PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a< & 0 \\
0 & b d
\end{array}\right)=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \cdot\left[\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right] \quad D=\left(\begin{array}{lll}
\lambda_{1} & & 0 \\
& \lambda_{2} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right) \Rightarrow D^{-1}=\left(\begin{array}{lll}
\frac{1}{\lambda_{1}} & & \\
& \ddots & \\
& & \frac{1}{\lambda_{n}}
\end{array}\right)}
\end{aligned}
$$

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false $\quad \phi_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(A^{\top}-\lambda I\right)$

A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
An invertible matrix A is diagonalizable if and only if its inverse A^{-1} is diagonalizable. $\quad(A)^{-1}=\left(P D P^{-1}\right)^{-1}=\left(P^{-1}\right)^{-1} \cdot D^{-1} \cdot P^{-1}=P D_{n}^{-1} P^{-1}$
If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, then \vec{u} is orthogonal to $(\vec{w}-\vec{v})$.
$\bigcirc \quad \bigcirc \quad$ If the vectors \vec{u} and \vec{v} are orthogonal then $\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\|$.

If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\|\operatorname{proj}(y)\|$ is the shortest distance between W and \vec{y}. If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n},
 then $\vec{y}-\operatorname{proj}_{W}(\vec{y})$ is in W^{\perp}.
$\bigcirc \quad$ If W is a subspace of \mathbb{R}^{n} and $\vec{y} \in \mathbb{R}^{n}$ such that $\vec{y} \cdot \vec{w}=0$ for sente vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
\bigcirc The line of best fit $y=\beta_{0}+\beta_{1} x$ for the points $(1,2),(1,3)$, and $(1,4)$ is unique.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A 5×5 real matrix A such that A has no real eigenvalues.
An $m \times n$ matrix U where $U^{T} U=I_{n}$ and $n>m$.
A 2-dimensional subspace W of \mathbb{R}^{3} and a vector $\vec{y} \in W$ such
that $\left\|\vec{v}_{1}-\vec{y}\right\|=\left\|\vec{v}_{2}-\vec{y}\right\|$ where $\vec{v}_{1}, \vec{v}_{2} \in W^{\perp}$ and $\vec{v}_{1} \neq \vec{v}_{2}$.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (8 points) Fill in the blanks.
(a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^{n} and that \vec{v} is a unit vector. If $(2 \vec{u}+\vec{v}) \cdot(\vec{u}+5 \vec{v})=13$, determine the length of \vec{u}.
$\|\vec{u}\|=\square$
(b) The normal equations for the least-squares solution to $A \vec{x}=\vec{b}$ are given by:
\square
(c) Compute the length (magnitude) of the vector \vec{y}.

$$
\vec{y}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

\square

$$
A v=\stackrel{\downarrow}{\lambda} v
$$

(d) Let $A=\left[\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right]$. The vector $\vec{v}=\binom{-1-i}{-1+i}$ is an eigenvector of A. Find the associated eigenvalue λ for the eigenvector \vec{v} of A.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
-1-i \\
-1+i
\end{array}\right]=\lambda\left[\begin{array}{c}
-1-i \\
-1+i
\end{array}\right]} \\
& {\left[\begin{array}{c}
2(-1-i)-2(-(+i) \\
2
\end{array}\right]} \\
& -4 i=\lambda(-1-i) \quad 2+2 i \\
& \lambda=\frac{-4 i}{-1-i}=\frac{4 i}{1+i}=\frac{4 i(1-i)}{(1+i)(1-i)}=\frac{24(1-i)}{2}
\end{aligned}
$$

Math 1554 Linear Algebra Fall 2022
 Midterm 3 Make-up

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.

true false

A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.

The line of best fit $y=\beta_{0}+\beta_{1} x$ for the points $(1,1),(2,1)$, and $(3,1)$ is unique.

If the vectors \vec{u} and \vec{v} are orthogonal then $\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\|$.
A triangular matrix A is diagonalizable if and only if A is invertible.
If $A=P D P^{-1}$ where D is a diagonal matrix, then D and A have the same eigenvectors.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n},
$y=(0.2)$ then $\operatorname{proj}_{W}(\vec{y})$ is in W.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\left\|\vec{y}-\operatorname{proj}_{W}(\vec{y})\right\|$ is the shortest distance between W and \vec{y}.

$\bigcirc \quad$ If W is a subspace of \mathbb{R}^{n} and $\vec{y} \in \mathbb{R}^{n}$ such that $\vec{y} \cdot \vec{w}=0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
all s / W 1-D, $\vec{\omega} \neq 0 \Rightarrow$ True)
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

A 3×3 real matrix A such that A has eigenvalues $2,3,2 i+3$.
An $m \times n$ matrix U where $U^{T} U=I_{n}$ and $n>m$.
A 2-dimensional subspace W of \mathbb{R}^{3} and a vector $\vec{y} \in W$ such that $\left\|\vec{v}_{1}-\vec{y}\right\|=\left\|\vec{v}_{2}-\vec{y}\right\|$ where $\vec{v}_{1}, \vec{v}_{2} \in W^{\perp}$ and $\vec{v}_{1} \neq \vec{v}_{2}$.

