Section 1.1 : Systems of Linear Equations

Chapter 1: Linear Equations
Math 1554 Linear Algebra

Section 1.1 Systems of Linear Equations

Topics

We will cover these topics in this section.

1. Systems of Linear Equations
2. Matrix Notation
3. Elementary Row Operations
4. Questions of Existence and Uniqueness of Solutions

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Characterize a linear system in terms of the number of solutions, and whether the system is consistent or inconsistent.
2. Apply elementary row operations to solve linear systems of equations.
3. Express a set of linear equations as an augmented matrix.

A Single Linear Equation

A linear equation has the form

$$
a_{1} x_{1}^{\prime}+a_{2} x_{2}^{\perp}+\cdots+a_{n} x_{n}^{\perp}=b
$$

a_{1}, \ldots, a_{n} and b are the coefficients, x_{1}, \ldots, x_{n} are the variables or unknowns, and n is the dimension, or number of variables.

For example,

- $2 x_{1}+4 x_{2}=4$ is a line in two dimensions
- $3 x_{1}+2 x_{2}+x_{3}=6$ is a plane in three dimensions

Systems of Linear Equations

When we have more than one linear equation, we have a linear system of equations. For example, a linear system with two equations is

$$
\left\{\begin{array}{lc}
x_{1}+1.5 x_{2}+\pi x_{3}=4 & \text { dimension }=3 \\
5 x_{1}+0 \cdot x_{2}+7 x_{3}=5 & 2 \text { Eqn. }
\end{array}\right.
$$

Definition: Solution to a Linear System
The set of(all) possible values of $x_{1}, x_{2}, \ldots x_{n}$ that satisfy all) equations is the solution to the system.

A system can have a unique solution, no solution, or an infinite number of solutions.

$$
\begin{aligned}
& 4 \\
& \text { Theorem, later. }
\end{aligned}
$$

$x_{1}-2 x_{2}=-1-(1) \longrightarrow \quad\left(x_{1}, x_{2}\right)$ satisfies
$\left\{\begin{array}{l}x_{1}+3 x_{2}=3-2\end{array}\right.$

$$
\begin{align*}
& x_{1}=1: \quad 1-2 \cdot x_{2}=-1, \quad x_{2}=1 \tag{2}\\
& x_{1}=0 \quad: \quad 0-2 \cdot x_{2}=-1, \quad x_{2}=\frac{1}{2}
\end{align*}
$$

Two Variables

Consider the following systems. How are they different from each other?

$$
\left\{\begin{aligned}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3
\end{aligned}\right.
$$

non-parallel lines

$$
\begin{aligned}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+2 x_{2} & =3
\end{aligned}
$$

parallel lines Empty Solution Set

Solution of the system
$=$ Intersection of two limes.

Three Equs \Rightarrow Three planes

Three-Dimensional Case

An equation $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=b$ defines a plane in \mathbb{R}^{3}. The solution to a system of three equations is the set of intersections of the planes.

Row Reduction by Elementary Row Operations

How can we find the solution set to a set of linear equations?
We can manipulate equations in a linear system using row operations.

1. (Replacement/Addition) Add a multiple of one row to another.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply a row by a non-zero scalar.

Let's use these operations to solve a system of equations.

Example 1

Identify the solution to the linear system.

$$
\begin{align*}
& \text { (3) }-5 \times 10 \text { Replace } \\
& \therefore\left(5 x_{1}-5 \cdot x_{1}\right)+10 x_{2}+\left(-5 x_{3}-5 x_{3}\right)=10 \\
& \Rightarrow \tag{4}\\
& 0+10 x_{2}-100 x_{3}=10-(4)
\end{align*}
$$

(4) $\times \frac{1}{10} \&$ Scaling

$$
x_{2}-x_{3}=1
$$

\Rightarrow Reduce \# of variables.

(1) Replace
(2) Scrap
(3) Scaling.

Example 1

Identify the solution to the linear system.

$$
x_{1}-2 x_{2} \quad+x_{3}=0
$$

$$
2 x_{2}-8 x_{3}=8-(2)
$$

Replacement $5 x_{1} \quad-5 x_{3}=10 \quad$-(3)
$k /(3)+(-5)(1)$

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}+x_{3}=0-\left(1-5 x_{1}+10 x_{2}-5 x_{3}=0\right) \\
2 x_{2}-8 x_{3}=8 \\
10 x_{2}-10 x_{3}=10
\end{array}\right.
$$

\mathcal{L} (2) $\rightarrow \frac{1}{2} \times(2),(3) \rightarrow \frac{1}{10} \times(3) \downarrow$ Scaling

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}+x_{3}=0 \tag{a}\\
\begin{array}{l}
x_{2}-4 x_{3}=4 \\
x_{2}-x_{3}=1
\end{array}
\end{array}\right.
$$

2 variables
Section $1.1 \quad$ Slide 8

$$
\begin{array}{ll}
\text { (a) }+(-1) \cdot(b): & +\frac{\left[\begin{array}{l}
-x_{2}+x_{3}=-1 \\
0-3 x_{3}=3
\end{array}\right.}{x_{2}-(-1)=1} \quad \begin{array}{ll}
x_{2}=0
\end{array} \\
x_{1}-2 \cdot 0+(-1)=0 \quad \therefore \quad x_{3}=-1
\end{array} \quad \therefore \quad x_{1}=1
$$

Augmented Matrices

It is redundant to write x_{1}, x_{2}, x_{3} again and again, so we rewrite systems using matrices. For example,

$$
\begin{aligned}
1 \cdot x_{1}-2 x_{2}+4 x_{3} & =0 \\
0 \cdot x_{1}+2 x_{2} & -8 x_{3}
\end{aligned}=8
$$

can be written as the augmented matrix,

$$
\left[\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
5 & 0 & -5 & 10
\end{array}\right]
$$

The vertical line reminds us that the first three columns are the coefficients to our variables x_{1}, x_{2}, and x_{3}.

another matrices

Consistent Systems and Row Equivalence

Definition (Consistent)

A linear system is consistent if it has at least one \qquad Solution .

