfies dim(S) = dim(S<sup>⊥</sup>) = 3.  
dim (S)  $\notin$  dim (S<sup>⊥</sup>) = 4  
Note Posseible  
2.4) A 2 × 3 matrix, A, that is in RREF. (Row A) is spanned by  $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ .  
 $\begin{pmatrix} -1 & 0 \\ 0 \\ 1 \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 \\ -2 \\ -3 \end{pmatrix}$ 

 $\begin{cases} (0, \gamma_1) & (1, \gamma_2) & (2, \gamma_3) \\ y = \beta_0 + \beta_1 \chi \end{cases}$  $\Rightarrow \begin{cases} y_1 = \beta_0 + \beta_1 \cdot 0 \\ y_2 = \beta_0 + \beta_1 \cdot 1 \\ y_3 = \beta_0 + \beta_1 \cdot 2 \end{cases}$  $\begin{array}{c} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \end{array} = \left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \begin{array}{c} \beta_{6} \\ \beta_{1} \end{array} \right)$  $R_{ow}(A) = C_{o}(A^{T}) = N_{u}((A^{T})^{T}) = N_{u}(A)$ How to find dim (Row(A))  $\frac{\operatorname{dim}(\operatorname{Row}(A))}{\operatorname{dim}(\operatorname{Row}(A))} = \frac{2}{1-2}$  $\begin{bmatrix} \times & \star \\ \vdots & \odot & \odot \end{bmatrix}$   $dim (Gol(A)^{\perp}) = 1$ Col(A) in  $\mathbb{R}$ 


3. Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. For the situations that are possible give an example.



11/6/24

\$-<del>0</del> in R<sup>5</sup> W: 4-dim1 75 W = (o)(Q)×, , × 2 , × 3 , × p ſ  $= C_{0}(0.07)$ Ar ν all VEN Nul(A) = W - 2>  $W^{\perp} = (A)^{\perp} = Nul(A^{\intercal})$ =  $N_{\rm sl}(A)$  $A^{T} = (Q \cdot Q^{T})^{T} = (Q^{T})^{T} \cdot Q^{T} = Q \cdot Q^{T} = A$ 2: eigenvalue for A det  $(A - \lambda I) = 0 = det ((A - \lambda I)^T)$  $\Rightarrow$ = let (AT-XI) X : eigeneahn for AT. =)  $JTM \left( Null \left( A^{T} - \lambda T \right) \right) \neq 0$ -) dim  $(C_{A} - \lambda I)^{\perp}$ Impossible

10  $\dim (\operatorname{Col}(A)^{\perp}) + \dim (\operatorname{Col}(A)) = 15$ dim (Rou(A)) + di(Rou(A)) = 17 (I) dim (Nu(A)) + di(Rou(A)) = 17

