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Section 1.1 Systems of Linear Equations

Topics
We will cover these topics in this section.

l_l

. Systems of Linear Equations
. Matrix Notation

. Elementary Row Operations

S~ W0 DN

. Questions of Existence and Uniqueness of Solutions

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a linear system in terms of the number of solutions,
and whether the system is consistent or inconsistent.

2. Apply elementary row operations to solve linear systems of equations.

3. Express a set of linear equations as an augmented matrix.
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A Single Linear Equation

A linear equation has the form
[ i 4
a1x1 + asxo + -+ a Ty, =0
w e ~

ai,...,ap, and b are the coefficients, x1,...,x, are the variables or
unknowns, and n is the dimension, or number of variables.

For example,

o 2x1 +4x9 =4 is a line in two dimensions
A

e 3x1 + 229 + x3 = 6 is a plane in three dimensions
NN
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Systems of Linear Equations

When we have more than one linear equation, we have a linear system
of equations. For example, a linear system with two equations is

% r1 + 1bxy +mrg =4 drenswn =3
51 + D.o, T Txz3 =5 D\E%V\,

Definition: Solution to a Linear System

The set o@w of r1,x2,...x, that satisf@equations
is the solution to the system.

A system can have a unique solution, no solution, or an infinite number
of solutions. %

Theorem | loden
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Consider the following systems. How are they different from each other?

5 561—25172:—1
—$1+3$2:3

3,2)

_—
/

non-parallel lines

1 — 2x9 = —1
—x1 + 2%2 =3
/f

parallel lines
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Three-Dimensional Case

An equation a1z + as®s + asrs = b defines a plane in R3. The solution
to a system of three equations is the set of intersections of the planes.

splution set sketch number of solutions
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Row Reduction by Elementary Row Operations

How can we find the solution set to a set of linear equations?
We can manipulate equations in a linear system using row operations.

1. (Replacement/Addition) Add a multiple of one row to another.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply a row by a non-zero scalar.

Let's use these operations to solve a system of equations.
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Example 1

Identify the solution to the linear system.

(2D =25 4w =0 —O
2332 —83}3 =38 @

@ By =10 —
\VA Y
(2

(@)

3 — §x©O 4 QQPL»M

—_—

("S% — £-or) +foo<l+(_S‘)<;~3\‘Xg\’\‘fQ

= 5+ (0% kgm0 — @
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Example 1

|dentify the solution to the linear system.

1 —2x9 +x3 =0 — 0
2332 —8[,63 =8 — @

%\MW’V 5y —bx3 =10 —@

B+

K 2% + (=0 _ @ ( -3% +MmX, —8x;=a"
Af 2K2 —K?{\%:g

—®
(0%, ~Il0o; =10 —(3f
A

J & — 5 X

AL —2Xo + K3 =0

‘X-Z.-\A-»(X-qu — (A

KXo — X3

1

— &

2 varauble S
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Augmented Matrices

It is redundant to write x1, x2, x3 again and again, so we rewrite systems
using matrices. For example,

121 —2x9 —HZE;J, =0
o.% + 2x9 —8xrz3 =38
U] + O- % —5:133 =10

can be written as the augmented matrix,

1 =2 1 |0
0O 2 81|38
5 0 -=51]10

The vertical line reminds us that the first three columns are the
coefficients to our variables x1, x9, and z3.
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Consistent Systems and Row Equivalence

Definition (Consistent)
A linear system is consistent if it has at least one éa[WHM

Definition (Row Equivalence)
Two matrices are row equivalent if a sequence of _ oW O:PW}TMQ

transforms one matrix into the other.

Note: if the augmented matrices of two linear systems are row
equivalent, then they have the same solution set.

Section 1.1 Slide 10



Fundamental Questions

Two questions that we will revisit many times throughout our course.

1. Does a given linear system have a solution? In other words, is it
consistent?

2. If it is consistent, is the solution unique?
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Section 1.2 : Row Reductions and Echelon Forms

Topics
We will cover these topics in this section.

1. Row reduction algorithm
2. Pivots, and basic and free variables

3. Echelon forms, existence and uniqueness

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a linear system in terms of the number of leading
entries, free variables, pivots, pivot columns, pivot positions.

2. Apply the row reduction algorithm to reduce a linear system to
echelon form, or reduced echelon form.

3. Apply the row reduction algorithm to compute the coefficients of a
polynomial.
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Definition: Echelon Form and RREF

A rectangular matrix is in echelon form if
1. All zero rows (if any are present) are at the bottom.

2. The first non-zero entry (or leading entry) of a row is to the right
of any leading entries in the row above it (if any).

3. All elements below a leading entry (if any) are zero.
A matrix in echelon form is in reduced row echelon form (RREF) if
1. All leading entries, if any, are equal to 1.

2. Leading entries are the only nonzero entry in their respective column.
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Example of a Matrix in Echelon Form

B — non-zero number, x = any number
@ B o« x x % x % k| x|
0O 6 0 WM *x x *x x % | %
O 6 0 6 0 0 0 W =« =«
0O 6 0 6 0 00O 0 M| x
o 06 0 0 0 0 0 0 © 0] 2o o
P

boHonn
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Example 1 FD 1 [ee

Which of the following are in RREF?
A T,WHH/

.
> d [06 30— [0 %ol
2

>

0 0] 1 17 0
_00_ [001]

a)

IO HI

&
o O
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Definition: Pivot Position, Pivot Column

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.

Example 2: Express the matrix in reduced row echelon form and identify

the pivot columns.

0
—1
—2

A =
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Row Reduction Algorithm

The algorithm we used in the previous example produces a matrix in
RREF. Its steps can be stated as follows.

Step 1la Swap the 1st row with a lower one so the leftmost nonzero entry is
in the 1st row

Step 1b Scale the 1st row so that its leading entry is equal to 1
Step 1c Use row replacement so all entries below this 1 are 0

Step 2a Swap the 2nd row with a lower one so that the leftmost nonzero
entry below 1st row is in the 2nd row

etc. ...
Now the matrix is in echelon form, with leading entries equal to 1.

Last step Use row replacement so all entries above each leading entry are 0,
starting from the right.
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Yo t 3, t0.% + I%Xe foxg =4

% "F‘HQF =
Ks = 6
/‘\
Basic And Free Variables
Consider the augmented matrix . x> x| —»  baste  unsublec
™ 0
1 3 0 7 014
Alf =001 405
O 0 0 0 1|6
Ky Xe v e CowTabhe

The leading one's are in first, third, and fifth columns. So:
e the pivot variables of the system Ax = b are 1, 3, and x5.

e The free variables are x5 and z4. Any choice of the free variables
leads to a solution of the system.

Note that A does not have basic variables or free variables. Systems have
variables.
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Existence and Uniqueness

~— Theorem

A linear system is consistent if and only if (exactly when) the last
column of the augmented matrix does not have a pivot. This is
the same as saying that the RREF of the augmented matrix does
not have a row of the form

(000 -~ 0| 1)

Moreover, if a linear system is consistent, then it has
1. a unique solution if and only if there are no free variables.

2. infinitely many solutions that are parameterized by free

variables.
IORYER]
Recoll
Linear gysk,wxg —P Avg,w»mhfl et
/
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1.3: Vector Equations

Topics
We will cover these topics in this section.

1. Vectors in R™, and their basic properties

2. Linear combinations of vectors

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply geometric and algebraic properties of vectors in R™ to
compute vector additions and scalar multiplications.

2. Characterize a set of vectors in terms of linear combinations, their
span, and how they are related to each other geometrically.
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Motivation

We want to think about the algebra in linear algebra (systems of
equations and their solution sets) in terms of geometry (points, lines,

planes, etc).
xr—3y=-3 B/

20 +y = 8

e This will give us better insight into the properties of systems of
equations and their solution sets.

e To do this, we need to introduce n-dimensional space R™, and
vectors inside it.
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R"™ A
LTS
Recall that R denotes the collection of all real nhumbers.

Let n be a positive whole number. We define
R™ = all ordered n-tuples of real numbers (z1, x2, T3, ..., ).