Definition (Row Equivalence)

Two matrices are row equivalent if a sequence of row operations
\qquad transforms one matrix into the other.

Note: if the augmented matrices of two linear systems are row equivalent, then they have the same solution set.

Fundamental Questions

Two questions that we will revisit many times throughout our course.

1. Does a given linear system have a solution? In other words, is it consistent?
2. If it is consistent, is the solution unique?

Section 1.2 : Row Reduction and Echelon Forms

Chapter 1 : Linear Equations
Math 1554 Linear Algebra

Section 1.2 : Row Reductions and Echelon Forms

Topics

We will cover these topics in this section.

1. Row reduction algorithm
2. Pivots, and basic and free variables
3. Echelon forms, existence and uniqueness

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Characterize a linear system in terms of the number of leading entries, free variables, pivots, pivot columns, pivot positions.
2. Apply the row reduction algorithm to reduce a linear system to echelon form, or reduced echelon form.
3. Apply the row reduction algorithm to compute the coefficients of a polynomial.

Definition: Echelon Form and RREF

A rectangular matrix is in echelon form if

1. All zero rows (if any are present) are at the bottom.
2. The first non-zero entry (or leading entry) of a row is to the right of any leading entries in the row above it (if any).
3. All elements below a leading entry (if any) are zero.

A matrix in echelon form is in reduced row echelon form (RREF) if

1. All leading entries, if any, are equal to 1 .
2. Leading entries are the only nonzero entry in their respective column.

Example of a Matrix in Echelon Form

$\boldsymbol{\square}=$ non-zero number,$\quad *=$ any number

Example 1

 $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

Which of the following are in RREF?

$$
\begin{aligned}
& \text { a) }\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\perp} \text { Identity } \\
& \text { d) }\left[\begin{array}{llll}
0 & 6 & 3 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
0 & 1 & \frac{1}{2} & 0
\end{array}\right] \\
& \text { (b) }\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad \text { e) }\left[\begin{array}{ccc}
1 & 17 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

c)

Definition: Pivot Position, Pivot Column

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.
Example 2: Express the matrix in reduced row echelon form and identify the pivot columns.

Row Reduction Algorithm

The algorithm we used in the previous example produces a matrix in RREF. Its steps can be stated as follows.

Step 1a Swap the 1st row with a lower one so the leftmost nonzero entry is in the 1st row
Step 1b Scale the 1st row so that its leading entry is equal to 1
Step 1c Use row replacement so all entries below this 1 are 0
Step 2a Swap the 2nd row with a lower one so that the leftmost nonzero entry below 1st row is in the 2nd row etc. ...

Now the matrix is in echelon form, with leading entries equal to 1 .
Last step Use row replacement so all entries above each leading entry are 0 , starting from the right.

$$
\left\{\begin{aligned}
x_{1}+3 x_{2}+0 x_{3}+7 x_{4}+0 x_{5} & =4 \\
x_{3}+4 x_{4} & =5 \\
x_{5} & =6
\end{aligned}\right.
$$

Basic And Free Variables

Consider the augmented matrix $\begin{array}{ccc}x_{1} & x_{3} & x_{0} \\ \uparrow & \uparrow & \uparrow\end{array} \rightarrow$ basic variables

$$
[A \mid \vec{b}]=\left[\begin{array}{lllll|l}
1 & 3 & 0 & 7 & 0 & 4 \\
0 & 0 & 1 & 4 & 0 & 5 \\
0 & 0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

The leading one's are in first, third, and fifth columns. So:

- the pivot variables of the system $A \vec{x}=\vec{b}$ are x_{1}, x_{3}, and x_{5}.
- The free variables are x_{2} and x_{4}. Any choice of the free variables leads to a solution of the system.
Note that A does not have basic variables or free variables. Systems have variables.

Existence and Uniqueness

Theorem

A linear system is consistent if and only if (exactly when) the last column of the augmented matrix does not have a pivot. This is the same as saying that the RREF of the augmented matrix does not have a row of the form

$$
\left(\begin{array}{lllll|l}
0 & 0 & 0 & \cdots & 0 & \mid
\end{array}\right)
$$

Moreover, if a linear system is consistent, then it has

1. a unique solution if and only if there are no free variables.
2. infinitely many solutions that are parameterized by free variables.
$8 / 25 / 23$
Recall
Linear Systems \rightarrow Augmented matrix

Section 1.2 Slide 20

Consistent, $\Leftrightarrow x\left[\begin{array}{lll|l}0 & 0 & \ldots & 0\end{array}\right]$
If consistent,
free \rightarrow Infinitely many Sol.
no free $\rightarrow 1$ solution.

Section 1.3 : Vector Equations

Chapter 1: Linear Equations
Math 1554 Linear Algebra

1.3: Vector Equations

Topics

We will cover these topics in this section.