A vector $\vec{y} \in \mathbb{R}^{3}$ and a subspace W in \mathbb{R}^{3} such that $\vec{y}=\vec{w}+\vec{z}$ where \vec{w} is in W, but \vec{z} is not in W^{\perp}.

\qquad
7. (4 points) Show all work for problems on this page.

Let $\mathcal{B}=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4}, where

$$
\vec{x}_{1}=\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
2
\end{array}\right)
$$

(a) Apply the Gram-Schmidt process to the set of vectors $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthogonal basis $\mathcal{H}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W. Clearly show all steps of the Gram-Schmidt process.

$$
\begin{aligned}
& \vec{y}_{1}=\vec{x}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right] \\
& \vec{y}_{2}=\vec{x}_{2}-\operatorname{proj}_{\vec{y}_{1}}\left(x_{2}\right) \\
& =\vec{x}_{2}-\frac{x_{2}-y_{1}}{y_{1}-y_{1}} \overrightarrow{y_{1}} \\
& =\left[\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right]-\frac{(-1)+2+2+x}{41}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right] \\
& \vec{y}_{3}=\vec{x}_{3}-\frac{x_{3}-y_{1}}{y_{1}-y_{1}} \vec{y}_{1}-\frac{x_{3}-y_{2}}{y_{2} \cdot y_{2}} \vec{y}_{2} \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
2
\end{array}\right]-\frac{2}{4}\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right]-\frac{(-3)}{6}\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
i \\
i \\
i
\end{array}\right]
\end{aligned}
$$

(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

$$
y_{1}-y_{2}=0 \quad y_{1}-y_{3}=0 \quad y_{2} \cdot y_{3}=0
$$

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Barone Prof Shirani Prof Simone Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false
\bigcirc The matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.
\bigcirc If W is the subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$, then $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is a vector in W^{\perp}.
$\bigcirc \quad$ If U is a 3×2 matrix with orthonormal columns, then for every $\vec{y} \in \operatorname{Col}(U)$ we have $\vec{y}=U U^{T} \vec{y}$.
\bigcirc If the matrix A has orthogonal columns, then $A^{T} A$ is a diagonal matrix.
\bigcirc Assume $n \neq m$. If $A=Q R$ is the QR factorization of $A \in \mathbb{R}^{n \times m}$, then $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times m}$.
$\bigcirc \bigcirc$ If $A=Q R$ is a QR factorization of A, then $A^{T} A=R^{T} R$.
\bigcirc If \hat{x} and \hat{y} are least-squares solutions of $A \vec{x}=\vec{b}$, then $\hat{x}-\hat{y} \in \operatorname{Nul}(A)$.
$\bigcirc \bigcirc$ Suppose A is such that T_{A} is not one-to-one, and \vec{b} is not in the range of T. Then $A \vec{x}=\vec{b}$ has a unique least-squares solution.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A is a 7×7 diagonalizable matrix with exactly three distinct eigenvalues whose geometric multiplicities are 1,2 , and 3 , respectively.

- \vec{u} and \vec{v} are nonzero vectors such that $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$.

The distance between a vector $\vec{b} \in \mathbb{R}^{m}$ and the column space of a matrix $A \in \mathbb{R}^{m \times n}$ is zero, and the linear system $A \vec{x}=\vec{b}$ is inconsistent.
\mathcal{W} is a 2-dimensional subspace of \mathbb{R}^{3}, and there exists a linearly independent set of vectors $\{\vec{x}, \vec{y}\}$ in \mathbb{R}^{3} such that $\operatorname{Proj}_{\mathcal{W}} \vec{r}=\operatorname{Proj}_{\mathcal{W}} \vec{y}$.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.

(c) (2 points) The standard matrix ${ }^{4}$ of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has orthonormal columns. Which one of the following statements is false?
Choose only one.
$\|T(\vec{x})\|=\|\vec{x}\|$ for all \vec{x} in \mathbb{R}^{3}. True.
If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^{3} are scalar multiples of each other, then $\|T(\vec{x}+\vec{y})\|^{2}=\|T(\vec{x})\|^{2}+\|T(\vec{y})\|^{2} . \quad \vec{x}=\vec{y}$
If \mathcal{P} is a parallelepiped in \mathbb{R}^{3}, then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P}. T.
$\bigcirc T$ is one-to-one. $\quad|\operatorname{det}(A)| V_{0}\left|(P)=V_{0}\right|(T(P))$

$$
T(\vec{x})=A \vec{x} \left\lvert\, \begin{array}{ll}
(1) \quad A^{\top} A= & I \\
\text { (2) }\|T(\vec{x})\|^{2} & =T(\vec{x}) \cdot T(\vec{x}) \\
& =(A \vec{x}) \cdot(A \vec{x}) \\
& =(A+A \cdot \vec{x}) \cdot \vec{x}=\vec{x} \cdot \vec{x}=\|\vec{x}\|^{2}
\end{array}\right.
$$

