Chapter 3. Continuous Distribution

Math 3215 Summer 2023

Georgia Institute of Technology

Section 1.

Random Variables of the
Continuous Type

Continuous Random Variables

Let the random variable X denote the outcome when a point is selected at random from an interval $[0,1]$;

If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from an interval $\left[\frac{1}{3}, \frac{1}{2}\right]$ is

The cdf of X is

Continuous Random Variables

Definition
We say a random variable X on a sample space S is a continuous random variable if there exists a function $f(x)$ such that

- $f(x) \geq 0$ for all x,
similar to penf.
- $\int_{S(X)} f(x) d x=1$, and
- For any interval $(a, b) \subset \mathbb{R}$,

$$
\mathbb{P}(X \in(a, b))=\mathbb{P}(a<X<b)=\int_{\underline{\underline{a}}}^{\underline{\underline{b}}} \underline{\underline{f(x)}} d x
$$

The function $f(x)$ is called the probability density function (pdf) of X.
densify
finite, countable \longrightarrow discrete random cariole.
otherwise
Continuous random curable
ex) $[0,1],[0, \infty)$
$(-\infty, \infty)=\mathbb{R}$
X is conte. there exists a density $f(x)^{\circ}$ need not to be cunts.

$$
\mathbb{P}(a<x<b)=\int_{a}^{b} f(x) d x
$$

Continuous Random Variables

The cdf of x is $F(x)=\mathbb{P}(x \leqslant x)=\int_{-\infty}^{x} f(t) d t$
The expectation (mean) of x is $\mathbb{E}[x]=\int_{-\infty}^{\infty} x f(x) d x$
The variance of x is $\operatorname{Var}(x)=\mathbb{E}\left[(x-\mathbb{E}[x])^{\mu}\right]=\int_{-\infty}^{\mu_{n}}(x-\mu)^{2} f(x) d x=\sigma^{2}$
The standard deviation of X is $\quad \operatorname{std}(x)=\sqrt{\operatorname{Var}(x)}=\sigma=\sigma_{x}$
The moment generating function of X is

$$
M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x}-f(x) d x
$$

Properties
The pmf of a discrete random variable is bounded by 1 . But for pdf, $f(x)$ can be greater than 1.

For cdf F, we have $F^{\prime}(x)=f(x)$ where F is differentiable at x.

$$
\begin{aligned}
F(x) & =\mathbb{P}(X \leqslant x)=\int_{-\infty}^{x} f(t) d t \\
\frac{d}{d x} F(x) & =\frac{d}{d x} \int_{-\infty}^{x} f(t) d t \stackrel{=}{\tau} f(x)
\end{aligned}
$$

Fundamental The of Calculus.

Continuous Random Variables

Example

Let X be a continuous random variable with a pdf $(x)=2 x$ for $0<x<1$.

Find the cdf and the expectation.

$$
\begin{aligned}
& F(x)=\underline{P}(x \leqslant x)=\int_{-\infty}^{x} f \cdot(t) d t=\left\{\begin{array}{cc}
0 \quad, & x \leqslant 0 \\
\frac{1}{2} \cdot x \cdot(2 x)=x^{2}, & 0<x<1 \\
1, & x \geqslant 1
\end{array}\right. \\
& F(x)=\left\{\begin{array}{cc}
0 & x \leqslant 0 \\
x^{2} & 0<x<1 \\
1 & x \geqslant 1
\end{array}\right.
\end{aligned}
$$

Continuous Random Variables

Example
Let X be a continuous random variable with a pdf $\stackrel{f}{8}(x)=2 x$ for $0<x<1$.

Find the cdf and the expectation.

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{-\infty}^{\infty} x-\underline{\underline{f(x)}} d x=\int_{0}^{1} x \cdot 2 x d x \\
& =\int_{0}^{1} 2 x^{2} d x=\left[2 \cdot \frac{1}{3} \cdot x^{3}\right]_{0}^{1}=\frac{2}{3}
\end{aligned}
$$

Continuous Random Variables

Example
Let X have the pdf $f(x)=x e^{-x}$. Find the mgf.

$$
\begin{aligned}
& M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{0}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} \underbrace{x}_{t<1}-e^{(t-1) x} d x \\
& \text { IsP } \\
& \int \underset{\downarrow}{u(x) \cdot v^{\uparrow}(x) d x}=\frac{0}{V(x)} \quad u \cdot(x) V(x)-\int u^{\prime}(x) \cdot V(x) d x \\
& =\left[-\frac{1}{(t-1)^{2}} e^{\stackrel{(t-1)}{<_{0}} x}\right]_{0}^{\infty}=\frac{1}{(t-1)^{2}}, \quad t<1 .
\end{aligned}
$$