1. Vectors in \mathbb{R}^{n}, and their basic properties
2. Linear combinations of vectors

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply geometric and algebraic properties of vectors in \mathbb{R}^{n} to compute vector additions and scalar multiplications.
2. Characterize a set of vectors in terms of linear combinations, their span, and how they are related to each other geometrically.

Motivation

We want to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes, etc).

$$
\begin{aligned}
& x-3 y=-3 \\
& 2 x+y=8
\end{aligned}
$$

- This will give us better insight into the properties of systems of equations and their solution sets.
- To do this, we need to introduce n-dimensional space \mathbb{R}^{n}, and vectors inside it.
\mathbb{R}^{n}

路

$$
=\{1,2
$$

Recall that \mathbb{R} denotes the collection of all real numbers.
Let n be a positive whole number. We define

$$
\mathbb{R}^{n}=\text { all ordered } n \text {-tuples of real numbers }\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

When $n=1$, we get \mathbb{R} back: $\mathbb{R}^{1}=\mathbb{R}$. Geometrically, this is the number line.

\mathbb{R}^{2}

Note that:

- when $n=2$, we can think of \mathbb{R}^{2} as a plane
- every point in this plane can be represented by an ordered pair of real numbers, its x - and y-coordinates

Example: Sketch the point $(3,2)$ and the vector $\binom{3}{2}$.

Vectors

In the previous slides, we were thinking of elements of \mathbb{R}^{n} as points: in the line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and direction.

For example, the vector $\binom{3}{2}$ points horizontally in the amount of its x-coordinate, and vertically in the amount of its y-coordinate.

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{1}, \cdots, x_{n} \in \mathbb{R}\right\}
$$

Section 1.3 Slide 26 $=\{$ All points in n-dim. space $\}$
$=\{$ Arrows from the origin $\}$

$$
=\left\{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\right\}
$$

Vector Algebra

When we think of an element of \mathbb{R}^{n} as a vector, we write it as a matrix with n rows and one column:

$$
\vec{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Suppose

$$
\vec{u}=\binom{u_{1}}{u_{2}}, \quad \vec{v}=\binom{v_{1}}{v_{2}} .
$$

Vectors have the following properties.

1. Scalar Multiple:
$c \in \mathbb{R}$

$$
\underset{\sim}{c} \underset{\sim}{c} \vec{u}=\left(\begin{array}{c}
c \cdot u_{1} \\
c \\
u_{2}
\end{array}\right)
$$

$$
\vec{u}+\vec{v}=\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}=\binom{u_{1}+v_{1}}{u_{2}+v_{2}}
$$

Note that vectors in higher dimensions have the same properties.

$2 \cdot \vec{u}=\binom{2 \cdot 3}{2 \cdot 2}=\binom{6}{4}$

Parallelogram Rule for Vector Addition

$$
\vec{a}-\vec{b}=\vec{a}+(-\vec{b})-\vec{a}
$$

$$
\vec{u}+2 \vec{v}, \quad \vec{u}-\vec{v}, \quad \vec{u}, \vec{v}, 100 \cdot \vec{u}, \cdots
$$

Example

$$
\vec{u}=\binom{3}{2} \quad, \quad \vec{v}=\binom{1}{-4}
$$

$$
\vec{u}+\vec{v}=\binom{3+1}{2-4}=\binom{4}{-2}: \text { linear combination }
$$

Linear Combinations and Span

Definition

1. Given vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$, and scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector below

$$
\vec{y}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}
$$

is called a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ with weights $c_{1}, c_{2}, \ldots, c_{p}$.
2. The set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ is called the Span of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$.
$\operatorname{Spam}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{\rho} \varphi\right)=\{\right.$ All linear combinations $\}$
Example

$$
\operatorname{Span}\left(\left\{\left(\begin{array}{l}
\vec{u} \\
3 \\
2
\end{array}\right),\binom{1}{-4}\right\}\right)
$$

Section $1.3 \quad$ Slide 29

$$
\begin{aligned}
& \binom{0}{0}=\overrightarrow{0}=\{a \cdot \vec{u}+b \cdot \vec{v}: a, b \in \mathbb{R}\} \\
& \vec{u}=0 \cdot \vec{u}+0 \cdot \vec{v} \\
& (\vec{u}+\vec{u}+0 \cdot \vec{v}
\end{aligned}
$$

Geometric Interpretation of Linear Combinations

Note that any two vectors in \mathbb{R}^{2} that are not scalar multiples of each other, span \mathbb{R}^{2}. In other words, any vector in \mathbb{R}^{2} can be represented as a linear combination of two vectors that are not multiples of each other.

	$2 \vec{v}-\vec{u}$			
$1.5 \vec{v}$	$-0.5 \vec{u}$			
		$\vec{v}-\vec{u}$		$2 \vec{v}+\vec{u}$
		$2 \vec{v}+2 \vec{u}$		
	$-\vec{u}$	$\overrightarrow{0}$	$\vec{v}+\vec{u}$	$\vec{v}+2 \vec{u}$

$$
\text { Span }\{\vec{u}, \vec{v}\}=P \text { lane containing } \vec{u}, \vec{v}
$$

Section 1.3 Slide 30
if \vec{u}, \vec{v} are not on the same cine

$$
\text { Ex } \quad \int_{\operatorname{san}}\left\{\binom{3}{2},\binom{1}{-4}\right\}=\mathbb{R}^{2}
$$

Ex \mathbb{R}^{3}

- Span $\{\vec{u}, \vec{v}\}$

Example

Is \vec{y} in the span of vectors \vec{v}_{1} and \vec{v}_{2} ?

