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Section 1.

Random Variables of the

Continuous Type



Continuous Random Variables

Let the random variable X denote the outcome when a point is selected at

random from an interval [0, 1].

If the experiment is performed in a fair manner, it is reasonable to assume

that the probability that the point is selected from an interval [13 ,
1
2 ] is

The cdf of X is

1

⒗rest number.

-

- I
P =size of 15,t] =I - 5 =5.

#=x [i]
Size =

x

D ' 11)=0
- P(t x x x ) =4
·i

X 1 I I
-

I 2

I =P(X =1),P(X =2) =t



Continuous Random Variables

Definition

We say a random variable X on a sample space S is a continuous

random variable if there exists a function f (x) such that

• f (x) � 0 for all x ,

•
R
S(X ) f (x) dx = 1, and

• For any interval (a, b) ⇢ R,

P(a < X < b) =

Z b

a
f (x) dx .

The function f (x) is called the probability density function (pdf) of X .
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Continuous Random Variables

The cdf of X is

The expectation (mean) of X is

The variance of X is

The standard deviation of X is

The moment generating function of X is

3

X is contin need not to be conti.
- E

there exists a density f(x)
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Continuous Random Variables

Properties

The pmf of a discrete random variable is bounded by 1. But for pdf,

f (x) can be greater than 1.

For cdf F , we have F 0(x) = f (x) where F is di↵erentiable at x .
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Continuous Random Variables

Example

Let X be a continuous random variable with a pdf g(x) = 2x for

0 < x < 1.

Find the cdf and the expectation.
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Continuous Random Variables

Example

Let X be a continuous random variable with a pdf g(x) = 2x for

0 < x < 1.

Find the cdf and the expectation.

5

↳
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Continuous Random Variables

Example

Let X have the pdf f (x) = xe�x . Find the mgf.
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Uniform Random Variables

Definition

X is a uniform random variable if its pdf is constant on its support.

If its support is [a, b], then the pdf is

We denote by X ⇠ U(a, b).
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Uniform Random Variables

Theorem

If X ⇠ U(a, b), then

E[X ] =

Var[X ] =

M(t) =

8

fix =

G a, axed
-o,w.

b
*(a -b

Exercise.

E2x) =Saaxdx =a.(*).-Ea
-

b-a =(b-a).(b +a)
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VarIx) =(a +ab+b) - (a +2ab +b)

= i(a - 2ab +b2) =b



Uniform Random Variables

Example

If X is uniformly distributed over (0, 10), calculate P(X < 3), P(X > 6),

and P(3 < X < 8).

9

X - Unif (0,10)

IP(X(3) =3.t =

0.3
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Uniform Random Variables

Example

A bus travels between the two cities A and B, which are 100 miles apart.

If the bus has a breakdown, the distance from the breakdown to city A

has a U(0, 100) distribution. There are bus service stations in city A, in

B, and in the center of the route between A and B. It is suggested that

it would be more e�cient to have the three stations located 25, 50, and

75 miles, respectively, from A. Do you agree? Why?
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Percentile

The (100p)-th percentile is a number ⇡p such that F (⇡p) = p.

For example, the 50th percentile is the number ⇡ 1
2
= q2 such that

F (⇡ 1
2
) = 1

2 and this is called the median.

The 25th and 75th percentiles are called the first and third quartiles,

respectively, and are denoted by q1 = ⇡0.25 and q3 = ⇡0.75.
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Percentile

Example

Let X be a continuous random variable with pdf f (x) = |x | for
�1 < x < 1. Find q1, q2, q3.
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Exercise

Let f (x) = c
p
x for 0  x  4 be the pdf of a random variable X .

Find c , the cdf of X , and E[X ].
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Section 2.

The Exponential, Gamma, and

Chi-Square Distributions



Exponential random variables

Consider a Poisson random variable X with parameter �.

This represents the number of occurrances in a given interval, say [0, 1].

If � = 5, that means the expected number of occurrances in [0, 1] is 5.

Let W be the waiting time for the first occurrence. Then,

P(W > t) = P(no occurrences in [0, t]) =

for t > 0.
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Exponential random variables

Definition

We say X is an exponential random variable with parameter � (or mean

✓ where � = 1
✓ ) if its pdf is

f (x) = �e��x

for x � 0 and otherwise 0. Here, � is the parameter and ✓ is the mean.
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Exponential random variables

Theorem

Suppose that X is an exponential random variable with parameter � = 1
✓ .

E[X ] = 1
� = ✓

Var[X ] = 1
�2 = ✓2

M(t) = �
��t = 1

1�✓t
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Exponential random variables

Example

Let X have an exponential distribution with a mean ✓ = 20.

Find P(X < 18).
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Exponential random variables

Example

Customers arrive in a certain shop according to an approximate Poison

process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than

five minutes for the arrival of the first customer?