Uniform Random Variables

Definition

X is a uniform random variable if its pdf is constant on its support.
If its support is $[a, b]$, then the pdf is
We denote by $X \sim U(a, b)$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & a \leqslant x \leqslant b \\
0, & 0, \omega
\end{array}\right.
$$

Theorem
If $X \sim U(a, b)$, then

$$
\begin{aligned}
\mathbb{E}[X]= & \frac{a+b}{2} \\
\operatorname{Var}[X] & =\frac{1}{(2}(a-b)^{2} \\
M(t)= & \text { Exercise. } \\
\mathbb{E}[X] & =\int_{a}^{b} \frac{1}{b-a} \cdot \underbrace{x} d x=\frac{1}{b-a} \cdot\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{b^{2}-a^{2}}{2 \cdot(b-a)} \\
& =\frac{a+b}{2}=\frac{1}{(b-a)} \cdot \frac{1}{3} \cdot \frac{\left(b^{3}-a^{3}\right)}{\left(b-a t-\left(a^{2}+a b+b^{2}\right)\right.} \\
\mathbb{E}\left[x^{2}\right] & =\int_{a}^{b} \frac{1}{b-a} x^{2} d x=\frac{1}{3}\left(a^{2}+a b+b^{2}\right) \\
& =\frac{1}{3}\left(a^{2}+a b+b^{2}\right)-\frac{1}{4}\left(a^{2}+2 a b+b^{2}\right) \\
\operatorname{Var}(X) & =\frac{1}{12}\left(a^{2}-2 a b+b^{2}\right)=\frac{(a-b)^{2}}{12} .
\end{aligned}
$$

Uniform Random Variables

$$
X \sim \operatorname{Unif}(0,10)
$$

Example

If X is uniformly distributed over $(0,10)$, calculate $\mathbb{P}(X<3), \mathbb{P}(X>6)$, and $\mathbb{P}(3<X<8)$.

$$
\mathbb{P}(x<3)=3 \cdot \frac{1}{10}=0.3
$$

$\mathbb{P}(x>6)=\frac{4}{10}, \quad \mathbb{P}(3<x<8)=\frac{5}{10}$

Uniform Random Variables

Example

A bus travels between the two cities A and B, which are 100 miles apart. If the bus has a breakdown, the distance from the breakdown to city A has a $U(0,100)$ distribution. There are bus service stations in city A , in B, and in the center of the route between A and B. It is suggested that it would be more efficient to have the three stations located 25,50 , and 75 miles, respectively, from A. Do you agree? Why?

Percentile

$=100 \cdot 0.75$
Ex
75 th percentile is $\pi_{0,75}$ s.t. (Fl

For example, the 50 th percentile is the number $\pi_{\frac{1}{2}}=q_{2}$ such that $F\left(\pi_{\frac{1}{2}}\right)=\frac{1}{2}$ and this is called the median.

The 25th and 75th percentiles are called the first and third quartiles, respectively, and are denoted by $q_{1}=\pi_{0.25}$ and $q_{3}=\pi_{0.75}$.

Example
Let X be a continuous random variable with pdf $f(x)=|x|$ for $-1<x<1$. Find q_{1}, q_{2}, q_{3}.

$$
q_{2}=50^{\text {th }} \text { percentile }=\text { median }=\pi_{0.5}=0
$$

$$
q_{1}=25^{\text {th }} \text { percentile }=1^{s t} \text { quartile }=\pi_{0.20}=-\frac{1}{\sqrt{2}}
$$

$$
q_{3}=\frac{1}{\sqrt{2}}
$$

Let $f(x)=c \sqrt{x}$ for $0 \leq x \leq 4$ be the pdf of a random variable X.
Find c, the $c d f$ of X, and $\mathbb{E}[X]$.

