Midterm 2 Lecture Review Activity, Math 1554

1. (3 points) T_A is the linear transform $x \to Ax$, $A \in \mathbb{R}^{2 \times 2}$, that projects points in \mathbb{R}^2 onto the x_2 -axis. Sketch the nullspace of A, the range of the transform, and the column space of A. How are the range and column space related to each other?

2. Indicate **true** if the statement is true, otherwise, indicate **false**.

a) $S = \{\vec{x} \in \mathbb{R}^3 | x_1 = a, x_2 = 4a, x_3 = x_1 x_2\}$ is a subspace for any $\vec{a} \in \mathbb{R}$. $\bigcirc \otimes$ b) If A is square and non-zero, and $A\vec{x} = A\vec{y}$ for some $\vec{x} \neq \vec{y}$, then $\det(A) \neq 0$. $\bigcirc \otimes$ $\Rightarrow \top N_{of} = 1 - 1 \Rightarrow A$ Not invertible

- 3. If possible, write down an example of a matrix or quantity with the given properties. If it is not possible to do so, write *not possible*.
 - (a) $A ext{ is } 2 \times 2$, $ext{Col}A ext{ is spanned by the vector } \begin{pmatrix} 2\\3 \end{pmatrix}$ and $ext{dim}(ext{Null}(A)) = 1$. $A = \begin{pmatrix} 2 & 0\\ 3 & 0 \end{pmatrix}$ (b) $A ext{ is } 2 \times 2$, $ext{Col}A ext{ is spanned by the vector } \begin{pmatrix} 2\\3 \end{pmatrix}$ and $ext{dim}(ext{Null}(A)) = 0$. $A = \begin{pmatrix} 1 & 0\\ 1 & 0 \end{pmatrix}$

(c) A is in RREF and $T_A : \mathbb{R}^3 \to \mathbb{R}^3$. The vectors u and v are a basis for the range of T. $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, A = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• $A_X = A_y$ A(x-y) = 0 has nontrivial sul.

4. Indicate whether the situations are possible or impossible by filling in the appropriate circle.

		possible	impossible
4.i)	Vectors \vec{u} and \vec{v} are eigenvectors of square matrix A , and $\vec{w} = \vec{u} + \vec{v}$ is also an eigenvector of A .	0	0
4.ii)	$T_A = A\vec{x}$ is one-to-one, dim $(Col(A)) = 4$, and $T_A : \mathbb{R}^3 \to \mathbb{R}^4$.	0	\bigcirc

- 5. (2 points) Fill in the blanks.
 - (a) If A is a 6×4 matrix in RREF and rank(A) = 4, what is the rank of A^T ?
 - (b) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^2 clockwise by π radians about the origin, then scales their *x*-component by a factor of 3, then projects them onto the x_1 -axis. What is the value of det(A)?
- 6. (3 points) A virus is spreading in a lake. Every week,
 - 20% of the healthy fish get sick with the virus, while the other healthy fish remain healthy but could get sick at a later time.
 - 10% of the sick fish recover and can no longer get sick from the virus, 80% of the sick fish remain sick, and 10% of the sick fish die.

Initially there are exactly 1000 fish in the lake.

- a) What is the stochastic matrix, P, for this situation? Is P regular?
- b) Write down any steady-state vector for the corresponding Markov-chain.