it belongs to the plane

$$
\Leftrightarrow \quad \vec{y} \in \operatorname{Spam}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}
$$

$\Leftrightarrow \quad \vec{y}$ is a linear combination if 31 Section 1.3 slide 31 चे,\vec{v}

$$
\begin{gathered}
\vec{y}=x_{1} \cdot \overrightarrow{v_{1}}+x_{2} \cdot \overrightarrow{v_{2}} \quad \text { for some } \\
\Leftrightarrow \quad x_{1}, x_{2} \in \mathbb{R} \\
\left.\Leftrightarrow \quad\left(\begin{array}{c}
7 \\
4 \\
15
\end{array}\right)=x_{1}\left(\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right)+x_{2}\left(\begin{array}{c}
2 \\
5 \\
6
\end{array}\right)=\begin{array}{c}
x_{1}+2 x_{2} \\
-2 x_{1}+5 x_{2} \\
-3 x_{1}+6 x_{2}
\end{array}\right)
\end{gathered}
$$

$$
\left\{\begin{aligned}
x_{1}+2 x_{2} & =7 \\
-2 x_{1}+5 x_{2} & =4 \\
-3 x_{1}+6 x_{2} & =15
\end{aligned} \quad \rightarrow\left[\begin{array}{rc|c}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-3 & 6 & 15
\end{array}\right]\right.
$$

The Span of Two Vectors in \mathbb{R}^{3}
In the previous example, did we find that \vec{y} is in the span of \vec{v}_{1} and \vec{v}_{2} ?
In general: Any two non-parallel vectors in \mathbb{R}^{3} span a plane that passes through the origin. Any vector in that plane is also in the span of the two vectors.

$$
\frac{8 / 28 / 23}{\vec{v}_{1}}, \vec{v}_{2}, \cdots, \vec{v}_{p} \in \mathbb{R}^{n} \quad, \quad c_{1}, c_{2}, \cdots, c_{p} \in \mathbb{R}
$$

Section 1.3 Slide 32

$$
c_{1} \cdot \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \cdot \vec{v}_{p}: \text { a linear combination of }
$$

$$
\begin{aligned}
S_{\text {pan }}\left(\left\{\vec{v}_{1}, \cdots, \vec{v}_{p} y\right)\right. & =\{\text { All linear combinations }\}^{\vec{v}_{1}, \cdots, \vec{v}_{p}} \\
& =\left\{c_{1} \cdot \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \cdot \vec{v}_{p}: c_{1}, \cdots, c_{p} \in \mathbb{R}\right\}
\end{aligned}
$$

Section 1.4 : The Matrix Equation

Chapter 1: Linear Equations Math 1554 Linear Algebra

"Mathematics is the art of giving the same name to different things." - H. Poincaré

In this section we introduce another way of expressing a linear system that we will use throughout this course.

1.4: Matrix Equation $A \vec{x}=\vec{b}$

Topics

We will cover these topics in this section.

1. Matrix notation for systems of equations.
2. The matrix product $A \vec{x}$.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Compute matrix-vector products.
2. Express linear systems as vector equations and matrix equations.
3. Characterize linear systems and sets of vectors using the concepts of span, linear combinations, and pivots.

Notation

symbol				meaning
Elements \in Set	belongs to			
\mathbb{R}^{n}	the set of vectors with $n \simeq$ real-valued elements			
$\mathbb{R}^{m \times n}$	the set of real-valued matrices with m rows and n columns			

Example: the notation $\vec{x} \in \mathbb{R}^{5}$ means that \vec{x} is a vector with five real-valued elements.

$$
A \in \mathbb{R}^{2 \times 3} \quad A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)
$$

$$
\left.(m \times n \text { Matrices }) \cdot\left(\mathbb{R}^{n} \begin{array}{cc}
n \times 1 \text { vectors }) & m \text { matrices }
\end{array} \mathbb{R}^{m} \begin{array}{l}
\text { n }
\end{array}\right) \text { vectors }\right) .
$$

Linear Combinations

$\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \cdots, \vec{a}_{n} \in \mathbb{R}^{m}$
Definition $\sigma\left\{\begin{array}{l}m \text { rows } \\ n \\ n\end{array}\right.$ columns

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}
\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& 1, \ldots, \vec{a}_{n} \text { and }(x) \in \mathbb{R}^{(n)}, \text { then the }
\end{aligned}
$$ A is a $\underline{m \times n}$ matrix with columns $\vec{a}_{1}, \ldots, \vec{a}_{n}$ and $x \in \mathbb{R}^{(n)}$, then the matrix vector product $A \vec{x}$ is a linear combination of the columns of A :

$$
A \vec{x}=\left[\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n} \\
\mid & \mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\underset{\sim}{\underset{\sim}{*}} \underset{\mathbb{R}^{m}}{x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+\mathbb{R}_{n} \vec{a}_{n}} \underset{\mathbb{R}_{n}^{m}}{\mathbb{R}^{m}} \underset{\mathbb{R}^{m}}{ } \quad \in \mathbb{R}^{m}
$$

Note that $A \vec{x}$ is in the span of the columns of A.

