Math 1554 Linear Algebra Fall 2022

Midterm 3

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:		GTID Number: _	
Student GT Email Addre	ss:		@gatech.edu
Section Number (e.g. A3, G2, e	etc.)	TA Name	
	Circle you	ur instructor:	
Prof Vilaca Da Rocha	Prof Kaf	fer Prof Barone	Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

$\begin{bmatrix} a c \circ \\ \circ & b \end{bmatrix} = \begin{bmatrix} a & \circ \\ \circ & b \end{bmatrix} \cdot \begin{bmatrix} c & \circ \\ \circ & d \end{bmatrix} D = \begin{pmatrix} \lambda_1 & 0 \\ \circ & \lambda_2 \end{pmatrix} \implies \overrightarrow{D}^{\dagger} = \begin{pmatrix} x_1 \\ \ddots \\ \ddots \\ \ddots \\ \ddots \end{pmatrix}$

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b} . Otherwise, select false.

true	false	$\frac{\phi(\lambda)}{A} = \det(A - \lambda I) = \det(A^{T} - \lambda I)$
\bigcirc	\bigcirc	A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
\bigcirc	\bigcirc	An invertible matrix <i>A</i> is diagonalizable if and only if its inverse A^{-1} is diagonalizable. $(A \stackrel{f}{=} (P \stackrel{p}{\to} P^{-1})^{-1} = (P^{-1})^{-1} \cdot D^{-1} \cdot P^{-1} = P \stackrel{p}{\to} P^{-1} P^{-1}$
\bigcirc	\bigcirc	If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, then \vec{u} is orthogonal to $(\vec{w} - \vec{v})$.
\bigcirc	\bigcirc	If the vectors \vec{u} and \vec{v} are orthogonal then $\ \vec{u} + \vec{v}\ = \ \vec{u}\ + \ \vec{v}\ $.
\bigcirc	\bigcirc	If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , then $\ \operatorname{proj}_W(\vec{y}) \ $ is the shortest distance between W and \vec{y} .
\bigcirc	\bigcirc	If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , then $\vec{y} - \text{proj}_W(\vec{y})$ is in W^{\perp} .
\bigcirc	\bigcirc	If W is a subspace of \mathbb{R}^n and $\vec{y} \in \mathbb{R}^n$ such that $\vec{y} \cdot \vec{w} = 0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
\bigcirc	\bigcirc	The line of best fit $y = \beta_0 + \beta_1 x$ for the points $(1, 2), (1, 3)$, and $(1, 4)$ is unique.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible	impossible	
\bigcirc	\bigcirc	A 5×5 real matrix A such that A has no real eigenvalues.
\bigcirc	\bigcirc	An $m \times n$ matrix U where $U^T U = I_n$ and $n > m$.
\bigcirc	0	A 2-dimensional subspace W of \mathbb{R}^3 and a vector $\vec{y} \in W$ such that $\ \vec{v}_1 - \vec{y}\ = \ \vec{v}_2 - \vec{y}\ $ where $\vec{v}_1, \vec{v}_2 \in W^{\perp}$ and $\vec{v}_1 \neq \vec{v}_2$.
\bigcirc	0	A matrix $A \in \mathbb{R}^{3 \times 4}$ such that the linear system $A\vec{x} = \vec{b}$ has a unique least-squares solution.

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

- 3. (8 points) Fill in the blanks.
 - (a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^n and that \vec{v} is a unit vector. If $(2\vec{u} + \vec{v}) \cdot (\vec{u} + 5\vec{v}) = 13$, determine the length of \vec{u} . $\|\vec{u}\| =$

- (b) The normal equations for the least-squares solution to $A\vec{x} = \vec{b}$ are given by:
- (c) Compute the length (magnitude) of the vector \vec{y} .

$$\vec{y} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$\ \vec{y}\ =$	
-----------------	--

$$A v = \lambda v$$
(d) Let $A = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}$. The vector $\vec{v} = \begin{pmatrix} -1 - i \\ -1 + i \end{pmatrix}$ is an eigenvector of A . Find the associated eigenvalue λ for the eigenvector \vec{v} of A .
$$\lambda = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} \begin{pmatrix} -i & -i \\ -1 & +i \end{pmatrix} = \lambda \begin{bmatrix} -1 & -i \\ -1 & +i \end{bmatrix}$$

$$\begin{pmatrix} 2 & (-i - i) & -2 & (-i + i) \\ -1 & +i \end{pmatrix} = \begin{pmatrix} \lambda & (-i - i) \\ -1 & +i \end{pmatrix}$$

$$-4i = \lambda & (-i - i) \qquad \sum_{k} \lambda = \frac{-4i}{(+i)} = \frac{4i}{(+i)} = \frac{4i}{(+i)} = \frac{2}{4i} \frac{2i(1-i)}{2}$$