$$
\begin{aligned}
& 1=\int_{0}^{4} c \sqrt{x} d x=c \cdot\left[\frac{2}{3} \cdot x^{\frac{3}{2}}\right]_{0}^{4}=c \cdot \frac{2}{3} \cdot 8 \quad \therefore c=\frac{3}{16} . \\
& F(t)=\mathbb{P}(x \leqslant t)=\int_{0}^{t} c \cdot \sqrt{x} d x=\left[c \cdot \frac{2}{3} \cdot x^{\frac{3}{2}}\right]_{0}^{t} \\
& 0 \leqslant t \leqslant 4 \\
& =\frac{\frac{3}{16}}{8^{16}} \cdot \frac{8}{\frac{2}{2}} \cdot t^{\frac{3}{2}} \\
& =\frac{1}{8} t^{\frac{3}{2}} \\
& F(t)=\left\{\begin{array}{c}
0 \\
\frac{1}{8} \cdot t^{\frac{3}{2}} \\
1
\end{array}\right. \\
& \text { to } \\
& 0 \leqslant t \leqslant 4 \\
& t \geqslant 4
\end{aligned}
$$

Section 2.
The Exponential, Gamma, and
Chi-Square Distributions

Exponential random variables

Consider a Poisson random variable X with parameter λ.
This represents the number of occurrances in a given interval, say $[0,1]$.
If $\lambda=5$, that means the expected number of occurrances in $[0,1]$ is 5 .
Let W be the waiting time for the first occurrence. Then,

$$
\mathbb{P}(W>t)=\mathbb{P}(\text { no occurrences in }[0, t])=\mathbb{P}(Y=0)
$$

for $t>0$.
$Y=$ of events in $[0, t] \sim$ Poisson (λt)
w

$$
\begin{aligned}
& F(t)=1-e^{-\lambda t} \quad P D F=f(t)=\lambda e^{-\lambda t}, \quad t \geqslant 0 \text {. } \\
& F(t)=\int_{-\infty}^{t} f^{\downarrow^{P D D}(s) d s} \\
& F^{\prime}(t)=f(t) \\
& W=\text { waiting time of } 1^{\delta t} \text { occurrence } \\
& \sim \operatorname{Exp}(\lambda)
\end{aligned}
$$

Exponential random variables

Definition

We say X is an exponential random variable with parameter λ (or mean θ where $\lambda=\frac{1}{\theta}$) if its pdf is

$$
f(x)=\lambda e^{-\lambda x}
$$

for $x \geq 0$ and otherwise 0 . Here, λ is the parameter and θ is the mean.

$$
\begin{aligned}
& f(t)=\lambda e^{-\lambda t}, \quad t \geqslant 0 \quad x \sim \operatorname{Exp}(\lambda) \\
& \mathbb{E}[x]=\int_{-\infty}^{\infty} x \cdot \underline{f(x)} d x=\int_{0}^{\infty} \not x \lambda e^{-\lambda x} d x \quad, \quad \lambda x=t \\
& \lambda d x=d t \\
& d x=\frac{1}{\lambda} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\lambda}=\theta \text {. }
\end{aligned}
$$

Exponential random variables

Theorem
Suppose that X is an exponential random variable with parameter $\lambda=\frac{1}{\theta}$.

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{1}{\lambda}=\theta \\
& \begin{aligned}
& \operatorname{Var}[X]=\frac{1}{\lambda^{2}}=\theta^{2}=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2} \\
& M(t)=\frac{\lambda}{\lambda-t}=\frac{1}{1-\theta t} \\
& M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{0}^{\infty} e^{t x} \cdot \lambda e^{-\lambda x} d x \\
&=\lambda \int_{0}^{\infty} e^{-(\lambda-t) x} d x \\
&=\frac{\lambda}{\lambda-t} \cdot \frac{1}{\tau_{0}} \\
& \theta=\frac{1}{\lambda}
\end{aligned}
\end{aligned}
$$

Exponential random variables

$$
f(x)=\lambda e^{-\lambda x}=\frac{1}{20} \cdot e^{-\frac{x}{20}}
$$

Example
Let X have an exponential distribution with a mean $\theta=20$.

$$
\lambda=\frac{1}{\theta}=\frac{1}{20}
$$

Find $\mathbb{P}(X<18)$.

$$
\begin{aligned}
\mathbb{P}(x<18) & =\int_{-\infty}^{18} f(x) d x=\int_{0}^{18} \frac{1}{20} e^{-\frac{x}{20}} d x \\
& =\left[-e^{-\frac{x}{20}}\right]_{0}^{18}=1-e^{-\frac{18}{20}} . \\
(1) \quad F(x) & =\mathbb{P}(x \leqslant x)=\mathbb{P}(x<x)=1-e^{-\lambda x}
\end{aligned}
$$

(2) $\mathbb{P}(x>x)=e^{-\lambda x}$

$$
\begin{aligned}
\mathbb{P}(x>t+s \mid x>t) & =\frac{\mathbb{P}(x>t+s)}{\mathbb{P}(x>t)}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} \\
& =\underbrace{e^{-\lambda s}=\mathbb{P}(x>s)}
\end{aligned}
$$

memoryless property.

