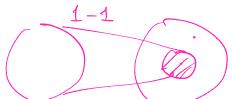


2. Indicate **true** if the statement is true, otherwise, indicate **false**. For the statements that are false, give a counterexample.

	true	false	counter		
a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{M} .	0	\bigotimes		1]	[10]
b) If there are some vectors $\vec{b} \in \mathbb{R}^M$ that are not in the range of $T(\vec{x}) = A\vec{x}$, then there cannot be a pivot in every row of A .	\bigotimes	\bigcirc			
c) If the transform $\vec{x} \mapsto A\vec{x}$ projects points in \mathbb{R}^2 onto a line that passes through the origin, then the transform cannot be one-to-one.	0	0			
Col. of A span IRM (=> Span	~ (s) =	= IR		
Col. of A span IR ^M (=) Span (=) For a	my	P C	zm,	b = f	$\sqrt{\frac{1}{x}}$
	B	EIRM	<pre>c</pre>	$A\vec{x} = \vec{b}$	Consistent

T: R -> IR is onto 1-1 $m \ge n$



AX = o

NP

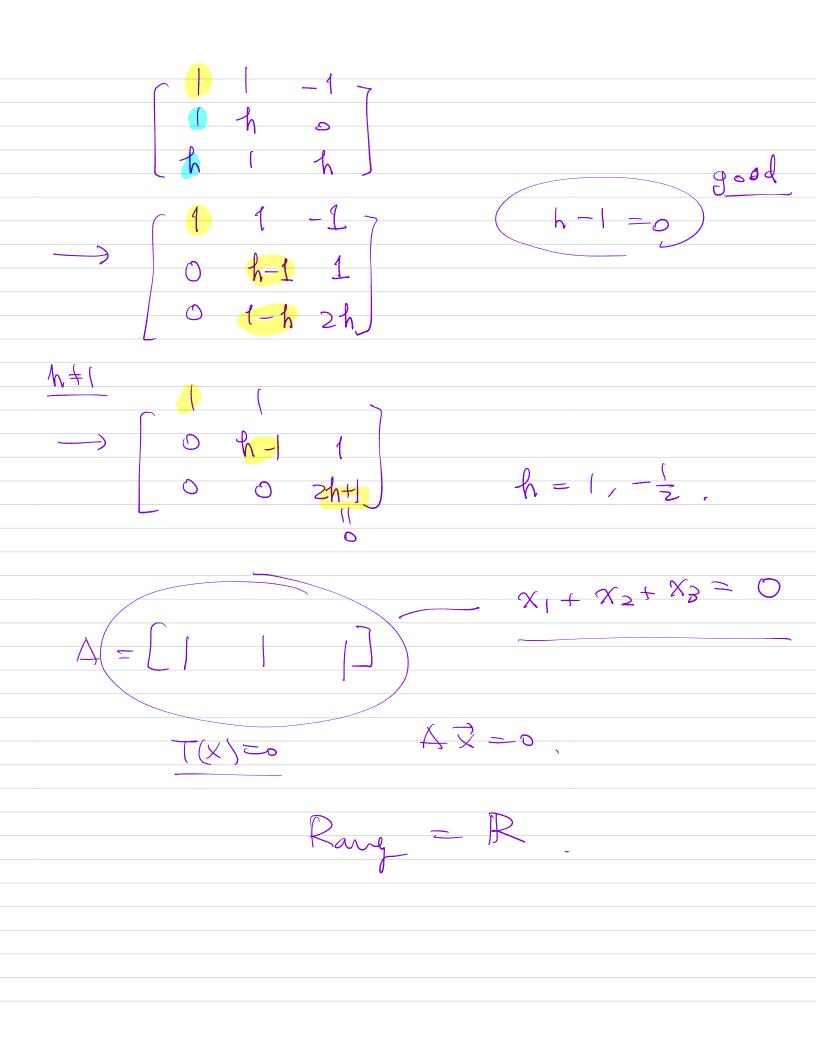
- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A linear system that is homogeneous and has no solutions.
- 4. Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(a) Express the augmented matrix $(A | \vec{b})$ in RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 5 x_{5} - 13 \\ -3 x_{5} - 2 \\ 2 \\ x_{5} \end{bmatrix} = x_{4} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_{5} \begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -13 \\ -2 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$



Every Row Privat Onto : IR 3 t 0 2 Ð 0 (Va] V_1 , ..., V_n Ą = $\int v_{\rm f}$, ----, -> ÂR =0 - hatrivial Solutia > has a fre variable