Example

The following product can be written as a linear combination of vectors:

Section $1.4 \quad$ Slide 36

$$
\mathbb{R}^{3}
$$

$m \times n$
\mathbb{R}^{n}
Solution Sets
Theorem
If A is a $m \times n$ matrix with columns $\vec{a}_{1}, \ldots, \vec{a}_{n}$, and $x \in \mathbb{R}^{n}$ and
$\vec{b} \in \mathbb{R}^{m}$, then the solutions to
$A \vec{x}=\vec{b} \quad \& \quad A$ Matrix Equation.
has the same set of solutions as the vector equation

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b} \Rightarrow \vec{b} \text { is a linear }
$$ which as the same set of solutions as the set of linear equations with the of augmented matrix

Section 1.4 Slide 37

$$
\begin{aligned}
& x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
\vdots \\
b_{m}
\end{array}\right] \\
& {\left[\begin{array}{c}
a_{11} \cdot x_{1}+a_{12} x_{2}+\cdots a_{m n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
s \\
b m
\end{array}\right]}
\end{aligned}
$$

Existence of Solutions

$$
A=\left[\overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}}\right]
$$

Theorem linear system is Consistent
The equation $A \vec{x}=\vec{b}$ has a solution if and only \vec{b} iss a linear combination of the columns of A.

Liner system is Consistent $\Leftrightarrow \quad b \in \operatorname{Span}\left\{\overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}}\right\}$

Aug. Mat.
Last columns \neq pivot

$$
\left[\begin{array}{lll|l}
0 & \cdots & 0 & 1
\end{array}\right]
$$

$A \vec{x}=\vec{b}$ has a solution

$$
\begin{aligned}
& \Leftrightarrow\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\vec{b} \in \operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
8 \\
1
\end{array}\right),\left(\begin{array}{c}
4 \\
4 \\
-2
\end{array}\right)\right\} \\
& \Leftrightarrow \quad b_{3}-\frac{b_{2}-2 b_{1}}{2}=0,2 b_{1}-b_{2}+2 b_{3}=0
\end{aligned}
$$

Example
For what vectors $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ does the equation have a solution?

$$
\left(\begin{array}{ccc}
\frac{1}{2} & 3 & 4 \\
0 & 1 & -2
\end{array}\right)^{\prime \prime} \vec{x}=\vec{b}
$$

Linear System : $\quad \int x_{1}+3 x_{2}+4 x_{3}=b_{1}$

$$
\left\{\begin{aligned}
2 x_{1}+8 x_{2}+4 x_{3} & =b_{2} \\
x_{2}-2 x_{3} & =b_{3}
\end{aligned}\right.
$$

Augmented Mat.:

$$
\left[\begin{array}{ccc|c}
1 & 3 & 4 & b_{1} \\
2 & 8 & 4 & b_{2} \\
0 & 1 & -2 & b_{3}
\end{array}\right]
$$

$\underset{\text { (2) } \rightarrow \text { (2) }-2 \times(1)}{\text { Section 1.4 Side 39 }}\left[\begin{array}{ccc|c}1 & 3 & 4 & b_{1} \\ 0 & 2 & -4 & b_{2}-2 \cdot b_{1} \\ 0 & 1 & -2 & b_{3}\end{array}\right]$
$\xrightarrow[\text { (2) } \rightarrow \frac{1}{2} \times(2)]{\longrightarrow}$$\left[\begin{array}{ccc|c}1 & 3 y_{0} & 4 & b_{1} \\ 0 & 1 & -2 & \frac{b_{2}-2 \cdot b_{1}}{2} \\ 0 & 1 \rightarrow 0 & -2 & b_{3}\end{array}\right] \xrightarrow[(3) \rightarrow(3)-(2)]{ }$

For what vectors $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ does the equation have a solution?

$$
\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & 8 & 4 \\
0 & 1 & -2
\end{array}\right) \vec{x}=\vec{b}
$$

The Row Vector Rule for Computing $A \vec{x}$

$$
\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=[
$$

8/30/23

Summary

We now have four equivalent ways of expressing linear systems.

1. A system of equations:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
x_{1}-x_{2}=5
\end{array}
$$

2. An augmented matrix:
3. A vector equation:

$$
\begin{aligned}
& x_{1}-x_{2}=0 \\
& {\left[\begin{array}{cc|c}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right] \xrightarrow{\text { row operatitions }} \text { RREF. }}
\end{aligned}
$$

$$
x_{1}\binom{2}{1}+x_{2}\binom{3}{-1}=\binom{7}{5}
$$

4. As a matrix equation:

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{5}
$$

Each representation gives us a different way to think about linear systems.

Section 1.5: Solution Sets of Linear Systems

Chapter 1: Linear Equations
Math 1554 Linear Algebra

1.5 : Solution Sets of Linear Systems

Topics

We will cover these topics in this section.

1. Homogeneous systems
2. Parametric vector forms of solutions to linear systems

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Express the solution set of a linear system in parametric vector form.
2. Provide a geometric interpretation to the solution set of a linear system.
3. Characterize homogeneous linear systems using the concepts of free variables, span, pivots, linear combinations, and echelon forms.

Definition
Linear systems of the form \square $A \cdot \vec{x}=\overrightarrow{0}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$ are homogeneous.
Linear systems of the form $A \cdot \vec{x}=\vec{b}, \vec{b} \neq \overrightarrow{0}$ are inhomogeneous. $A \overrightarrow{0}=\overrightarrow{0}$ \Downarrow
Because homogeneous systems always have the trivial solution, $\vec{x}=\overrightarrow{0}$, the interesting question is whether they have \qquad (nonzivial solution a solution
to $A \vec{x}=\overrightarrow{0}$ solutions.