$$
\begin{aligned}
\mathbb{P}(w>5) & =e^{-\frac{1}{3} \cdot 5} \\
& =e^{-\frac{5}{3}}
\end{aligned}
$$

Exponential random variables

Example
Customers arrive in a certain shop according to an approximate Poison process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes for the arrival of the first customer?

$$
\begin{aligned}
& X=\# \text { of customer on } 1 \text { hour } \sim \operatorname{Poisson}(\lambda), \lambda=20 \\
& W=\text { warty time } \sim E_{\text {ep }}(20) \\
& \mathbb{P}\left(W>\frac{1}{12}\right)=e^{-20 \cdot \frac{1}{12}}=e^{-\frac{5}{3}} \\
& \mathbb{P}(W>t)=e^{-\lambda t}
\end{aligned}
$$

 Neg . Bin, $=\#$ of trials until $r^{\text {th }}$ success $\xlongequal{\text { Gamma }}=$ Warty time curia $r^{\text {th }}$ customers

Gamma random variables

Consider a Poisson random variable X with λ.

$$
\alpha=1,2,3 .
$$

Let W be the waiting time until α-th occurrences, then its cf is

$$
F(t)=\mathbb{P}(W \leq t)=1-\mathbb{P}(W>t)=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda t)^{k} e^{-\lambda t}}{k!} .
$$

Thus, the pdf is

$$
f(x)=\frac{\lambda(\lambda x)^{\alpha-1}}{(\alpha-1)!} e^{-\lambda x}
$$

This random variable is called a gamma random variable with λ and α where $\lambda=\frac{1}{\theta}>0$.

This can be extended to non-integer $\alpha>0$.
$W=$ waiting tame until $\alpha^{\text {th }}$ customers

$\left.\alpha=3 . \quad F(t)=1-\frac{e^{-\lambda t}-\lambda t e^{-\lambda t}-\frac{1}{2}(\lambda t)^{2} e^{-\lambda t}}{} \quad \begin{array}{l}\lambda(t)=F^{\prime}(t)=\lambda t\end{array}\right)=\frac{1}{2} \cdot e^{3} \cdot t^{2} \cdot e^{-\lambda t}+\lambda^{2} t e^{-\lambda t}-\lambda^{2} t e^{-\lambda t}+\frac{1}{2}$

Gamma functions

The gamma function is defined by

$$
\Gamma(1)=\int_{0}^{\infty} y^{1-1} e^{-y} d y
$$

for $t>0$.

$$
\Gamma(t)=\int_{0}^{\infty} \underbrace{y^{t-1}}_{(t-1) y^{t-2}} e^{-y} d y \Gamma(2)=\left[-e^{-y}\right]_{0}^{\infty}]_{0}^{\infty} y_{1}^{-y-y^{-y}} e^{-y} d y
$$

$(t-1) y^{t-2}$
1
By integration by parts, we have $\left[-y^{t-1} \cdot e^{-y}\right]_{0}^{\infty}+\int_{0}^{\infty}(t-1) y^{\frac{t-2}{=}} e^{-y} d y$

$$
\begin{aligned}
& =(t-1) \cdot \int_{0}^{\infty} y^{(t-1)-1} e^{-y} d y \\
& =(t-1) \cdot \Gamma(t-1)
\end{aligned}
$$

$\operatorname{Def} \quad x \sim \operatorname{Gamma}(\lambda, \underline{\alpha})$ if

$$
f(x)=\frac{\lambda \cdot(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} \cdot e^{-\lambda x} \text { for } x \geqslant 0
$$

Gamma functions

$$
\Gamma(t)=\Gamma(t-1) \cdot(t-1) \quad \Rightarrow \quad \Gamma(n)=(n-1)!
$$

In particular, $\Gamma(1)=1$

$$
\begin{aligned}
& \Gamma(2)=(2-1) \cdot \Gamma(2-1)=\Gamma(1)=1 \\
& \Gamma(3)=(3-1) \cdot \Gamma(3-1)=2 \cdot \Gamma(2)=2 \\
& \Gamma(n)=(n-1) \cdot \underbrace{\Gamma(n-1)}=(n-1) \cdot(n-2) \cdot \Gamma(n-2)=(n-1) \cdot(n-2) \cdots \cdot \Gamma(1) \\
& \underbrace{\prime}=(n-1)!
\end{aligned}
$$

for integers n.