Math 1554 Linear Algebra Fall 2022 Midterm 3 Make-up

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:	G	TID Number:	
Student GT Email Addres	55:		@gatech.edu
Section Number (e.g. A3, G2, e	etc.)	TA Name	
	Circle your i	nstructor:	
Prof Vilaca Da Rocha	Prof Kafer	Prof Barone	Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3 Make-up. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose *A* is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

true	false	
\bigcirc	\bigcirc	A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
0	0	The line of best fit $y = \beta_0 + \beta_1 x$ for the points $(1, 1), (2, 1),$ and $(3, 1)$ is unique.
\bigcirc	\bigcirc	If the vectors \vec{u} and \vec{v} are orthogonal then $\ \vec{u} + \vec{v}\ = \ \vec{u}\ + \ \vec{v}\ $.
\bigcirc	\bigcirc	A triangular matrix A is diagonalizable if and only if A is invertible.
\bigcirc	\bigcirc	If $A = PDP^{-1}$ where <i>D</i> is a diagonal matrix, then <i>D</i> and <i>A</i> have the same eigenvectors.
0	0	If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , $\gamma = \langle \mathfrak{o}, \mathfrak{L} \rangle$ then $\operatorname{proj}_W(\vec{y})$ is in W . $\omega = \langle \mathfrak{l}, \mathfrak{o} \rangle$
0	0	If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , then $\ \vec{y} - \operatorname{proj}_W(\vec{y})\ $ is the shortest distance between W and \vec{y} .
0		If W is a subspace of \mathbb{R}^n and $\vec{y} \in \mathbb{R}^n$ such that $\vec{y} \cdot \vec{w} = 0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$. all $\vec{y} = 0$ for $\vec{y} \in W$.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible	impossibl	e	
\bigcirc	\bigcirc	A 3×3 real matrix A such that A has eigenvalues $2, 3, 2i + 3$.	
\bigcirc	\bigcirc	An $m \times n$ matrix U where $U^T U = I_n$ and $n > m$.	
R	0	A 2-dimensional subspace W of \mathbb{R}^3 and a vector $\vec{y} \in W$ such that $\ \vec{v}_1 - \vec{y}\ = \ \vec{v}_2 - \vec{y}\ $ where $\vec{v}_1, \vec{v}_2 \in W^{\perp}$ and $\vec{v}_1 \neq \vec{v}_2$.	
<u>×</u>	0	A vector $\vec{y} \in \mathbb{R}^3$ and a subspace W in \mathbb{R}^3 such that $\vec{y} = \vec{w} + \vec{z}$ where \vec{w} is in W , but \vec{z} is not in W^{\perp} .	750

Midterm 3 Make-up. Your initials:

7. (4 points) Show all work for problems on this page.

Let $\mathcal{B} = \{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for a subspace W of \mathbb{R}^4 , where

$$\vec{x}_1 = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} -1 \\ -1 \\ 0 \\ 2 \end{pmatrix}.$$

(a) Apply the Gram-Schmidt process to the set of vectors $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ to find an orthogonal basis $\mathcal{H} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ for *W*. Clearly show all steps of the Gram-Schmidt process.

(b) In the space below, **check** that the vectors in the basis \mathcal{H} form an orthogonal set.

y-y2 =0 y1-y3=0 y2.y3=0

Math 1554 Linear Algebra Spring 2022

Midterm 3

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:			GTID Number:	
Studen	t GT Email Ad	dress:		@gatech.edu
Section Nu	ımber (e.g. A3,	G2, etc.)	TA Name	
		Circle you	ır instructor:	
	Prof Barone	Prof Shirani	Prof Simone	Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose *A* is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