18

- 5.5
⑪(W > 5) = e

=

↓2 IExp. # 20
I I C

1 60
· T ↳ ↑
hour. 1 hour min

-

X =# of customer in 1 hour ~ Poisson(X), 20-

↓

W =waiting time - Exp (20)

4(Ws is) =
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Gamma random variables

Consider a Poisson random variable X with �.

Let W be the waiting time until ↵-th occurrences, then its cdf is

F (t) = P(W  t) = 1� P(W > t) = 1�
↵�1X

k

(�t)ke��t

k!
.

Thus, the pdf is

f (x) =
�(�x)↵�1

(↵� 1)!
e��x .

This random variable is called a gamma random variable with � and ↵

where � = 1
✓ > 0.

This can be extended to non-integer ↵ > 0.

19
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--

u
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/
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Gamma functions

The gamma function is defined by

�(t) =

Z 1

0
y t�1e�y dy

for t > 0.

By integration by parts, we have

20
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-
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Gamma functions

In particular, �(1) =

�(2) =

�(3) =

�(n) =

for integers n.

21

Hef X - Gamma (X,) if

forf(x) =x***. ***xx0.

↑

(t) =P (t-1) · (t -1) ->P(n) =(n-1)!
S
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E
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- ne
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Gamma random variables

Theorem

E[X ] = ↵
�

Var[X ] = ↵
�2

M(t) = 1
(1�✓t)↵ for t  1

✓ .

22

X-Gamma (X.C)

7 =x4*,*40.

Ht) =S8 y
*

edy/ AIT/)

I When computing, use definition of

- Gamma functions

O = I



Gamma random variables

Example

Suppose the number of customers per hour arriving at a shop follows a

Poisson random variable with mean 20.

That is, if a minute is our unit, then � = 1
3 .

What is the probability that the second customer arrives more than five

minutes after the shop opens for the day?

23

fix-xx=.x

X
=

mean of Poisson.

8 =mean of Exp.

W =waiting time for and customs - Gamma(, 2)

⑪(W - ) = xe*dx = yesdy
I =y,dx =dy -Y

-(dy=(- yet+ (dy
=
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Chi-square distribution

Let X have a gamma distribution with ✓ = 2 and ↵ = r/2, where r is a

positive integer.

The pdf of X is

f (x) =
1

�( r2)2
r
2
x

r
2�1e�

x
2

for x > 0.

We say that X has a chi-square distribution with r degrees of freedom and

we use the notation X ⇠ �2(r).

24
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Exercise

Let X have an exponential distribution with mean ✓.

Compute P(X > 15|X > 10) and P(X > 5).

25

x =6

-X-5-50

① 4(X)+) =

-
x

=P(X)5) =
e
-

=e
2

&P(X>t+s/x xt) =P(x >s)

IP(X > 10 +5(x > 10) =P(X > 5) =e4.



Section 3.

The Normal Distribution

Central Limit Theorem.



Gaussian random variables

Definition

We say X is a Gaussian random variable or has a normal distribution if

its pdf is given by

f (x) =
1

�
p
2⇡

exp

✓
�(x � µ)2

2�2

◆
.

Here µ is the mean and � is the standard deviation. We use the notation

X ⇠ N(µ,�2).

26

- xX

X eX- Exp(x) f(x) =1 x x0

*
x = IR

↑ ↑variance.mean

If M =0, r
=

1.

f(x) =e
*

X- NC0,1) the standard normal (Gaussian).



Gaussian random variables

Theorem
R
R f (x) dx = 1

E[X ] = µ

Var[X ] = �2

M(t) = exp
⇣
µt + �2t2

2

⌘

27

X-N(M,54
fex -are

-

For M=D, E1,

Si x=7 (Gaussian integrall

Z - N10,1)



Standard normal distribution

In particular, if µ = 0 and � = 1, then Z ⇠ N(0, 1) is called the standard

normal random variable.

Example

Let Z is N(0, 1).

Find P(Z  1.24), P(1.24  Z  2.37), and P(�2.37  Z  �1.24).

28

D Z - N10,1) => X =rz +M - N(m, 5)

& X-NM,5 => z =

x- N10,1)

-.

IX

f(x) = ↳ - I
⑧ T

2

be

!

P(E31.24 5 -24) =5(2.37) - (1.2)
-

IX
I

=P(=< z),
-2.37-1.240



Standard normal distribution

Theorem

If X ⇠ N(µ,�2), then Z = X�µ
� is the standard normal.

29



Standard normal distribution

Example

Let X ⇠ N(3, 16).

Find P(4  X  8), P(0  X  5), and P(�2  X  1).