$$
\begin{aligned}
& x \sim G_{\text {amman }}(\lambda, \alpha) \\
& \quad f=\frac{\lambda \cdot(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x}, \quad x \geqslant 0 .
\end{aligned}
$$

Gamma random variables

$$
\Gamma(t)=\int_{0}^{\infty} y^{t-1} e^{-y} d y / \Gamma(t)=(t-1) \Gamma(t-1)
$$

Theorem
$\mathbb{E}[X]=\frac{\alpha}{\lambda}$
$\operatorname{Var}[X]=\frac{\alpha}{\lambda^{2}}$

$M(t)=\frac{1}{(1-\theta t)^{\alpha}}$ for $t \leq \frac{1}{\theta} . \quad \theta$ computing, \quad| definition of |
| ---: |
| Gamma functions |

Gamma random variables

$$
f(x)=\frac{\lambda \cdot(\lambda x)^{2-1}}{\Gamma(2)_{1}} e^{-\lambda x}=\frac{1}{9} \cdot x e^{-\frac{x}{3}}
$$

Example
Suppose the number of customers per hour arriving at a shop follows a Poisson random variable with mean 20.
$\lambda=$ mean of Poisson.
$\theta=$ mean of Exp.

What is the probability that the second customer arrives more than five minutes after the shop opens for the day?

$$
\begin{aligned}
& W=\text { waiting fine fr r } 2^{n d} \text { crofomens } \sim \operatorname{Gamma}\left(\frac{1}{3}, 2\right) \\
& \mathbb{P}(W>t)=\int_{5}^{\infty}\left(\frac{1}{9} x\right) e^{\left.-\frac{x}{3}\right)} d x=\frac{1}{3} \int_{\frac{5}{3}}^{\infty} y e^{-y} d y \\
& \frac{x}{3}=y, d x=3 d y \quad-e^{-y} \\
&=\int_{\frac{5}{3}}^{\infty}\left(e^{-y} d y\right. \\
&=\left.=\frac{5}{3} e^{-\frac{5}{3}}+e^{-\frac{5}{3}} e^{-y}\right]_{\frac{5}{3}}^{\infty}+\int_{\frac{5}{3}}^{\infty} e^{-y} d y \\
&=\frac{8}{3} e^{-\frac{5}{3}}
\end{aligned}
$$

Chi-square distribution

$$
\lambda=\frac{1}{2}
$$

Let X, have a gamma distribution with $\theta=2$ and $\alpha=r / 2$, where r is a positive integer.

The pdf of X is

$$
f(x)=\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}
$$

\& many application

$$
\text { for } x>0 \text {. }
$$

in stat.

$$
x^{2}
$$

We say that X has a chi-square distribution with r degrees of freedom and we use the notation $X \sim \chi^{2}(r)$.

Exercise

$$
\lambda=\frac{1}{\theta}
$$

Let X have an exponential distribution with mean θ.
Compute $\mathbb{P}(X>15 \mid X>10)$ and $\mathbb{P}(X>5)$.
(1) $\mathbb{P}(x>t)=e^{-\lambda t} \Rightarrow \mathbb{P}(x>5)=e^{-\lambda-5}=e^{-5 / \theta}$
(2) $\mathbb{P}(x>t+s \mid x>t)=\mathbb{P}(x>s)$

$$
\mathbb{P}(x>10+5 \mid x>10)=\mathbb{P}(x>5)=e^{-5 / 0} .
$$

Section 3.
The Normal Distribution

Central Limit Theorem.

Gaussian random variables

$$
x \sim \operatorname{Exp}(\lambda) \quad f(x)=\lambda e^{-\lambda x}, x \geqslant 0
$$

Definition
We say X is a Gaussian random variable or has a normal distribution if its pdf is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) . \quad \forall x \in \mathbb{R}
$$

Here μ is the mean and σ is the standard deviation. We use the notation $X \sim N\left(\mu, \sigma_{\uparrow}^{2}\right)$.
mean variance
If $\mu=0, \quad \sigma^{2}=1$.

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1 x^{3}}{2}}
$$

$X \sim N(0,1)$ the standard normal (Ganssion).