true	false	
0	0	The matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable.
\bigcirc	\bigcirc	If <i>W</i> is the subspace of \mathbb{R}^3 spanned by $\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3\\ 0\\ 1 \end{pmatrix}$, then $\begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}$ is a vector in W^{\perp} .
\bigcirc	\bigcirc	If <i>U</i> is a 3×2 matrix with orthonormal columns, then for every $\vec{y} \in \text{Col}(U)$ we have $\vec{y} = UU^T \vec{y}$.
\bigcirc	\bigcirc	If the matrix A has orthogonal columns, then $A^T A$ is a diagonal matrix.
\bigcirc	\bigcirc	Assume $n \neq m$. If $A = QR$ is the QR factorization of $A \in \mathbb{R}^{n \times m}$, then $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times m}$.
\bigcirc	\bigcirc	If $A = QR$ is a QR factorization of A, then $A^T A = R^T R$.
\bigcirc	\bigcirc	If \hat{x} and \hat{y} are least-squares solutions of $A\vec{x} = \vec{b}$, then $\hat{x} - \hat{y} \in Nul(A)$.
\bigcirc	\bigcirc	Suppose <i>A</i> is such that T_A is not one-to-one, and \vec{b} is not in the range of <i>T</i> . Then $A\vec{x} = \vec{b}$ has a unique least-squares solution.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible impossible

0	\bigcirc	A is a 7×7 diagonalizable matrix with exactly three distinct eigenvalues whose geometric multiplicities are 1, 2, and 3, respectively.
\bigcirc	\bigcirc	\vec{u} and \vec{v} are nonzero vectors such that $ \vec{u} + \vec{v} ^2 = \vec{u} ^2 + \vec{v} ^2$.
\bigcirc	\bigcirc	The distance between a vector $\vec{b} \in \mathbb{R}^m$ and the column space of a matrix $A \in \mathbb{R}^{m \times n}$ is zero, and the linear system $A\vec{x} = \vec{b}$ is inconsistent.
0	0	\mathcal{W} is a 2-dimensional subspace of \mathbb{R}^3 , and there exists a linearly independent set of vectors $\{\vec{x}, \vec{y}\}$ in \mathbb{R}^3 such that $\operatorname{Proj}_{\mathcal{W}} \vec{y} = \operatorname{Proj}_{\mathcal{W}} \vec{y}$.
		$X = \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $X = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Midterm 3. Your initials: _____ *You do not need to justify your reasoning for questions on this page.*

- (c) (2 points) The standard matrix of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ has orthonormal columns. Which one of the following statements is **false**? *Choose only one.*
 - $\bigcirc ||T(\vec{x})|| = ||\vec{x}||$ for all \vec{x} in \mathbb{R}^3 . True.
 - If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^3 are scalar multiples of each other, then $\|T(\vec{x} + \vec{y})\|^2 = \|T(\vec{x})\|^2 + \|T(\vec{y})\|^2$.
 - \bigcirc If \mathcal{P} is a parallelpiped in \mathbb{R}^3 , then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P} .
 - $\bigcirc T \text{ is one-to-one.}$ $|det(A)| \lor |(P) = \lor |(T(P))$

$$\begin{aligned} T(\vec{x}) &= A \cdot \vec{x} & \square & A^T A = I \\ \hline (\vec{x}) &= T(\vec{x}) \cdot T(\vec{x}) \\ &= (A \cdot \vec{x}) \cdot (A \cdot \vec{x}) \\ &= (A \cdot A \cdot \vec{x}) \cdot \vec{x} = -\vec{x} \cdot \vec{x} \cdot \|\vec{x}\|^2 \end{aligned}$$

2. (2 points) Suppose that, in the QR factorization of *A*, we have *Q* as given below. Find *R*.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad Q = \frac{1}{2} \begin{bmatrix} 1 & 1/\sqrt{3} \\ 1 & 1/\sqrt{3} \\ 1 & -\sqrt{3} \\ 1 & 1/\sqrt{3} \end{bmatrix}$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$R = \begin{bmatrix} & & \\ & &$$

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

3. (2 points) Using **only** 0's and 1's in your answer, give an example of a 2×2 matrix that is invertible but not diagonalizable.