Observation

$$
A \vec{x}=\overrightarrow{0} \text { has a nontrivial solution } \Leftrightarrow A \vec{x}=\overrightarrow{0}
$$

has infinitely
\Longleftrightarrow there is a free variable many solution
$\Longleftrightarrow A$ has a column with no pivot.

Section $1.5 \quad$ Slide 44
nonpivot \longleftrightarrow free variables

$$
\left.\begin{array}{r}
x_{3}=\text { free }, \\
\left\{\begin{array}{c}
x_{1}-2 x_{3} \\
x_{2}+x_{3}
\end{array}=0\right.
\end{array}\right\} \begin{aligned}
& \left(\begin{array}{c}
2 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \\
& \text { Solution Set }=\left\{\begin{array}{l}
x_{1}=2 x_{3} \\
x_{2}=-x_{3}
\end{array}\right. \\
& \text { S } \left.\left.2 x_{3},-x_{3}, x_{3}\right): x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

Example: a Homogeneous System
Identify the free variables, and the solution set, of the system.

$$
\xrightarrow[\substack{R_{2} \times\left(-\frac{1}{3}\right) \\
R_{3} \times\left(-\frac{1}{3}\right)}]{ }\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\xrightarrow[\substack{R_{1} \rightarrow R_{1}-3 R_{2} \\
R_{3} \rightarrow R_{3}-R_{2}}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Ex) If x_{2}, x_{3} : free, $x_{1}=x_{2}+x_{3}$

Parametric Forms, Homogeneous Case

In the example on the previous slide we expressed the solution to a system using a vector equation. This is a parametric form of the solution.

In general, suppose the free variables for $A \vec{x}=\overrightarrow{0}$ are x_{k}, \ldots, x_{n}. Then all solutions to $A \vec{x}=\overrightarrow{0}$ can be written as

$$
\vec{x}=x_{k} \vec{v}_{k}+x_{k+1} \vec{v}_{k+1}+\cdots+x_{n} \vec{v}_{n}
$$

for some $\vec{v}_{k}, \ldots, \vec{v}_{n}$. This is the parametric form of the solution.

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
x_{1}=2 x_{3} \\
x_{2}=-x_{3}
\end{array} \Rightarrow \text { Solution }=\right. & \left\{\left(2 x_{3},-x_{3}, x_{3}\right): x_{3} \in \mathbb{R}\right\} \\
= & \{(2 t,-t, t): t \in \mathbb{R}\} \\
\uparrow
\end{array}\right\} \begin{aligned}
& x_{3}=t \\
& x_{1}=2 t \\
& x_{2}=-t
\end{aligned} ~ \$
$$

Example 2 (non-homogeneous system)

Write the parametric vector form of the solution, and give a geometric interpretation of the solution.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =9 \\
2 x_{1}-x_{2}-5 x_{3} & =11 \\
x_{1}-2 x_{3} & =6
\end{aligned}
$$

(Note that the left-hand side is the same as Example 1).

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 3 & 1 & 9 \\
2 & -1 & -5 & 11 \\
1 & 0 & -2 & 6
\end{array}\right]} \\
& \underset{\substack{1 \\
R_{2} \rightarrow R_{2}-2 R_{1}}}{ }\left[\begin{array}{rrr|r}
1 & 3 & 1 & 9 \\
0 & -7 & -7 & -7 \\
0 & -3 & -3 & -3
\end{array}\right] \underset{\substack{R_{2} \times\left(-\frac{1}{7}\right) \\
R_{3} \rightarrow R_{3}-R_{1}}}{ }\left[\begin{array}{lll|l}
1 & 3 & 1 & 9 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Section } 1.5 \text { Slide 47 } \\
R_{1} \rightarrow R_{1}-3 R_{2} \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & -2 & 6 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}-2 x_{3}=6 \\
x_{2}+x_{3}=1
\end{array}\right. \\
& \text { REF } \\
& x_{1}=2 x_{3}+6 \\
& x_{2}=-x_{3}+1 \\
& x_{3}=x_{3} \\
& \text { Solution }=\left\{\left(2 x_{3}+6,-x_{3}+1, x_{3}\right): x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{c}
2 x_{3}+6 \\
-x_{3}+1 \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)+\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right)
$$

Homogeneous

$\operatorname{Span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$
(1)

belongs to the plane containing \vec{v}_{1}, \vec{v}_{2}

$$
\text { Span }=\text { plane }
$$

Q: $\quad \operatorname{Span}\left(\left\{v_{1}, v_{2}, \cdots, v_{G}\right\}\right)=6$-dimension When?

Section 1.7 : Linear Independence

Chapter 1: Linear Equations
Math 1554 Linear Algebra

1.7 : Linear Independence

Topics

We will cover these topics in this section.

- Linear independence
- Geometric interpretation of linearly independent vectors

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Characterize a set of vectors and linear systems using the concept of linear independence.
2. Construct dependence relations between linearly dependent vectors.

Motivating Question

What is the smallest number of vectors needed in a parametric solution to a linear system?