When n = 1, we get R back: R = R. Geometrically, this is the number
line.
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R2

Note that:
o when n = 2, we can think of R? as a plane

e every point in this plane can be represented by an ordered pair of
real numbers, its x- and y-coordinates

Example: Sketch the point (3,2) and the vector (g)

N

3
| L)

o
[
\

\

O
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Vectors

In the previous slides, we were thinking of elements of R" as points: in
the line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and

direction.
'S _ ( 3)

2rTr- - — 8
(
(
.
3

4

3 : i : :
For example, the vector 9 points horizontally in the amount of its

x-coordinate, and vertically in the amount of its y-coordinate.

(QA: { ((X\/”(L,"”r(}(v\3 ~ ‘Ki,‘“",‘XhG[R\(
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Vector/Algebra

When we think of an element of R™ as a vector, we write it as a matrix
with n rows and one column:
( (P\V\ U\'-QL‘R_O\/ - NX L

! AR

Suppose
ar () =)
U , U= :
U9 V2

Vectors have the following properties.
1. Scalar Multiple: celRk

- C-Ug >
C jr—
= {
2. Vector Addition: U+ V7

= () (e

Note that vectors in higher dimensions have the same properties.

<y
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5t 2 w=(3) 2" (ii)’(i)

Parallelogram Rule for Vector Addition

/
2 |- — - = -
S (= (
Q=(€> 2
|- -- a+@—<<“‘l>
( 5 26
( ) | e
( a+b { (8’)
b |
- S
NV
[ ? (
o a ‘ |
( (
2 < 7 7
N T = o+ (-T)_
= TN



Linear Combinations and Span

~— Definition

l (he v Cam LIV‘(/\:}T(/V\

£ o,

Cc1,C2,...,Cp, the vector below
g: 61171—|-62172—|—“'—|—Cp’l7p

is called a linear combination of v, Uy,
weights ¢, ¢, ..., cp.

2. The set of all linear combinations of ¥/, vs,
called the Span of v}, v, ..., 7).

1. Given vectors v1, U, ..., U, € R"™, and scalars

..., Up with

o, Tp s

Somn (AT W - W) = § M (e vl )

Exmw\% ry //V
Spnff (3, (01
Secton 13 Side 29 - 93 0o o [ U 1
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Geometric Interpretation of Linear Combinations

Note that any two vectors in R? that are not scalar multiples of each
other, span R2. In other words, any vector in R? can be represented as a
linear combination of two vectors that are not multiples of each other.

g&;cum YU G = P lane Confomiy, U “l
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Example

Is 4/ in the span of vectors ¥; and ¥5? Y ?

EL (s S A Copn brnad? o o

DAl

—s >
g[ = ‘Xi—lﬁ + oy - Vi for comve

& 7 ( > et & R
= X | —2 X o
<l§) \<~z>$ L(é>: K e
NZXL ’%y?(L)

\2%[ ‘}“Q(XL
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The Span of Two Vectors in R?

In the previous example, did we find that 4 is in the span of v; and v57

In general: Any two non-parallel vectors in R? span a plane that passes
through the origin. Any vector in that plane is also in the span of the two

vectors.
A
0
?/l?[z.%
— — n
Vi v e R e c - g eR
- -~ —
Co- Ui + GV -t CP-“L%‘, ¢ o Uinar Gembieatan oF
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Section 1.4

Section 1.4 : The Matrix Equation

Chapter 1 : Linear Equations

Math 1554 Linear Algebra

“Mathematics is the art of giving the same name to different things.”
- H. Poincaré

In this section we introduce another way of expressing a linear system that
we will use throughout this course.
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1.4 : Matrix Equation Ax = b

Topics
We will cover these topics in this section.

1. Matrix notation for systems of equations.
2. The matrix product AZ.

Objectives
For the topics covered in this section, students are expected to be able to

do the following.
1. Compute matrix-vector products.
2. Express linear systems as vector equations and matrix equations.

3. Characterize linear systems and sets of vectors using the concepts of
span, linear combinations, and pivots.
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Notation

symbol meaning
e ot belongs to
R™ the set of vectors with n real-valued elements
R™*™ the set of real-valued matrices with m rows and n columns

Example: the notation & € R® means that & is a vector with five

real-valued elements.
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(mxv\ WMG%B 0 ( [En vap(w%B = (rRm vechrs )

=y -
Linear Combinations Ba % oo, € K
m S A= [z:; 0o - 5\2] %=
Definition 5/%@ C s
A'is a m X n matrix with columns @, ...,d, and(z)c R™ then the
matrix vector product A7 is a linear combination of the columns of A:
]
| | ‘ Io
Az ap dp -+ dp | =xa Fxede + - F2pd, €
| | T ‘ : oA @™ m q\m
Ty =4 ® R

Note that AZ is in the span of the columns of A.

Example
The following product can be written as a linear combination of vectors:

wﬁ MW[ 1]

2 x 2 x4 le o RO
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m
L[ 4L
: X |

Solution Sets % bs
D — — . - <
Al A2 T An |~ . §

Theorem X, b

It Ais a m x n matrix with columns a, ..., d,, and v € R" and

b € R™, then the solutions to

has the same set of solutions as the vector equation

- - _
$151+°"+$n5n:b _ﬁ b [ ~ [rf\U?\V

Comby. G& aQ "

which as the same set of solutions as the set of linear equations with the
augmented matrix

y m Eguc
a dg -+ ap { b} {
2 [ N Undees
Ay = Qg - . .
: - & ~-- + %o -Gn = b
i
— O\ll O\,l,[ . d&[l a(V\ f[
A, = 0\
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) ) - M
Existence of Solutions A= [ A 77 a

Theorem ,Tf\(ﬂ’r\ %JC‘(’@N\ [ C,@qu'&/\*‘

The equation Ax = b has a solution if and only @ a linear
combination of the columns of A.

Lt Cytnn 1< Congishmt & b gFM% oL o A

I

AU{I‘ Mt
La\éjr COL\J\NW»g AF (P?V&L

[0 ---- o | 1]
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-~ by & ( 3 &
<$<b)_): & gj)av\/\ ’i (2_) /(QB/ (‘FB
by o ( -2
Ct> kg - LIQZL‘ = O ZL[ hbl +2J93 = O
2> [ /
Example /
— bl
For what vectors b = | by | does the equation have a solution?
b
3 A
1 3 4 B
2 8 4 |Z=0b
0 1 -2
i & %K = b
YA Y RK. 4K = ba
?<2/ — 2,9(3 — LB
/%ugmméfco\ Mot = ( 3 q. by
N 2 & b;}
O { -2 | b
Section 1.4 Slide 39 { 5 é{_ b I
oy
@- & -20 O 2 —4} by —2-b,
o 1 -2 by
f 3, 4 5
.—H _ %
@ — x> © | -2 ble‘ ® - Q)-®
O 1.2 =2 by




N ( ~2
@) O Q
_ =b
= 4
AR <T  hes o sdofm  onshent
Example
For what vectors b = | by | does the equation have a solution?
b3
1 3 4
2 8 4 |x=0b
0 1 =2
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The Row Vector Rule for Computing Ax

1

L4
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8[30[22

Summary

We now have four equivalent ways of expressing linear systems.
1. A system of equations:

201 + 329 =7
r1 — 9o = 5
hson®>
2. An augmented matrix: . o
W
P | s e
R

3. A vector equation: M/W\'@P/’_\
2 3 7
(1) + (%)= (5)

4. As a matrix equation:

(F2)E)-6)

Each representation gives us a different way to think about linear systems.
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1.5 : Solution Sets of Linear Systems

Topics
We will cover these topics in this section.
1. Homogeneous systems

2. Parametric vector forms of solutions to linear systems

Objectives
For the topics covered in this section, students are expected to be able to

do the following.
1. Express the solution set of a linear system in parametric vector form.
2. Provide a geometric-interpretation to the solution set of a linear
system.