- (a) Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be orthogonal vectors each with length 2. Determine the length of the vector $2\vec{u} + \vec{v}$.
- (b) Suppose A is a 7 × 5 matrix such that dim (Row A)[⊥] = 4. Determine the dimension of the column space of A.
- (c) Suppose $\mathcal{B} = {\vec{v_1}, \vec{v_2}}$ is an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^n , and \vec{x} belongs to the subspace \mathcal{W} . Suppose also that

$$\vec{v}_1 \cdot \vec{v}_1 = 2, \vec{v}_2 \cdot \vec{v}_2 = 4, \vec{v}_1 \cdot \vec{x} = 6, \text{ and } \vec{v}_2 \cdot \vec{x} = -4.$$

Find $[\vec{x}]_{\mathcal{B}}$ the coordinates of \vec{x} in the basis \mathcal{B} .

$$\begin{bmatrix} x \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} x \end{bmatrix}$$

 $\vec{x} = \alpha \cdot \vec{v}_1 + \vec{b} \cdot \vec{v}_2$ $(\vec{x} \cdot \vec{v}_1) + \vec{v}_2 \cdot \vec{v}_2$

Midterm 3 Lecture Review Activity, Math 1554

1. Indicate **true** if the statement is true, otherwise, indicate **false**.

	true	false
a) If S is a two-dimensional subspace of \mathbb{R}^{50} , then the dimension of S^{\perp} is 48.		0
b) An eigenspace is a subspace spanned by a single eigenvector.	\bigcirc	
c) The $n \times n$ zero matrix can be diagonalized.		\bigcirc
d) A least-squares line that best fits the data points $(0, y_1), (1, y_2), (2, y_3)$ is unique for any values y_1, y_2, y_3 .		\bigcirc
 2. If possible, give an example of the following. No. (A) 2.1) A matrix, A, that is in echelon form, and dim ((RowA)[⊥]) = 2, dim 	N⊶ m ((Col	$\left(\begin{bmatrix} \mathbf{A}^{T} \end{bmatrix} \\ A \right)^{\perp} = 1$
$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenv $x_1 = 2x_2$. The other eigenspace of the matrix is the x_2 axis.	value λ	= 2 is the 2
$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \end{array} \end{array} \right) = \left(\begin{array}{c} 4^{2} \\ \chi^{1} \\ \chi^{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \chi^{2} \end{array} \right) = \left(\begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 2 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 2 \end{array} \right) \left(\begin{array}{c} 2 \\ 0 \end{array} \right) \left(\begin{array}{c} 2 \end{array} \right) \left(\begin{array}{c} 2 \\ 0 \end{array} \right$	(c ~1 2) -)

2.3) A subspace S, of \mathbb{R}^4 , that satisfies $\dim(S) = \dim(S^{\perp}) = 3$.

2.4) A 2 × 3 matrix, A, that is in RREF. (Row A)^{$$\perp$$} is spanned by $\begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix}$.

- 3. Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. For the situations that are possible give an example.
 - 3.1) $A \text{ is } n \times n, A\vec{x} = A\vec{y} \text{ for a particular } \vec{x} \neq \vec{y}, \vec{x} \text{ and } \vec{y} \text{ are in } \mathbb{R}^n, \text{ and } \dim((\operatorname{Row} A)^{\perp}) \neq 0.$ **possible** $(\begin{array}{c} \langle & \wedge \\ & \rangle \end{array})$ **impossible** $(\begin{array}{c} \langle & \wedge \\ & \rangle \end{array})$ **impossible** $(\begin{array}{c} \langle & \wedge \\ & \rangle \end{array})$ 3.2) $A \text{ is } n \times n, \lambda \in \mathbb{R} \text{ is an eigenvalue of } A, \text{ and } \dim((\operatorname{Col}(A - \lambda I))^{\perp}) = 0.$ **possible possible impossible impossible**

3.3) $\operatorname{proj}_{\vec{v}}\vec{u} = \operatorname{proj}_{\vec{u}}\vec{v}, \ \vec{v} \neq \vec{u}, \ \text{and} \ \vec{u} \neq \vec{0}, \ \vec{v} \neq \vec{0}.$ **possible** $\frac{\psi \cdot \nabla}{\psi \cdot \psi} \cdot \psi = \frac{\psi \cdot \nabla}{\nabla \cdot \psi} \cdot \nabla$ $\vec{1} \quad \psi \cdot \nabla = \phi$ **impossible** $\vec{1} \quad \psi \cdot \nabla = \phi$

4. Consider the matrix A.

$$A = \begin{pmatrix} 1 & -3 & 0 & 2\\ 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Construct a basis for the following subspaces and state the dimension of each space.

4.1) $(\operatorname{Row} A)^{\perp} = \operatorname{Nor} (A)$ 4.2) $\operatorname{Col} A = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ 4.3) $(\operatorname{Col} A)^{\perp} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$