No free vain able

Only trivial \Leftrightarrow Unique Solution

Linear Independence

Hotnogeneous System $\left[\begin{array}{lll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \cdots \\ v_{k}\end{array}\right] \cdot\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{t}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{n} are linearly independent if

$$
\begin{array}{lll}
c_{1} \vec{v}_{1}+\underline{c}_{2} \vec{v}_{2}+\cdots+\underline{c}_{k} \vec{v}_{k}=\overrightarrow{0} \quad \& \quad \text { vector equation } \\
c_{1} & \text { for }\left(\begin{array}{c}
c_{2} \\
c_{2} \\
i \\
c_{k}
\end{array}\right)
\end{array}
$$

has only the trivial solution. It is linearly dependent otherwise.

$$
c_{1}=0, c_{2}=0, \cdots, c_{c}=0
$$

In other words, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ are linearly dependent if there are real numbers $c_{1}, c_{2}, \ldots, c_{k}$ not all zero so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Consider the vectors:

$$
\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{k}
$$

To determine whether the vectors are linearly independent, we can set the linear combination to the zero vector:

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=V \vec{c} \stackrel{? ?}{=} \overrightarrow{0}
$$

Linear independence: There is NO non-zero solution \vec{c}
Linear dependence: There is a non-zero solution \vec{c}.

$$
C_{1}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]+C_{\|}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]+C_{\mathbb{3}}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\overrightarrow{0}
$$

Example 1

For what values of h are the vectors linearly independent?

$$
\vec{v}_{1}=\underset{\vec{v}_{2}^{2}}{\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right]}, \underset{\substack{1 \\
h \\
1 \\
\hline}}{\left[\begin{array}{l}
\frac{1}{v_{3}} \\
1 \\
1
\end{array}\right]}
$$

$\left\{v_{1}, v_{2}, v_{3}\right\}$ are inearly independent

$$
\Leftrightarrow \quad c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0} \quad \text { implies } \quad c_{1}=0, c_{2}=0, c_{3}=0
$$

definition.
\Leftrightarrow

$$
\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has the only trivial solution

$$
\left[\begin{array}{lll}
1 & 1 & h \\
1 & h & 1 \\
h & 1 & 1
\end{array}\right]
$$

Section $1.7 \quad$ Slide 52
$\Leftrightarrow\left[\begin{array}{lll}1 & 1 & h \\ 1 & h & 1 \\ h & 1 & 1\end{array}\right] \underset{\substack{\text { sow } \\ \text { operations }}}{ }$ RREF has $\frac{3 \text { pivot }}{\text { columns }}$

$$
1^{2}-h^{2}=(1+h)(1-h)
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
l_{1 \rightarrow 0} & 1 & h \\
h^{0} & 1 & 1
\end{array}\right]} \\
\substack{R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-h \cdot R_{1}}
\end{gathered}\left[\begin{array}{ccc}
1 & 1 & h \\
0 & h-1 & 1-h \\
0 & 1-h & 1-h^{2}
\end{array}\right]=1(h-h)(1+h)
$$

$$
\xrightarrow[\frac{1}{h-1} R_{2}]{\frac{1}{r-h} R_{3}}\left[\begin{array}{ccc}
1 & 1 & h \\
0 & 1 & -1 \\
0 & 1 & 1+h
\end{array}\right]
$$

$$
\xrightarrow[R_{3} \rightarrow R_{3}-R_{2}]{ }\left[\begin{array}{ccc}
1 & 1 & h \\
0 & 1 & -1 \\
0 & 0 & h+2
\end{array}\right]
$$

$h \neq 1,-2 \quad \Rightarrow \quad 3 \quad$ pivots
\Rightarrow Only trivial solution

$$
\Rightarrow\left\{\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right],\left[\begin{array}{l}
1 \\
h \\
1
\end{array}\right],\left[\begin{array}{l}
h \\
1 \\
1
\end{array}\right]\right\}
$$

linearly Thdup.

Example 2 (One Vector)

Suppose $\vec{v} \in \mathbb{R}^{n}$. When is the set $\{\vec{v}\}$ linearly dependent?

Example 3 (Two Vectors)
Suppose $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}$. When is the set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ linearly dependent?
Provide a geometric interpretation.

$$
\begin{array}{r}
c_{1} \cdot \vec{v}_{1}+\underbrace{c_{2} \cdot \vec{v}_{2}}_{2}=\overrightarrow{0} \text { and one of } c_{1}, c_{2} \\
\text { is nonzero. }
\end{array}
$$

If $C_{1} \neq 0$

$$
\begin{aligned}
\left(c_{1}\right) \overrightarrow{v_{1}} & =-c_{2} \cdot \overrightarrow{v_{2}} \\
\overrightarrow{v_{1}} & =\left(-\frac{c_{2}}{c_{1}}\right) \cdot \overrightarrow{v_{2}} \\
& =\text { a scalar multiple of } \overrightarrow{v_{2}}
\end{aligned}
$$

Section $1.7 \quad$ Slide 54
$\Rightarrow \overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ are on the same tine.

$$
\begin{aligned}
\Rightarrow \quad \operatorname{San}(\alpha \vec{v}, \vec{v}\})= & \text { a lire. } \\
& \text { or } \\
& \{\overrightarrow{0}\}
\end{aligned}
$$

Two Theorems

$$
\text { Example } \quad k=6, \quad n=5
$$

Fact 1. Suppose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are vectors in \mathbb{R}^{n} | $k>n$, then

F Fact 2. If any one or more of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ is $\overrightarrow{0}$, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly
dependent. dependent.

Section 1.8 : An Introduction to Linear Transforms

Chapter 1 : Linear Equations

Math 1554 Linear Algebra

$9 / 6 / 23$

$\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{p}\right\} \quad$ linearly indef.
$\Leftrightarrow \quad c_{1} \cdot \vec{v}_{1}+c_{2} \cdot \overrightarrow{v_{2}}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0} \quad$ implies $\quad c_{1}=\cdots=c_{p}=0$
\Leftrightarrow
$\Leftrightarrow \quad A \vec{x}=\overrightarrow{0}$
has the only trivial solution
$\Leftrightarrow \quad A \vec{x}=\overrightarrow{0} \quad$ has no free variable.
$\Leftrightarrow \quad$ Every colum of A is pivot

1.8 : An Introduction to Linear Transforms

Topics

We will cover these topics in this section.