3. Characterize homogeneous linear systems using the concepts of free
variables, span, pivots, linear combinations, and echelon forms.
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LIN,M Sycl(yw\ . A ‘?|< = §
X
Homogeneous Systems (”‘
Xo
Definition I (8
Linear systems of the form A% = o- : . |Jare homogeneous.
—a ° I
Linear systems of the form _A%X -1 T %< are inhomogeneous. A Oﬁ; ©
oo olmgs  ConSTstoAT [

Because homogeneous systems always have the trivial solution, £ = 0,
the interesting question is whether they have  nafiivm| Q\l“ﬁm o GoludTan

solutions. Cnonzeys ) 4y Ax=g%
— Observation \
AZ = 0 has a nontrivial solution & A%3| hes 1 vaLeL/
/ <= there is a free variable noiny Gohdtim
<= A has a column with no pivot.

v E/ls | ol 'ej\/\bwa)/\ o GnsTder (A
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gshiﬁem SQ{— = {(QW\? 7% K - X%QFR \[

Example: a Homogeneous System

Identify the free variables, and the solution set, of the system.

A — YV S
N W=l o 4 3rgtas=0 V7 Hozv»oéwy\/b
, g &Uﬁwg 2$1—£L'2—5$3:O
(/_-'”’—r/_;/ © r1 —2x3 =0
Jf\~ / > XL IL\ 2}? = E?
| 3 \ % °
2 | —§E { ’xz\ = 0 \H
E; T 0o -2 X3 ©
(
Hy=o
| 3 l
2 —1 —S}
1 o -
{ 3 1 3
— 0 |
| | o ~7 ~7
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Ry > Ry — Ry © Ry x(=5)
[ o —2
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B I, Ay > g = Kt A

:? Colodsan ‘1% M N flﬂ% GHPRL[

C/WQQ\ 'w Ko +%3 X2 A3 | [ \Z 73
Xy > = (‘Xz> ‘(_( & > = (Xl(|> +W3(0>
X3 > % ¥/Q\f\/ [
(Th. CQVY\/L(\\

Parametric Forms, Homogeneous Case

In the example on the previous slide we expressed the solution to a system
using a vector equation. This is a parametric form of the solution.
Pparametnc torm

In general, suppose the free variables for A¥ = 0 are zx,...,z,. Then all
solutions to AZ = 0 can be written as

T = Uk + Tpy10k+1 + - + TpUp

for some vy, ...,U,. This is the parametric form of the solution.
KL = l(xg o [ &
1 S S = 1 (0, o, M) 2 BER
Ty = =Ky

= St —t, )k CR)
T
Xz = T
“?(\:ZJY
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Example 2 (non-homogeneous system)

Write the parametric vector form of the solution, and give a geometric
interpretation of the solution.

r1+3x9+x3 =9
2561—%2—5263:11

331—2563:6

(Note that the left-hand side is the same as Example 1).

A S B
2~L—§[[J

1 5 4 q 3 v 9
S A d S Wy A IL R I
o s Rop _ Ry x[-3) | [
2 L o —3 -3 3 R LY L
R2—> Rg_Pi gx(_?
Section 1.5 Slide 47 O ,_\2_, é
. [ X( -,D,(Xg = é
Ri— R, —3R. S | ! | % )? Wy + Ky = |
2
Rg - Ry — P; 4 Q) O O
T Reer = 2
Xo = ~ Xy +4
()(3 = cXg

Seludin ':% (2606, sl , %) Y X eRY
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1.7 : Linear Independence

Topics
We will cover these topics in this section.
e Linear independence

o Geometric interpretation of linearly independent vectors

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a set of vectors and linear systems using the concept of
linear independence.

2. Construct dependence relations between linearly dependent vectors.

Motivating Question
What is the smallest number of vectors needed in a parametric solution
to a linear system?

Section 1.7 Slide 49



,G/g.g, \fﬂ"l’i "M\Q/

(03
vy frvnl & Untgue sl
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Linear Independence Ef b { ] = [Q}

A set of vectors {v7,...,U;} in R™ are linearly independent if
R veche 6%*/‘03‘7“\"
cth +clp+ -+ G0k =0 &— Iy ci»
has only the trivial solution. It is linearly dependent otherwise. e
C(—_g , Cy=> T C(c;—-o
In other words, {¥1,..., Uy} are linearly dependent if there are real
numbers cq, ca,...,ci not all zero so that

c1U1 + coUs + -+ - + U, =0
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Consider the vectors:
U1, Vo, ... Uy

To determine whether the vectors are linearly independent, we can set
the linear combination to the zero vector:

o

. . . L L4 | C2 L77

clv1+02vg+---+ckvk:[v1 Uy -+ ‘Uk;] =Vec=0
Cn

Linear independence: There is NO non-zero solution ¢

Linear dependence: There is a non-zero solution ¢.
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C([[jWLCL~2, F%[( = °
r
ot Ly |
For what values of h are the vectors linearly independent?

NI

Example 1

S %
%fﬁ‘ NI \F%(] ot (Tr\e,d»k[y Tn&w\&@f&
& C:L‘\—F? 4—CZ°E + c%ﬁ -9 Tmp‘?«@s ;=9 Gmo , G=o
deffndtm
) : vl solut
S5 - 2 2 ‘ ° (/L()\g f"\f\Q/ 0V\7 AT Sl M-
VY DY ﬂ Co | &
C, ©
1 h
LY
P
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Example 2 (One Vector)

Suppose ¥ € R™. When is the set {¢} linearly dependent?

— -
CL"% = 3 ?M?‘(‘@/Q CL=o ?,
&
- - M -
) T o 1 - (U\ = O C/c %—: )
> (TPQW\# @?%MN&—

g

BN - U //(\Y . 0
V- [ [

151% }C[-‘UZ,} ©
C( - - - <
‘ (
. ( (
1\) [ 0
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Example 3 (Two Vectors)

Suppose U7, U2 € R™. When is the set {v7, 72} linearly dependent?
Provide a geometric interpretation.

- — =
Co W o« 6T = 3 owd  one oF
X Pe
L CiFko = i~
C U{ — -_'Cp__\ CU\L
? »)
SN C —3
Vg = &“ ——313 Uy
= Cq
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Two Theorems &WL& f~6, w=%

uppose v1,...,U) are vectors m@ It k)> n, then

W & X a b

™ - T cl‘?gc N=S “g' \P?L/\Of‘

-5

¢ Fact 2. If an@or more of ¥y, .. vk |Ohen {v7,...,U,} is linearly

dependent.
v
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& Ce R?f "‘Cz,'.{ﬁ_ -t CP}T].; t—g ({/\/\(DIMJQ = --—- = CP = 0
4 Vs h ag Hae el 7 Mumﬂ Solution o
=) - — !
o AT =3 S A m,—-m»«:[gj
& AR == (M/\g no -CH'Q w\q»\aLe . (_(D

@ Ewkg Gl 6 A TS vt
1.8 : An Introduction to Linear Transforms

Topics
We will cover these topics in this section.

1. The definition of a linear transformation.

2. The interpretation of matrix multiplication as a linear
transformation.

Objectives
For the topics covered in this section, students are expected to be able to

do the following.
1. Construct and interpret linear transformations in R™ (for example,
interpret a linear transform as a projection, or as a shear).

2. Characterize linear transforms using the concepts of

» existence and uniqueness
» domain, co-domain and range
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From Matrices to Functions

Let A be an m x n matrix. We define a function ﬂlm

This is called a matrix transformation.

o

U

2

o™ T RE — R™,  T(¥) = Av
Vechy ek — "

v e R

The domain of T is R”.  #w b &  Thpats
The co-domain or target of T is R™. . sef
The vector T'(¥) is the image of & under T' 4

The set of all possible images T'(Z) is the range.

This gives us another interpretation of Ax = b:

Section 1.8

set of equations
augmented matrix
matrix equation
vector equation

linear transformation equation
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>3

«
Functions from Calculus

Many of the functions we know have domain and codomain R.We can
express the rule that defines the function sin this way:

f:R—=R f(x) = sin(x)

In calculus we often think of a function in terms of its graph, whose
horizontal axis is the domain, and the vertical axis is the codomain.