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad f(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma} e^{-\frac{|x-\mu|^{2}}{2 \sigma^{2}}}
$$

Gaussian random variables

Theorem

$$
\begin{aligned}
& \int_{\mathbb{R}} f(x) d x=1 \\
& \mathbb{E}[X]=\mu \\
& \operatorname{Var}[X]=\sigma^{2} \\
& M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)
\end{aligned}
$$

For $\quad \mu=0, \quad \sigma^{2}=1$,

$$
\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\mid x^{2}}{2}} d x=1 \quad \text { (Gaussian Integral) }
$$

$$
Z \sim N(0,1)
$$

(1) $\quad Z \sim N(0,1) \Rightarrow X=\sigma Z+\mu \sim N\left(\mu, \sigma^{2}\right)$
(2) $\quad X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow Z=\frac{X-\mu}{\sigma} \sim N(0,1)$

Standard normal distribution

$$
\text { C } f(x)=\frac{1}{\sqrt{z \pi}} e^{-\frac{|x|^{2}}{2}}
$$

In particular, if $\mu=0$ and $\sigma^{2}=1$, then $Z \sim N(0,1)$ is called the standard normal random variable.
Example
Let Z lis $N(0,1)$.
Find $\mathbb{P}(Z \leq 1.24), \mathbb{P}(1.24 \leq Z \leq 2.37)$, and $\mathbb{P}(-2.37 \leq Z \leq-1.24)$.

$$
\begin{aligned}
& \mathbb{P}(z \leqslant 1.24)= \\
& \mathbb{P}(-2.37 \leqslant z \leqslant-1.24)=\Phi(2.37)-\Phi(1.24)
\end{aligned}
$$

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{|x|^{3}}{2}} d x
$$

$-2.37-1.24 \quad 0^{1.24} \quad 2.37 \longrightarrow$

Standard normal distribution

Theorem

If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$ is the standard normal.

Standard normal distribution

Example
Let $X \sim N(3,16)$.

$$
\mu=3, \quad \sigma^{2}=16, \quad \sigma=4 .
$$

Find $\mathbb{P}(4 \leq X \leq 8), \mathbb{P}(0 \leq X \leq 5)$, and $\mathbb{P}(-2 \leq X \leq 1)$.

$$
\mathbb{P}(4 \leqslant x \leqslant 8) \underset{\uparrow}{\bar{\gamma}} \mathbb{P}(\underline{4} \leqslant 4 z+3 \leqslant \underline{8})
$$

in terns of z

$$
\begin{aligned}
& =\mathbb{P}(1 \leqslant 4 z \leqslant 5) \\
& =\mathbb{P}(0.25 \leqslant z \leqslant 1.25) \\
& =\Phi(1.25)-\Phi(0.25)
\end{aligned}
$$

Example
Let $X N(25,36) . \quad \mu=25, \quad \sigma^{2}=36, \quad \sigma=6$
Find a constant © such that $\mathbb{P}(|X-25| \leq c)=0.9544$.

$$
\Uparrow
$$

$$
\begin{array}{cc}
1 & ! \\
-\frac{c}{6} & 0
\end{array}
$$

$$
c / 6=2 \cdot\left(\mathbb{P}\left(z \leq \frac{5}{6}\right)-\mathbb{P}(z \leq 0)\right)
$$

$$
\Phi \begin{aligned}
\Phi\left(\frac{c}{6}\right)=\frac{1.9544}{2}-0.9772 & =2 \cdot\left(\Phi\left(\frac{c}{6}\right)-\Phi(8)\right) \\
0.9544 & =2 \cdot \Phi\left(\frac{c}{6}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
& Z \sim N(0,1) \\
& x=\sigma z+\mu=6 z+25 \\
& \mathbb{P}(|x-25| \leqslant c) \\
& =\mathbb{P}(|6 z| \leqslant c)=\mathbb{P}(|z| \leqslant c / 6) \\
& =\mathbb{P}\left(-\frac{c}{6} \leqslant z \leqslant \frac{c}{6}\right)=\Phi\left(\frac{c}{6}\right)-\Phi\left(-\frac{c}{6}\right)
\end{aligned}
$$

Recall
$X \sim \operatorname{Exp}(\lambda)$ rate,$\quad \theta=\frac{1}{\lambda}$: the mean of x

MF: $f(t)=\lambda \cdot e^{-\lambda t}, t \geqslant 0$.

$$
\begin{aligned}
& \mathbb{E}[x]=\frac{1}{\lambda}=\theta \\
& \operatorname{Var}(x)=\frac{1}{\lambda^{2}}=\theta^{2} \\
& * \mathbb{P}(x>t+s \mid x>t)=\mathbb{P}(x>\delta) \\
& \quad \mathbb{P}(x>t)=e^{-\lambda t}
\end{aligned}
$$