30

~X =43

EZ-No,
M =3,5=16,

-

P(4- X - 8)πP(4-4z +30)
in terms of E

=4(1 - 4 = 5)

=I(0.25z = 1.25)

=(1.25) - (0.25)



Standard normal distribution

Example

Let X ⇠ N(25, 36).

Find a constant c such that P(|X � 25|  c) = 0.9544.

31

O M =25, 52=36,5 =
6

& &
c =12
-
-

-

=- NC0,1 X = 5z +M
=25

4(12 -51sx
=P(1621xx)

=P(()x6)

=(( -5sz 3 I -(5)
- E(- 5)

i
-(z) =P(zx z)

⒔I =a.p-

i - I O
= 2-(4(z =5) - P(z -0))

-(8) =44,2 =2.(((8) - E(0))
-

2
0.9544 =2-2(5) - 1
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Gamma = Ivaiting fire until Ith event

PMF =f(x1 =4 ex

(a- 1)!

Hx) =1 x*dx.

↑(x) =(x-1). P(x-1).
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variance
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=
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Standard normal distribution

Theorem

If Z is the standard normal, then Z 2 is �2(1).

32
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Section 4.

Additional Models



Weibull distribution

Recall the postulates of an approximate Poisson:

• The numbers of occurrences in nonoverlapping subintervals are

independent.

• The probability of two or more occurrences in a su�ciently short

subinterval is essentially zero.

• The probability of exactly one occurrence in a su�ciently short

subinterval of length h is approximately �h.

33

~# ofevents
1
of events - Indep. constant.

I -] [] I A
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Weibull distribution

One can think the event occurrence as a failure and so � can be

understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a

constant failure rate.

Sometimes, it is more natural to choose � as a function of t in the last

assumption.

Then the waiting time W for the first occurrence satisfies

P(W > t) = exp

✓
�
Z t

0
�(w) dw

◆
.

34

X
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Mean
= xxx1 SIds
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Weibull distribution

Definition

If �(t) = ↵ t↵�1

�↵ , then the waiting time W for the first occurrence has

the density

g(t) = �(t) exp

✓
�
Z t

0
�(w) dw

◆
= ↵

t↵�1

�↵
exp

✓
�(

t

�
)↵
◆
.

W is called the Weibull random variable.

35
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Weibull distribution

Example

If �(t) = 2t, then the waiting time W has the density

and it is a Weibull random variable with ↵ = and � = .

If W1,W2 are independent Weibull with ↵ and � above, is the minimum

of W1,W2 Weibull?

36

PlWTA =e-
S 25-

2 -

...
fo 71

1

-

2 1

12 it

-

eW - Weibull (,), xt) =(* =( =2

3
=

1, = 1.

E =minS W1, W2Y

Fz(t) =P(7 xt) =
1 - P(E > t)

=1 - P/min[ We, Wal > t)

-

--West -2t
2

--2.9-t = 1 - e- .ibull
↳ -

P(zxt) =eeds
X(s) =4S = x =2seee :. =I



Weibull distribution

Theorem

The mean of W is µ = ��(1 + 1
↵).

The variance is �2 = �2
�
�(1 + 2

↵)� �(1 + 1
↵)

2
�
.
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Mixed type random variables

Example

Suppose X has a cdf

F (x) =

8
>>>>>>>><

>>>>>>>>:

0, x < 0
x2

4 , 0  x < 1
1
2 , 1  x < 2
x
3 , 2  x < 3

1, x � 3.

Find P(0 < X < 1), P(0 < X  1), and P(X = 1).

38

I
discrete RV- 5)is finite, or countable.
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then exists a sensityin
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· I-
I 23
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③ P(X=1) =4.



Mixed type random variables

Example

Consider the following game: A fair coin is tossed.

If the outcome is heads, the player receives $2.

If the outcome is tails, the player spins a balanced spinner that has a

scale from 0 to 1.

The player then receives that fraction of a dollar associated with the

point selected by the spinner.

Let X be the amount received. Draw the graph of the cdf F (x).

39

of$ - unit 10, 11

X = 2 /
Heads

E
t Tails

Lifusxs)
F(x) =P(X = x) =P) Tails and < x)

N

=-Tails?
e

I I 8

I M I 7
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Exercise

The cdf of X is given by

F (x) =

8
>><

>>:

0, x < �1
x
4 + 1

2 , �1  x < 1

1, x � 1.

Find P(X < 0), P(X < �1), and P(�1  X < 1
2).

40

If 1x2 them P(Xx) =I
-

B) X = 1.5) =P(Tails) =I

x
I

xs-1"

⑧
IP(X)

& I

1P( - 1- x x) =P(Xst) - P(X( -1) =

5

X -5
->8.

1 ------

F(z)
=tt

I I
8

=.-

·.......
->D 1 7

- 1 I

P(x < 0) =F(0) =I
P(X)- 1) =F(1) - P(X =

- 1) =0

↑P(X- 1)