/\ /%06
S A

This is ok when the domain and codomain are R. It's hard to do when
the domain is R? and the codomain is R3. We would need five
dimensions to draw that graph.
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A
Example 1 [gjlh} [;[l}fg]:vf[%ﬁﬁt 3[@

1 1
let A= |0 1],
1 1

7
—~ +
= [Z] b= |5]. - g
7 ¢
c H{le ‘><+3
4 U1y oy 1+ ¢ T
a) Compute T'(#@). = A U = {o;}[d =[ 4 J: ¢
[
3¢ 7
b) Calculate 7 € R? so that T'(%) = b _
%{’(\ Y LY oy g 4=* V=[]
a T TR E
X-kd (| 3 7 -
c) Give a @€ IR3 so there is no %With T(?)=¢c . :
R C-
or: Give a ¢ that is not in the range of T [ z} / [\?l
or: Give a ¢ that is not in the span of the columns of A.

(
x ( \ ¢,
c«[b} - C{(K = {O (MCJ
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P = % Loy = 259, SH) =5
Ex) £ lx) = 2X (e
-ﬁ[X\ = X+41 ﬁ(f‘x) = S| Nt \ITP‘U\V

Linear Transformations S0 = 5 o)

A function T : R™ — R is linear if
o T(u+v)=T(u)+ T ) for all @, in R™.
o T(c¥) = I (V) for all ¥ € R™, and ¢ in R.

So if T is linear, then

[T Candy [7n. Cowbi.
T(c1vh + -+ + cxVk) = a1 T(01) + -+ + T (Ug)

This is called the principle of superposition. The idea is that if we
know T'(€Y),...,T(€,), then we know every T'(v).

Fact: Every matrix transformation T4 is linear.

[ g NS

T R oR" T3 AT
g : A= AU
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Example 2

Suppose T is the linear transformation T'(¥) = AZ. Give a short
geometric interpretation of what 7'(Z) does to vectors in

10 1 S N,
va ] e

%Q—eéﬁu\f\ :

2) A= L0 T < . e
bl LA e

> =3

0
3) A_lo k] for k € R

S | fl Mxl—[j\:j
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Example 3

What does T4 do to vectors in R3?

1 0 0
a) A=10 1 0
00 0

Section 1.8 Slide 63



A% [23 m xn
Ac R

T " - R"
TR ) A-x

1

Example 4

- IXQ
A linear transformation T' @@satlsflej(% ) Ac R
- =9
| 5 0 —3 A= f Ve, TZJ
(@-[7 -]
2 0
e
What is the matrix that represents 17

- <9 3
vV e R

(o AT

T(0) = H R[] = 1R so R -

()= (% R[] o E AT

= 8

Section 1.8 Slide 64 2 e
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Section 1.9 : Linear Transforms

Chapter 1 : Linear Equations

Math 1554 Linear Algebra

cos O sin90 | | o,

= 99
-s5in 90" 05 0°f { @, i
https: //xkcd.com /184
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1.9 : Matrix of a Linear Transformation

Topics
We will cover these topics in this section.

1. The standard vectors and the standard matrix.
2. Two and three dimensional transformations in more detail.

3. Onto and one-to-one transformations.

Objectives
For the topics covered in this section, students are expected to be able to

do the following.

1. ldentify and construct linear transformations of a matrix.

2. Characterize linear transformations as onto and/or one-to-one.
3. Solve linear systems represented as linear transforms.
4

. Express linear transforms in other forms, such as as matrix equations
or as vector equations.
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Definition: The Standard Vectors

The standard vectors in R" are the vectors €7, €5, ..., €,, where:
. 1 L © L 0
€1 = o €y = 1 €n — 1
; O ‘
¢ .
o
(®) D ’[

For example, in R3,

a=r'7 &= 99 &= ("
=)Ly L
© D (
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A = f{;)i T Tn]

A Property of the Standard Vectors

Note: if A is an m X n matrix with columns ¥, vs, ..., U,, then
Ae; =1;, fori=1,2,...,n

So multiplying a matrix by €; gives column i of A.

Example 8
4]

1 2 3\ F 2

4 5 6| é = ?}

7 8 9 o

Section 1.9 Slide 68
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The Standard Matrix

—

Theorem

\

Let T : R™ — IR™ be a linear transformation. Then there
IS a unique matrix A such that

The matrix A is the standard matrix for a linear transformation.

Section 1.9
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(ool F)
[Sﬂ\ @B Gy

Rotations

Example 1
What is the linear transform 7" : R? — R? defined by

T (%) = & rotated counterclockwise by angle 67

—

— S /
} / /) / \ G
Section 1.9 Slide 70 (ﬂ'vg / N




Standard Matrices in R?

o There is a long list of geometric transformations of R? in our
textbook, as well as on the next few slides (reflections, rotations,
contractions and expansions, shears, projections, ... )

o Please familiarize yourself with them: you are expected to memorize
them (or be able to derive them)
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Two Dimensional Examples: Reflections

transformation image of unit square standard matrix
reflection through x;—axis T2 1 0
0 —1
oV
é,QA /g \f% .
e\ ~€
oAl A
v [\ - \
B //’(& \l/ (e
KXo
reflection through x2—axis T2

Z1

[
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Two Dimensional Examples: Reflections

transformation image of unit square standard matrix

reflection through xs = x;

(¥ o)

reflection through 2 = —x; T2 ( 0 —1)

x1
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Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix
Horizontal Contraction 2 kE 0
k] <1
0 1
- AN
€2
> Z1
€1
Horizontal Expansion x kO
orizontal Expansi 2 k>
0 1
- AN
€2
>— T1
€1
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Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix
Vertical Contraction T2 1 0
k< 1
0 k
- AN
€2
> Z1
€1
Vertical E i x 1 0
ertical Expansion 2 k1
0 k
- AN
€2
>— T1
€1
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Two Dimensional Examples: Shears

transformation image of unit square standard matrix
Horizontal Shear(left) Z2 1k k<0
0 1
1
k<0
Horizontal Shear(right) 2 1k k>0
0 1
1
k>0
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Two Dimensional Examples: Shears

transformation

image of unit square

standard matrix

Vertical Shear(down)

Vertical Shear(up)

Section 1.9 Slide 77

i) 1
k
5 A
€2
> = 1
€1
X2 1
k
5 A
€2
> 1
€1

0

1>,I<:<O

0
1),k>0



Two Dimensional Examples: Projections

transformation

image of unit square

standard matrix

Projection onto the x;-axis

Projection onto the x2-axis

Section 1.9 Slide 78

T2

Y

(0 3)

Z1

\ 4

(%)

x1




=\

Onto
Range = Torgol
Definition 4\?

A linear transformation 7" : R"™ — R™ is onto if for all
b € R™ there is a £ € R" so that T'(¥) = b.

Onto is an existence property: for any b€ R™, A% = b has a solution.

Examples
e A rotation on the plane is an onto linear transformation.

e A projection in the plane is not onto.

Useful Fact A

T is onto if and only if its standard matrix has @n every
¥ — T

>
(A IT] ensekd Geoom T

Section 1.9 Slide 79
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005 X =0

Tn

MS -.M\Q/ a—wl\/ ’H’M(/\q

One-to-One

~— Definition \

A linear transformation 7" : R™ — R™ is one-to-one if
for all b € R™ there is at most one (possibly no) & € R" so
that T' (%) = b.

\ S

One-to-one is a uniqueness property, it does not assert existence for all b.

Examples
e A rotation on the plane is a one-to-one linear transformation.

e A projection in the plane is not one-to-one.

Useful Facts

o T is one-to-one if and only if the only solution to 7' (%)
zero vector, ¥ = 0.

0 is the

o T is one-to-one if and only if the standard matrix A of T" has no free

variables.
Section 1.9 Slide 80 C‘:7 CD[uwv\g (@ A\T art
rady  liponbot
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Example

Complete the matrices below by entering numbers into the missing

entries so that the properties are satisfied. If it isn’t possible to do so,

state Why e L/WV\ . r—"\? EUQ’“‘J chupn hoy o P}ud*
a) Ais ajx 3 standard matrix for a one-to-one linear transform.