$x_{1}, x_{2} \sim \operatorname{Exp}(\lambda) \quad$ indep.
$Y=\min \left\{x_{1}, x_{2}\right\}=$ waiting time of first occurrence
 arrong two types of events.
: Exponential

$$
\begin{aligned}
\mathbb{P}(Y>t) & =\mathbb{P}\left(\left\{x_{1}>t\right\} \stackrel{\text { and }}{=}\left\{x_{2}>t\right\}\right)=\mathbb{P}\left(x_{1}>t\right)
\end{aligned} \mathbb{P}\left(x_{2}>t\right)
$$

Gamma $=$ Woritiog five until $d^{\text {th }}$ event.

$$
\begin{aligned}
& \text { MF }=f(x)=\frac{\lambda(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x} \\
& \Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \\
& \Gamma(\alpha)=(\alpha-1)! \\
& (\alpha-1) \cdot \Gamma(\alpha-1)
\end{aligned}
$$

$$
x \sim N\left(\underset{\substack{\uparrow \\ \text { mean }}}{\left.\sigma^{2}\right) \text { variance }} \text { if } f(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma} e^{-\frac{1 x-\left.\mu\right|^{2}}{2 \sigma^{2}}}\right.
$$

$$
-\infty<x<\infty
$$

If $\mu=0, \sigma^{2}=1, \quad Z \sim N(0,1)$: Standard normal.

If $\quad x \sim N\left(\mu, \sigma^{2}\right) \quad$ then $\left\{\begin{array}{l}x=\sigma Z+\mu \\ \frac{x-\mu}{\sigma} \sim N(0,1)\end{array}\right.$

special case of

If Z is the standard normal, then Z^{2} is $\chi^{2}(1)$. Gamma (λ, α)

$$
\begin{aligned}
& (\lambda, \alpha) \\
& \lambda=\frac{1}{2}, \theta=2 \quad \underset{\alpha}{ }=\frac{\Gamma}{2} \quad \text { freedom. }
\end{aligned}
$$

$Z \sim N(0,1)$

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{x^{2}}{2}} \\
& F_{z^{2}}(t)=\mathbb{P}\left({\underset{z}{z}}^{z^{2}} \leqslant t\right)=\mathbb{P}(-\sqrt{t} \leqslant z \leqslant \sqrt{t})=\Phi(\sqrt{t})-\Phi(\sqrt{t}) \\
& =\Phi(\sqrt{t})-(1-\Phi(\sqrt{t}))=2 \cdot \Phi(\sqrt{t})-1 \\
& f_{z^{2}}(t)=\frac{d}{d t} F z^{2}(t)=2 \cdot \Phi^{\prime}(\sqrt{t}) \cdot \frac{d}{d t}(\sqrt{t}) \quad \text { (Chain rate) } \\
& \uparrow \text { PDF of } z^{2} \text {. } \\
& =2 \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{1}{2}(\sqrt{t})^{2}} \cdot \frac{1}{2 \sqrt{t}}=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2} t} \\
& \sim \frac{\operatorname{Gamna}\left(\frac{1}{2}, \frac{1^{\prime \prime}}{2}\right)^{\alpha}}{d} \\
& \frac{1}{\sqrt{2 x} \cdot \Gamma\left(\frac{1}{2}\right)} e^{-\frac{x}{2}}=\frac{\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2} x\right)^{\frac{1}{2}-1}}{\Gamma\left(\frac{1}{2}\right)} e^{-\frac{1}{2} x}
\end{aligned}
$$

Section 4.

Additional Models

Weibull distribution

Recall the postulates of an approximate Poisson:

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.

Weibull distribution

One can think the event occurrence as a failure and so λ can be understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant failure rate. λ

Sometimes, it is more natural to choose λ as a function of t in the last assumption.

Then the waiting time W for the first occurrence satisfies

$$
F_{w}(t)=\mathbb{P}(w \leqslant t)=1-\mathbb{P}(w>t)=1-e^{-}
$$

$$
f_{w}(t)=\frac{d}{d T} F_{w}(t)
$$

Weibull distribution

$$
X \mathbb{P}(w>t)=e^{-\int_{0}^{t} \frac{\alpha s^{\alpha 1}}{\beta^{\alpha}} d s}=e^{-\frac{1}{\beta^{\alpha} \cdot t^{\alpha}}}
$$

Definition

If $\lambda(t)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}}$, then the waiting time W for the first occurrence has the density
$f_{w}(t)=\lambda(t) \exp \left(-\int_{0}^{t} \lambda(w) d w\right)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}} \exp \left(-\left(\frac{t}{\beta}\right)^{\alpha}\right)$.
W is called the Weibull random variable.