2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right] \quad Q=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 / \sqrt{3} \\
1 & 1 / \sqrt{3} \\
1 & -\sqrt{3} \\
1 & 1 / \sqrt{3}
\end{array}\right]
$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$
R=\left[\begin{array}{lll}
\square & - \\
\square & -
\end{array}\right]
$$

A orthogonal $\quad \Leftrightarrow \quad A^{+} A=I$

$$
\left.\left.\begin{array}{rl}
1=\operatorname{det}\left(A^{\top} \cdot A\right) & =\underbrace{\operatorname{det}\left(A^{\top}\right)}_{=} \cdot \operatorname{det}(A) \\
& \operatorname{det}(A)
\end{array}\right)=1 \text { or }-1 \text { et }(A)^{2}\right)
$$

T is 1-1

$$
\Leftrightarrow \quad T(\vec{x})=0 \quad \text { implies } \quad \vec{x}=0
$$

$\Leftrightarrow \quad A \vec{x}=0$ has the only trivial solution.
$\Leftrightarrow \quad A$ is invertible.
$\Leftrightarrow \quad \operatorname{det}(A) \neq 0$.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (2 points) Using only 0's and 1's in your answer, give an example of a 2×2 matrix that is invertible but not diagonalizable.

$$
\left(\begin{array}{l}
\\
\end{array}\right)
$$

4. (6 points) Fill in the blanks.
(a) Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be orthogonal vectors each with length 2 . Determine the length of the vector $2 \vec{u}+\vec{v}$. \square
(b) Suppose A is a 7×5 matrix such that $\operatorname{dim}(\text { Row } A)^{\perp}=4$. Determine the dimension of the column space of A. \square
(c) Suppose $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^{n}, and \vec{x} belongs to the subspace \mathcal{W}. Suppose also that

$$
\vec{v}_{1} \cdot \vec{v}_{1}=2, \vec{v}_{2} \cdot \vec{v}_{2}=4, \vec{v}_{1} \cdot \vec{x}=6, \text { and } \vec{v}_{2} \cdot \vec{x}=-4 .
$$

Find $[\vec{x}]_{\mathcal{B}}$ the coordinates of \vec{x} in the basis \mathcal{B}. $\left[\begin{array}{c}6 / 2 \\ -4 / 4\end{array}\right]$

Midterm 3 Lecture Review Activity, Math 1554

1. Indicate true if the statement is true, otherwise, indicate false.
\qquad
a) If S is a two-dimensional subspace of \mathbb{R}^{50}, then the dimension of S^{\perp} is 48 .
b) An eigenspace is a subspace spanned by a single eigenvector.
c) The $n \times n$ zero matrix can be diagonalized.
d) A least-squares line that best fits the data points $\left(0, y_{1}\right),\left(1, y_{2}\right),\left(2, y_{3}\right)$ is unique for any values y_{1}, y_{2}, y_{3}.
2. If possible, give an example of the following.
2.1) A matrix, A, that is in echelon form, and $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=2, \operatorname{dim}\left((\operatorname{Col} A)^{\perp}\right)=1$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenvalue $\lambda=2$ is the line $x_{1}=2 x_{2}$. The other eigenspace of the matrix is the x_{2} axis.

2.3) A subspace S, of \mathbb{R}^{4}, that satisfies $\operatorname{dim}(S)=\operatorname{dim}\left(S^{\perp}\right)=3$.

$$
N . P .
$$

2.4) A 2×3 matrix, A, that is in RREF. (Row $A)^{\perp}$ is spanned by $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$.

$$
\left(\begin{array}{lll}
1 & 0 & -2 \\
0 & 1 & -3
\end{array}\right)
$$

3. Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible. For the situations that are possible give an example.
3.1) A is $n \times n, A \vec{x}=A \vec{y}$ for a particular $\vec{x} \neq \vec{y}, \vec{x}$ and \vec{y} are in \mathbb{R}^{n}, and $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right) \neq 0$.

impossible
MullA)

$$
\operatorname{dim}_{\left(\operatorname{sul}\left(A^{\top}-\lambda I\right)\right)}
$$

3.2) A is $n \times n, \lambda \in \mathbb{R}$ is an eigenvalue of A, and $\operatorname{dim}\left((\operatorname{Col}(A-\lambda I))^{\perp}\right)=0$.

possible

3.3) $\operatorname{proj}_{\vec{v}} \vec{u}=\operatorname{proj}_{\vec{u}} \vec{v}, \vec{v} \neq \vec{u}$, and $\vec{u} \neq \overrightarrow{0}, \vec{v} \neq \overrightarrow{0}$.

$$
\frac{u \cdot v}{u \cdot u} \cdot u=\frac{u \cdot v}{v \cdot v} \cdot v
$$

4. Consider the matrix A.

$$
A=\left(\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Construct a basis for the following subspaces and state the dimension of each space.
4.1) $(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A)$
4.2) $\operatorname{Col} A=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 3 \\ 1\end{array}\right]\right\}$
4.3) $(\operatorname{Col} A)^{\perp}$

$$
=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