1 0
AZ(O 1) Mm&x  pluet =& heed 3 = [P
b) Bisa ch)) X %standard matrix for an onto linear transform.

o \wvn w 23
"~ 1 & [—D I~Go pewt .

B = M AR (ﬁ“ﬂﬂ‘ =2 S/NP

c) Cis a 3 x 3 standard matrix of a linear transform that is one-to-one

’ 2@ A PD%TX”LQ Not onto

@ 1 1 @
c=|eo £ %
o ©
) c®-T
Section 1.9 Sli
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Section 1.9

c
—{:(Aayy row ™ A

— Theorem \
For a linear transformation 7' : R™ — R™ with standard
matrix A these are equivalent statements.

1. Tisonto. & ¢, any TeR™ thoe exts TR gyq
2. The matrix A has columns which span R™.
3. The matrix A has m pivotal columns.

— Theorem \
For a linear transformation 7' : R™ — R™ with standard
matrix A these are equivalent statements.

1. T is one-to-one. T (X)=
2. The @ solution to 7' (&) = 0 is the trivial one.

3. The matrix A linearly independent columns.

4. Each column of A is pivotal.

Slide 82
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Additional Examples

1. Construct a matrix A € R?*2, such that T'(Z) = AZ, where T is a
linear transformation that rotates vectors in R? counterclockwise by
7 /2 radians about the origin, then reflects them through the line
Ir1 = To.

2. Define a linear transformation by
T(CEl,xg) = (3%1 + 372,5331 + 7$2,£L’1 + 3282)

Is T" one-to-one? Is T onto?
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Section 2.1 : Matrix Operations

Chapter 2 : Matrix Algebra
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Topics and Objectives

Topics
We will cover these topics in this section.

1. ldentity and zero matrices
2. Matrix algebra (sums and products, scalar multiplies, matrix powers)

3. Transpose of a matrix

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply matrix algebra, the matrix transpose, and the zero and
identity matrices, to solve and analyze matrix equations.

Section 2.1 Slide 2



Definitions: Zero and ldentity Matrices

1. A zero matrix is any matrix whose every entry is zero.

0 0 O 0
02)(3 — [O 0 O] 9 02Xl - [O]

2. The n x n identity matrix has ones on the main diagonal,
otherwise all zeros.

1 0
1:12:[0 1]7 13:

o O =
O~ O
— o o

Note: any matrix with dimensions n X n is square. Zero matrices need
not be square, identity matrices must be square.

Section 2.1 Slide 3



51 5

( D,

tngJ ;[S—S y‘@]\
Sums and Scalar Multiples = Compopent—toicely |

Suppose A € R™*", and a; ; is the element of A in row ¢ and column j.

1. If A and B are m X n matrices, then the elements of A + B are

R — T Y
Gi,g  big- [ 27 +E7 : |
2. If ¢ € R, then the elements of cA are(@j; ;.
o - o ClesT s
For example, if - [ J
3y 44¥

1 2 3 n T 4 7 |15 10 17
4 5 6/ 7% 0 0 kK| T |4 5 16
What are the values of ¢ and k7

RS A S
[L] Jefired
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Properties of Sums and Scalar Multiples

Scalar multiples and matrix addition have the expected properties.

If r, s € R are scalars, and A, B, C' are m X n matrices, then
1. A4+ 0pxn =4

(A+B)+C=A+(B+C)

r(A+ B)=rA+rB

(r+s)A=rA+sA

r(sA) = (rs)A

o R e

Section 2.1 Slide 5
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NS ¥ —> AY ¢ R”
QN

Ao B & @TKP

ﬂzﬁ” ”;';KF A® - A DX oo %]
<[ Anil AZ, - AR
Matrix Multiplication " ﬁ“ ;’“ &
e & R
— Definition - \

Let A be am x n matrix, and B be a n xX/'p matrix. The
product is AB a m X p matrix, equal to

AB:A[& Ep]z[Az?l ... Ab,

\ S

Note: the dimensions of A and B determine whether AB is defined, and
what its dimensions will be.

A B

m X n nxp
\\_rnustbe _/}
equal
dimensions
of product

Section 2.1 Slide 6
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MmN c gzv\, x[?

5

)

G - —
IR T
—5

O,

—
Am - 19‘ Jj:_L

Row Column Rule for Matrix Multiplication

The Row Column Rule is a convenient way to calculate the product AB
that many students have encountered in pre-requisite courses.

Row Column Method
If A € R™*™ has rows a;, and B € R™"*P has columns l;j,
each element of the product C'= AB is ¢;; = d@; - b;.

Example 2 X3
Compute the following using the row-column method. c R
%3 £
T RER & © ")
C_¢AB_<1 1) <4 5 6) e

X2
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AR™ o ABeRTdefined

h<p =0 Uw[egg
Properties of Matrix Multiplication 4 5 ¢ ™ p=m

B-A GGQ‘MM Nacra Cenmg ST
Let A, B,C' be matrices of the sizes needed for the matrix multiplication ~—
to be defined, and A is a m X n matrix. @

1. (Associative) (AB)C = A(BC)
2. (Left Distributive) A(B + C) = AB + AC

3. (Right Distributive) --- (A+8)-¢ = AC + BC
4. (Identity for matrix multiplication@4 =Al, = A
Warnings:

1. (non-commutative) In general, AB # BA.
CZ. (non-cancellation) AB = AC' does not mean B = C.
QB. (Zero divisors) AB = 0 does not mean that either A =0 or B =0.

n R n b = o = =0 gr b=0
2K =

AoBek AP O  od B0 B=D

O> 60 S ©
Section 2.1 Slide 8 s © (Q [> - i)



The Associative Property

The associative property is (AB)C = A(BC). If C' = Z, then

(AB)Z = A(BZ)

Schematically:

Multiplication by AB

> ABZ

X
Multiplication by B
Multiplication by A

The matrix product ABx can be obtained by either: multiplying by

matrix AB, or by multiplying by B then by A. This means that matrix
multiplication corresponds to composition of the linear
transformations.

Section 2.1 Slide 9



Example

1 1
=l
Give an example of a 2 x 2 matrix B that is non-commutative with A.

i wii}fli}

[ontc [91%0}
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Additional Examples

True or false:
1. Forany I, and any A € R"*" (I, + A)(I,, — A) = I,, — A®.

2. Forany A and B in R"™*" (A + B)? = A2 + B + 2AB.

Section 2.1 Slide 14



The Transpose of a Matrix

AT is the matrix whose columns are the rows of A.

Example | 6
1 2 3 4 5" 1
0-10-2=0] ~ [2 |
Properties of the Matrix Transpose 3 9
_ £ =
1. (AT)T = A < o/
o (A+BT = K+ B
3. (rA)t = v AT
4. (AB)T = AN
(<P o
r: . A e EM»@ R c D S ABG‘R
Section 2.1 Slide 11 ’ I L
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Matrix Powers

For any n x n matrix and positive integer k, A* is the product of k
copies of A.

AF = AA. . A

Example: Compute C®.
S

Section 2.1 Slide 12




Example

Define

1 0 1 0 0
A_[O O]’ B_[O 0 8]’ ¢=

OO =
o N O

0
0
2

Which of these operations are defined, and what are the dimensions of

the result?

1 A+3c NP

K 3 3K
2. A(AB)T @ e R ARy € B
—). X3
2% CA%)T f\/g{— J@CTNJ

| + crR - A
Qg ’7/ - D2 7 K2

LF T A - B - C B

ZKSK W A3 %@
\/—f@‘/
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Section 2.2 : Inverse of a Matrix

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

"Your scientists were so preoccupied with whether or not they could,
they didn't stop to think if they should.”

- Spielberg and Crichton, Jurassic Park, 1993 film
The algorithm we introduce in this section could be used to compute an
inverse of an n X n matrix. At the end of the lecture we'll discuss some of

the problems with our algorithm and why it can be difficult to compute a
matrix inverse.