Weibull distribution

$$
\mathbb{P}(\omega>t)=e^{-\int_{0}^{t} 2 s d s}=e^{-t^{2}}
$$

Example
If $\lambda(t)=2 t^{1}$, then the waiting time W has the density and it is a Weibull random variable with $\alpha=2$ and $\beta=1$.

If W_{1}, W_{2} are independent Weibull with $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ above, is the minimum of W_{1}, W_{2} Weibull?

$$
\begin{aligned}
& W \sim \text { Weiburl }(\alpha, \beta), \quad \lambda(t)=\frac{\alpha t^{\alpha-1}}{\beta^{\alpha}}=\frac{2 t}{\beta^{2}} \quad(\alpha=2) \\
& \beta^{2}=1, \beta=1 . \\
& Z=\min \left\{W_{1}, W_{2}\right\} \\
& F_{z}(t)=\mathbb{P}(z \leqslant t)=1-\mathbb{P}(z>t) \\
& =1-\mathbb{P}\left(\min \left\{W_{1}, W_{2}\right\}>t\right) \\
& \begin{array}{l}
=1-\mathbb{P}\left(w_{1}>t\right) \mathbb{P}\left(w_{2}>t\right) \\
=1-e^{-t^{2}} \cdot e^{-t^{2}}=1-\underbrace{e^{-2 t^{2}}}+\underline{\underline{P}(z>t)}=e^{-W_{i} i b w i l}
\end{array} \\
& \begin{aligned}
& \lambda(s)=4 s=\frac{2 \cdot s^{2-1}}{1 / 2}=\beta^{2} \quad \alpha=2 \\
& \therefore \beta=\frac{1}{\sqrt{2}} .
\end{aligned}
\end{aligned}
$$

Weibull distribution

Theorem

The mean of W is $\mu=\beta \Gamma\left(1+\frac{1}{\alpha}\right)$.
The variance is $\sigma^{2}=\beta^{2}\left(\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}\right)$.

Contr. RV - there exists a density. More RV's

Mixed type random variables

Example
Suppose X has a cdf

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<1 \\ \frac{1}{2}, & 1 \leq x<2 \\ \frac{x}{3}, & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

Find $\mathbb{P}(0<X<1), \mathbb{P}(0<X \leq 1)$, and $\mathbb{P}(X=1)$.

(1) $\mathbb{P}(0<x<1)=\frac{1}{4}$
(2) $\mathbb{P}(0<x \leqq 1)=\frac{1}{2}=\mathbb{P}(x \in(0,1))+\mathbb{P}(x=1)^{\frac{1}{4}}$
(3) $\quad P(x=1)=\frac{1}{4}$.

Mixed type random variables

Example

Consider the following game: A fair coin is tossed.
If the outcome is heads, the player receives $\$ 2$.
If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to 1 .

The player then receives that fraction of a dollar associated with the point selected by the spinner.

Let X be the amount received. Draw the graph of the $\operatorname{cdf} F(x)$.

$$
\begin{aligned}
& x= \begin{cases}2, & \text { Heads } \\
U, & \text { Tails }\end{cases} \\
& \text { (- }-50(x<1) \\
& F(x)=\mathbb{P}(X \leqslant x)=\mathbb{P}(\text { Tars and } U \leqslant x) \\
& =\mathbb{P}(\text { Tails }) \mathbb{P}(U \leqslant x)
\end{aligned}
$$

If $1 \leqslant x<2$ then $\mathbb{P}(X \leqslant x)=\frac{1}{2}$

$$
\mathbb{P}(X \leqslant 1.5)=\mathbb{P}\left(\left.T_{a i}\right|_{s}\right)=\frac{1}{2}
$$

Exercise

The pdf of X is given by

$$
F(x)= \begin{cases}0, & x<-1 \\ \frac{x}{4}+\frac{1}{2}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Find $\mathbb{P}(X<0), \mathbb{P}(x<-1)$, and $\mathbb{P}\left(-1<x<\frac{1}{2}\right)$. $\mathbb{P}(-1)^{<} x^{\left.6 \frac{1}{2}\right)}$

$$
\begin{aligned}
& \mathbb{P}(x<0)=F(0)=\frac{1}{2} \\
& \mathbb{P}(x<-1)=\frac{F(-1)}{\mathbb{P}(x \leqslant-1)}-\mathbb{P}(x=-1)=0
\end{aligned}
$$