Section 2.2 Slide 15



Topics and Objectives

Topics
We will cover these topics in this section.
1. Inverse of a matrix, its algebraic properties, and its relation to
solving systems of linear equations.
2. Elementary matrices and their role in calculating the matrix inverse.

Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Apply the formal definition of an inverse, and its algebraic
properties, to solve and analyze linear systems.
2. Compute the inverse of an n X n matrix, and use it to solve linear
systems.
3. Construct elementary matrices.

Motivating Question

2 —1 0
Is there a matrix, A, such that |—1 2 —1|A=137
0 -1 2

Section 2.2 Slide 16



The Matrix Inverse

Section 2.2

—

Definition

\

A € R™ ™ is invertible (or non-singular) if there is a
C' € R™ ™ so that

1
A€ -cA=@A. - iO
O 4

If there is, we write C = A~1.

Tols © AC=1. =5 CA-T

Slide 17
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The Inverse of a 2 x 2 Matrix

There's a formula for computing the inverse of a 2 X 2 matrix.

~— [ heorem

a b

The 2 x 2 matrix d

ad — bc # 0, and then

\

a b_l__ 1
c d | ad — be

Toerbble

is non-singular if and only if

-

Example

State the inverse of the matrix below.

Section 2.2 Slide 18

2

o XS [ O
c A‘B [%w]: [O 5}
R 1
[ 2 5] 4 \/(/\YT”‘H‘Q/S
_f? _ZJ L}/\ecﬁﬂ\mg;bﬁs-
S (7Lenv
nd — bc = A=) = (5)(=R) =1%o
T L
W\U@\f% . _x
I A N
=, —_— - o
1 —(=3) 2 s

ad —bc



A =T
EB7 -5
R i -x = A

The Matrix Inverse

—
A @: A /A= T,
Theorem ///'( = — _’p
A € R™ ™ has an inverse if and only if fojl‘Q AT =b
=A""D.

has a unique solution. And, in this case, ¥ = A~ !

NN

Example
Solve the linear system.

35171—|—4332:7
51+ 6x9 =7 f
L 7 4
/DS\\ 8 4 [Xli [7}
[? g] L) Ly
(D A TS 7hwﬂ4’7{9§*€ 2 Meg,
Section 2.2 Slide 19 O\,cl _ L = ?4 _‘4{‘;,S‘ = —2 AQQ .
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Properties of the Matrix Inverse

Aland liar_ellrilertlble n X m matrices. A ( ﬁ_s\\ -1
(A ) =A - -
@ B~1A~! (Non-commutative!) <A B - Qg ‘ /ﬁ) =L
oy S
Cx e Ot

=ETT
Example

True or false: (@)—1 =C 1B~ 1AL

/\\
_ o
Ay ¢y - c (4B

-t ot A

T

. /_f_//—\j\"ﬂ - I
(B -t et sty
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An Algorlthm for Computmg A1

If AR "™ and n > 2, how do we calculate A=!? Here's an algorithm
we can use:
1. Row reduce the augmented matrix (A |1I,)

2. If reduction has form (I, | B) then A is invertible and B = A~1.
Otherwise, A is not invertible.

Example

Compute the inverse of A =

Section 2.2 Slide 21




A e R 7o nwerbible
& A- [7:\_ &t T o?jil =
A :?é
Ax =0
=
)
Axe =T

—

Why Does This Work?

& \;ﬂru—u 5T

ce R i

Cdesriton
’ A-C =T =G A
(ey & - an] -
= e ouny T eR
A Consiotont A% =T Consichend

by ™
’”[ ‘ ] ¢ Jostrm
“be

- 5
Lo eoe e

We can think of our algorithm as simultaneously solving n linear systems:

Ax1 = e
AZy = €5
AZ, =€,

Each column of A=l is A~ 1¢, = &;.

Over the next few slides we explore another explanation for how our
algorithm works. This other explanation uses elementary matrices.
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Elementary Matrices

An elementary matrix, F, is one that differs by I,, by one row operation.
Recall our elementary row operations:

1. swap rows
2. multiply a row by a non-zero scalar
3. add a multiple of one row to another

We can represent each operation by a matrix multiplication with an
elementary matrix.

Q[E%K;
A EEEE—
C a3 R.C— R ( b
[4 1;@] O ]
78 9 _ -4t 56
[ & o [ 2> 3
O O | ] L5 (
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Example (‘5 [@] 5 [
Oa( o ©

R, 2 K- +2-Ry
Suppose —
1 1 1 1 1 1
E{-2 1 0|=1(0 3 2
0 0 1 0 0 1

By inspection, what is £7 How does it compare to 37
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=
A e o predud of elenutay =
162
A= E?( E;\ - L;\j (i:k = ELE) A= -

\/\/7\/
Theorem A

Returning to understanding why our algorithm works, we apply a
sequence of row operations to A to obtain [,,:

(FEy---EsEsF)A =1,
Thus, E} - - - E3E9FE is the inverse matrix we seek.

Our algorithm for calculating the inverse of a matrix is the result of the
following theorem.

~— Theorem \

Matrix A is invertible if and only if it is row equivalent to the
identity. In this case, the any sequence of elementary row op-
erations that transforms A into I, applied to I, generates A~!
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Using The Inverse to Solve a Linear System

o We could use A~! to solve a linear system,
AT =b

We would calculate A~ and then:

o As our textbook points out, A~ is seldom used: computing it can
take a very long time, and is prone to numerical error.

o So why did we learn how to compute A~1? Later on in this course,
we use elementary matrices and properties of A~! to derive results.

e A recurring theme of this course: just because we can do something
a certain way, doesn't that we should.
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Section 2.3 : Invertible Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“A synonym is a word you use when you can’t spell the other one.”
- Baltasar Gracian

The theorem we introduce in this section of the course gives us many ways
of saying the same thing. Depending on the context, some will be more
convenient than others.
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Topics and Objectives

Topics
We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many
of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize the invertibility of a matrix using the Invertible Matrix
Theorem.

2. Construct and give examples of matrices that are/are not invertible.

Motivating Question
When is a square matrix invertible? Let me count the ways!
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The Invertible Matrix Theorem

Invertible matrices enjoy a rich set of equivalent descriptions.

Theorem
Let A be an n X n matrix. These statements are all equivalent.

Section 2.3

a) A is invertible.

b) A is row equivalent to I,.

c) A has n pivotal columns. (All columns are pivotal.)

d) AZ =0 has only the trivial solution. &> TRY=AX T -1

) The columns of A are linearly independent.

()

f) The linear transformation ¥ — AZX is one-to-one.

oQ

) The equation AT = b has a solution for all b € R™.
h) The columns of A span R".

') The linear transformation ¥ — AX is onto.

)

j) There is a n x n matrix C so that CA = I,,. (A has a left inverse.)

k) Thereis an xn matrix D so that AD = I,,. (A has a right inverse.)
)

) AT s invertible.
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Invertibility and Composition

The diagram below gives us another perspective on the role of A™1.

Multiplication by A

8y

Multiplication by A~! Ax

The matrix inverse A~1 transforms Ax back to . This is because:

ATYAR) = (AT A)F =

Section 2.3 Slide 30



The Invertible Matrix Theorem: Final Notes

e ltems j and k of the invertible matrix theorem (IMT) lead us directly
to the following theorem.

—

Theorem

\

If A and B are n X n matrices and AB = I, then A and
B are invertible, and B= A"! and A = B~ 1.

S

e The IMT is a set of equivalent statements. They divide the set of all

square

matrices into two separate classes: invertible, and

non-invertible.

e As we progress through this course, we will be able to add additional
equivalent statements to the IMT (that deal with determinants,
eigenvalues, etc).
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Example 1

Is this matrix invertible?

Q) o =2
-5 -1 9

)
D — 2ar
— [@@ Z8
o |1 —
D o s
[ O @ 4 TA\/W‘EMQ.
& O
Secion 23 Side 2 K N (
& o oj
O O \



Example 2

If possible, fill in the missing elements of the matrices below with
numbers so that each of the matrices are singular. If it is not possible to
do so, state why.

(7.
(_\./\2
10 1 (1) + 1 1 0 0 dep .
1 o1, D1, 0 1 1
0 0 1 m 0 4 1 Y
/(\ - — 'CE [\)D{-—
P

o \ ﬂf Tuardible
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Section 2.4 : Partitioned Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“Mathematics is not about numbers, equations, computations, or
algorithms. Mathematics is about understanding.”
- William Paul Thurston

Multiple perspectives of the same concept is a theme of this course; each
perspective deepens our understanding. In this section we explore another
way of representing matrices and their algebra that gives us another way of
thinking about them.
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Topics and Objectives

Topics
We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply partitioned matrices to solve problems regarding matrix
invertibility and matrix multiplication.
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What is a Partitioned Matrix?

Example
This matrix:

] Ag g A2,2]
four s, each of which has different

=
/1\ 1 0]
i [ ]0 1 [Am A

R
We partitioned our matrix into
dimensions.

Section 2.4 Slide 36



Another Example of a Partitioned Matrix

Example: The reduced echelon form of a matrix. We can use a
partitioned matrix to

3

SO RO OO

SO OO O
SO OO O
oS oo +R OO
S O %k ¥k Xk X
S O ¥ * ¥ X

This is useful when studying the null space of A, as we will see later in
this course.
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Row Column Method

Recall that a row vector times a column vector (of the right dimensions)

is a scalar. For example,
ST
111 = {1 +4-2 +1-2
2

This is the row column matrix multiplication method from Section 2.1.

~— Theorem \

Let A be m x n and B be n X p matrix. Then, the (i, )
entry of AB is
row; A - col; B.

This is the Row Column Method for matrix multiplication.

\ S

Partitioned matrices can be multiplied using this method, as if each block
were a scalar (provided each block has appropriate dimensions).

&M%@% (PO &)
< o)) \CeHILs )
(/gmm T
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C D N \ d PepR c@@
N | N J
t ¢
Example of Row Column Method /
Recall, using our formula for @atrix, [g i] . % [g —ab] :
N~

Example: Suppose A € R™*"™, B € R"*™, and C € R™*"™ are invertible

. . A B
matrices. Construct the inverse of 0o Cl

ne " ngn

[

Section 2.4 Slide 39 A & } 1 O j
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Section 2.5 : Matrix Factorizations

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“Mathematical reasoning may be regarded rather schematically as the
exercise of a combination of two facilities, which we may call intuition and
ingenuity.” - Alan Turing

The use of the LU Decomposition to solve linear systems was one of the
areas of mathematics that Turing helped develop.
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Topics and Objectives

Topics
We will cover these topics in this section.

1. The LU factorization of a matrix
2. Using the LU factorization to solve a system
3. Why the LU factorization works

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Compute an LU factorization of a matrix.
2. Apply the LU factorization to solve systems of equations.

3. Determine whether a matrix has an LU factorization.

Section 2.5 Slide 41



Motivation

Recall that we could solve A7 = b by using

Z=A"1%
e This requires computation of the inverse of an n x n matrix, which

is especially difficult for large n.

o Instead we could solve AZ = b with Gaussian Elimination, but this is
not efficient for large n

e There are more efficient and accurate methods for solving linear
systems that rely on matrix factorizations.

Section 2.5 Slide 42



Matrix Factorizations

A matrix factorization, or matrix decomposition is a factorization
of a matrix into a product of matrices.

o Factorizations can be useful for solving Ax = b, or understanding
the properties of a matrix.

We explore a few matrix factorizations throughout this course.

In this section, we factor a matrix into lower and into upper
triangular matrices.

Section 2.5 Slide 43



Triangular Matrices

o A rectangular matrix A is.upper triangular if a; ; = 0 for i > j.

Examples:

1 0 0 1 2

1 5 0 0 2 1 0 0

0 2 4)° 0O 0 1 0]’ 0

0 0 0 1 0

o A rectangular matrix A is lower triangular if a; ; = 0 for ¢ < j.

Examples:

3 0 0 0 1

1 0 0 1 1 0 0 2

3 2 0)° 0O 0 1 01" 1

0 2 0 1 2

Ask: Can you name a matrix that is both upper and lower triangular?
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PDU\) c?@mﬁmg (@m[.L/ k‘@&D(M—@/VM)
The LU Factorization < S Edde b = U

—ne - L= produst <& etm\m{-w
any E WTOQS\

~— Theorem (

If A is an m X n matrix that can be row reduced to echelon form
without row exchanges, then A = LU. L is a lower triangular m xm
matrix with 1's on the diagonal, U is an echelon form of A.

\ LA’PP@*‘ ‘{’V‘TO\A/?UIO\JY‘ v y
Example: If A € R3%2, the LU factorization has the form: @;ﬁ/
€
o V10 0\ [ oe\7 "
} p 7 * % 1 0 0 ~ B
'8 \(o\rg
, </ o
\m_/ Mﬁt\\j\ J
b " \g%
ST\M N
UJ
Gt -
5W
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Why We Can Compute the LU Factorization

Suppose A can be row reduced to echelon form U without interchanging
rows. [ hen,
E, -FiA=U

where the F; are matrices that perform elementary row operations. They
happen to be lower triangular and invertible, e.g.

—1

Therefore,
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Using the LU Decomposition

Goal: given A and b, solve AT = for 7.

Algorithm: construct A = LU, solve Ax = LUX = b by:
1. Forward solve for ¢ in Ly = b.

2. Backwards solve for z in UZ = y/.

Example: Solve the linear system whose LU decomposition is given.

OO = =
OoONN = O
N W N

0

2

0

0
Sle AR =T ( LUR-=T)

DR .2 =

NN~—
2
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An Algorithm for Computing LU

To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement

operations, if possible.

Place entries in L such that the same sequence of row operations
reduces L to 1.

Note that

e In MATH 1554, the only row replacement operation we can use is to
replace a row with a multiple of a row above it.

e More advanced linear algebra courses address this limitation.

Example: Compute the LU factorization of A.

4 -3 -1 5

A= —-16 12 2 —17
8 -6 —12 22
O A4 Y \ (EEEA - U _L
q_ - S = S - 4 _A
%50 A = E 'ELE3U
Section 2.5 Slide 48 {Q | 2 —I7 :L_\/—/
-1 I o o
R~ 22 Ey=
—4. [ ®)
@ - o, ° Y
— 3 A ( o ot
Gk > Rk O ONO U ) o |
5 R Y S
B bR o o -2 3 o | o
@Rs~9 CoUTE ) o =3 O@ |



E7 E;\ Ej = | © 9 = L
> G |
ummar

S y ~
e

o To solve A¥ = UZ|= b, 3‘

1. Forward solve for ¢ in Ly = b. ‘

2. Backwards solve for Z in UZ = 4. f:%

e To compute the LU decomposition: ;

1. Reduce A to an echelon form U by a sequence of row replacement
operations, if possible.

2. Place entries in L such that the same sequence of row operations
reduces L to I. & Ptk A Qwmabey  anfrices

e The textbook offers a different explanation of how to construct the
LU decomposition that students may find helpful.

e Another explanation on how to calculate the LU decomposition that
students may find helpful is available from MIT OpenCourseWare:
www.youtube.com /watch?v=rhNKncraJMk
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Section 2.8 : Subspaces of R”

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra
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Topics and Objectives

Topics
We will cover these topics in this section.

1. Subspaces, Column space, and Null spaces

2. A basis for a subspace.

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a set is a subspace.

2. Determine whether a vector is in a particular subspace, or find a
vector in that subspace.

3. Construct a basis for a subspace (for example, a basis for Col(A))

Motivating Question
Given a matrix A, what is the set of vectors b for which we can solve

AZ = b?
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Subsets of R"

Section 2.8

Definition

o Mo

gxmcbrt '

[_A subset of R"™ is any collection of vectors that are in R".

|
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gt?wv\ C%\—irﬁ%s = Ciﬁfcz}(?» Gy e @fQ(\

/(\ S C._\AL‘C«U" s(’ EY\
. ~ S :
Subspaces in R”" o sl
S
§Ml%+ C;ulp;eJL ?c Cﬁ % 8‘1
~— Definition N

A subset H of R™ is a subspace if it is closed under scalar multiplies
and vector addition. That is: for any ¢ € R and for i, v € H,
l.cue H

0. G+ TEH H © « %ESW%% 2 kuy

v

\

Note that condition 1 implies that the zero vector must be in H.
Example 1: Which of the following subsets could be a subspace of R??

o
55
e
a) the unit square b) a line passing through c) a line that doesn’t pass
the origin through the origin
P—j cH ) ) s
B . Cv /T 0 &H
—
Section 28 Slidess  2-€1 &H = (Crc"NF Rt ot
Q A~
Net o C\r\log(?’\c* : ’ (‘_[\ QC ﬁ? |\ = CC('C7? Pﬂ\ )

Ar Q\)ogpa\c%
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The Column Space and the Null Space of a Matrix

Recall: for v3,...,7, € R", that Span{¢,...,v,} is:
5 —
(CuT =+ ) + (] T et G ={ i+ g% o geR)
— =)

= G+ \ﬁ +m e CCPHP()F; & Spmwm < Uﬁ];-z‘%(j — o %\ag}m& ,

This is a subspace, spanned by 71, ..., U.
— Definition \
Given an m X n matrix A = [61 c_z’n]
1. The column space of A, Col A, is the subspace of R™
spanned by @i, ..., 0n. cdums

2. The null space of A, Null A, is the subspace of R" spanned

by the set of all vectors & that solve’ AZ = 0.
\ SolUd’TM% )

Co(awv‘y\ prce a% A = g];ow\ V{ Cz[w/hhg%
= Raye f T&RI= AR

Moll gmee b B o Spu 3 St o AR =R
Section 2.8 Slide 55 Vi
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Example

Is b in the column space of A7

1 -3 —4 1 -3 4] 3
A=|-4 6 -2~ 6 —18|, b=| 3
0 0 0 4

-3 7 6
© T e Col(A) %

~— Cpown J Columnd

&= f = [TA . Cowb g% Crlawng
= AYX = ? S Q;w%TzLM’}
“3
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Example 2 (continued)

Using the matrix on the previous slide: is ¢ in the null space of A?

—5)\\
—3X ], AeER

A
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Basis
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Definition

A basis for a subspace H is a set of linearly independent
vectors in H that span H.

b~
Example Jeferd " %/anxf/

L1

The set H =1 iQ € R* | 21 + 229 + 23 + 524 = 0} is a subspace.
3 -
T4 ) G.luko &7 AN =73 ‘. ST
: < . a9
a) H is a null space for what matrix A’ R
b) Construct a basis for H. K E 2% - K, — Ex
K, g
(8 = -
N \ s !
7<¢ K(F
- ~‘ 7
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Example

Leee
Construct a basis for Null A and a basis for Col A. LA

-3 6 —1 0 1 21 010
A= 1 =2 2 0] ~ 10 0 110
2 —4 5 0 0 0] 0 \0

|
U
ARAPA
[
{
[
W
Oﬁ?ﬂ
‘\I
5
0 ll
y >%
06— N
— 9 o pr V¥
~ [
M
A3 0 o +
—
_p><
T
L 00 O
L 9
X
(\J
T
P
Q
Vavi
« ——
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Example

Construct a basis for Null A and a basis for Col A.

-3 6 -1 0 1 =2 0 0

A= 1 —2 2 O 0 0 1 0

—4 0 0 O 0
R/KRM -

Gl = Smd @ & & &
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Additional Example

LetV{(Z) 6R2ab0}.

1. Give an example of a vector that isin V.
2. Give an example of a vector that is not in V.
3. Is the zero vector in V7

4. Is V' a subspace?
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Section 2.9 : Dimension and Rank

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

\,Jhg George ... 1 must say,
this is 2 dimension of you
I've never seen before.
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Topics and Objectives

Topics

We will cover these topics in this section.
1. Coordinates, relative to a basis.
2. Dimension of a subspace.
3. The Rank of a matrix

Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Calculate the coordinates of a vector in a given basis.
2. Characterize a subspace using the concept of dimension (or
cardinality).

3. Characterize a matrix using the concepts of rank, column space, null
space.

4. Apply the Rank, Basis, and Matrix Invertibility theorems to describe
matrices and subspaces.
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Choice of Basis

Key idea: There are many possible choices of basis for a subspace. Our
choice can give us dramatically different properties.

Example: sketch by + by for the two different coordinate systems below.

F-"""~"X¥xX "y ~ "~ 7
N K - [ | | |
- s . r-— & - @ 0 -
- [ \ | |
A [ . [ [ \
\ | | |
[ b2 [ [ [
- - - - - ——-@-———— @ —— —
\ x | | |
| | | |
e
.'/ g - ‘ NJ—)’ | |
\ | | |
A a a 4

2

‘E K- H =
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J

Coordinates - ope= o
- o
Ery, U e m?%ﬂ‘" S ®
o can ¥ (ot N
Definition B 2 o
Let B = {b1,...,b,} be a basis for a subspace H. If ¥ is in H, then
coordinates of ¥ relative B are the weights (scalars) ci, ..., ¢, so that
fzclgl—l—"'—l—Cpgp = A [fx\\@
And
1
[z]s =
Cp

is the coordinate vector of ¥ relative to B, or the B-coordinate
— n n
vector of ¥ LB cR o xp

A= B k) eRr
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Example 1

1 1 5

Let v; = |0|, Uo = |1]|, and £ = [3|. Verify that & is in the span of
1 1 5

B = {v1, 72}, and calculate [7]3.

6? = Cl o\r)_;}] £~ Cy ‘Irb z
[{}[ TU:Z ( .;:] s ConSis et ?
) (D (&
| [ o 7 Con ?M+
© ( 4 — © @ /@j o
3 o D ©
f | v T
Ci — Q C’2/ -

[xlg = [3 J




Dimension

Definition
The dimension (or cardinality) of a non-zero subspace H, dim H, is the
number of vectors in a basis of H. We define dim{0} = 0.

Theorem
Any two choices of bases By and By of a non-zero subspace H have the

same dimension.

Examples:

N =
1. dimR"” = 9L YRS oot beas b R
VRS
2. H={(x1,...,2,) : 1+ -+ 2, =0} has dimension =~ n—1

3. dim(Null A) is the number of LHQ mﬁmu\e

4. dim(Col A) is the number of Iﬁw&g
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Rank

Definition
[—The rank of a matrix A is the dimension of its column space. ]

Example 2: Compute rank(A) and dim(Nul(A)).

2 5 -3 -4 8 2 5 -3 -4 8
4 7 -4 -3 9 0 -3 2 5 -7
6 9 -5 2 47777 lo 0 0 4 -6
0 -9 6 5 —6 0o 0 0 0 0
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gm,mbi(Co[wvnhs ™ AY
dim U\le\ (A = 4 ﬂC {eee var. = s Q’AC ron — plust
ng G a besTe, poramefic  eoh  fein Co ks
Rank, Basis, and Invertibility Theorems
£ plets fep o
Theorem (Rank Theorem) o(rm”(Cvmf\\ /’»&: o+

If a matrix A has n columns, then Rank A + dim(Nul A) = n.

SR S lman
Theorem (Basis Theorem) & columns

Any two bases for a subspace have the same dimension.

Theorem (Invertibility Theorem) TMT
Let A be a n x n matrix. These conditions are equivalent.
1. A is invertible.
The columns of A are a basis for R™.
ColA=R". = Ruye T & T ts  onto.
rank A = dim(ColA) =n. = Ll rwk

ok N

Null A = {07} L
= C ol “n A T . (V\MPA

© T 1-4
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Examples

If possible give an example of a 2 x 3 matrix A, that is il RREF and has
the given properties.

a) rank(A) = 3: Nof Po%QTE&% '
any

b) rank(A) = 2 10 *7

Y [ 4 } ?

oL P\NCA—S °c =7 /\W\r\% '
c) dim(NuII(jl/)) =2 [ 1 B @
[

L renpieb fo L plet °

d) Null4 = {0}

Net- Posctbe
& T i 1-L
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