1. The definition of a linear transformation.
2. The interpretation of matrix multiplication as a linear transformation.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Construct and interpret linear transformations in \mathbb{R}^{n} (for example, interpret a linear transform as a projection, or as a shear).
2. Characterize linear transforms using the concepts of

- existence and uniqueness
- domain, co-domain and range

From Matrices to Functions

Let A be an $m \times n$ matrix. We define a function $\epsilon_{\mathbb{R}^{m}}^{\mathbb{R}^{m}}$ matrix multiplication.

$$
\begin{aligned}
\text { columns } T: & : \mathbb{R}^{n} \rightarrow \\
& \text { vector vector } \\
& \mathbb{R}^{m},
\end{aligned} \quad T(\vec{v})=\underset{\vec{v} \in \mathbb{R}^{\prime}}{A} \vec{v}
$$

This is called a matrix transformation.

- The domain of T is \mathbb{R}^{n}. the set of inputs
- The co-domain or target of T is \mathbb{R}^{m}. the set where T maps to
- The vector $T(\vec{x})$ is the image of \vec{x} under $T \nleftarrow a$ vector
- The set of all possible images $T(\vec{x})$ is the range.

This gives us another interpretation of $A \vec{x}=\vec{b}$:

- set of equations
- augmented matrix
- matrix equation
- vector equation
- linear transformation equation

Functions from Calculus

Many of the functions we know have domain and codomain \mathbb{R}. We can express the rule that defines the function sin this way:

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=\sin (x)
$$

In calculus we often think of a function in terms of its graph, whose horizontal axis is the domain, and the vertical axis is the codomain.

This is ok when the domain and codomain are \mathbb{R}. It's hard to do when the domain is \mathbb{R}^{2} and the codomain is \mathbb{R}^{3}. We would need five dimensions to draw that graph.

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad T(\vec{v})=A \vec{v}
$$

Example 1

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \longmapsto\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right], \vec{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \vec{b}=\left[\begin{array}{l}7 \\ 5 \\ 7\end{array}\right]$.

$$
=\left[\begin{array}{c}
x+y \\
y \\
x+y
\end{array}\right]
$$

a) Compute $T(\vec{u})=A \cdot \vec{u}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{c}3+4 \\ 4 \\ 3+4\end{array}\right]=\left[\begin{array}{l}7 \\ 4 \\ 7\end{array}\right]$
b) Calculate $\vec{v} \in \mathbb{R}^{2}$ so that $T(\vec{v})=\vec{b}$

$$
\left[\begin{array}{c}
x+y \\
y \\
x+y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
5 \\
7
\end{array}\right]
$$

$$
\begin{aligned}
& y=5 \\
& x=2
\end{aligned}
$$

$\vec{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$
c) Give a $\vec{c} \in \mathbb{R}^{3}$ so there is no \vec{v} with $T(\vec{v})=\vec{c}$
$\mathbb{\mathbb { R }}^{2}$

$$
\left[\begin{array}{l}
7 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \ldots
$$

or: Give a \vec{c} that is not in the span of the columns of A.

Section $1.8 \quad$ Slide 60

$$
C_{1} \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
c_{2}
\end{array}\right]
$$

"Range of $T=S_{\text {pan }} \cdot f$ Columns in $A^{\prime \prime}$

$$
f(x)=x^{2} \quad f(5 x)=25 x^{2}, \quad 5 f(x)=5 x^{2}
$$
 Ex)
 $$
f(x)=2 x \quad \text { linear }
$$
 $$
f(x)=x+1 \quad f(5 x)=5 x+1 \quad \text { Not treat }
$$
 Linear Transformations
 $$
5 f(x)=5 \cdot(x+1)
$$

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if

- $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u}, \vec{v} in \mathbb{R}^{n}.
- $T(c \vec{v})=c T(\vec{v})$ for all $\vec{v} \in \mathbb{R}^{n}$, and c in \mathbb{R}.

So if T is linear, then

$$
\begin{aligned}
& \text { lin. combi. } \\
& T\left(c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}\right)=c_{1} T\left(\vec{v}_{1}\right)+\cdots+c_{k} T\left(\vec{v}_{k}\right)
\end{aligned}
$$

This is called the principle of superposition. The idea is that if we know $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$, then we know every $T(\vec{v})$.

Fact: Every matrix transformation T_{A} is linear.

$$
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad T_{A}(\vec{v})=A \vec{v} .
$$

Example 2

Suppose T is the linear transformation $T(\vec{x})=A \vec{x}$. Give a short geometric interpretation of what $T(\vec{x})$ does to vectors in \mathbb{R}^{2}.

1) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
reflection.
2) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ projection

$x=2, x$

$$
\left.\begin{array}{c}
y=2 \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
x
\end{array}\right]} \\
0
\end{array}\right]
$$

3) $A=\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]$ for $k \in \mathbb{R} \quad\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$

Section $1.8 \quad$ Slide 62

$$
2\left[-\cdots\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
y
\end{array}\right]=\left[\begin{array}{l}
2 y \\
2 y
\end{array}\right.\right.
$$

4) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

Example 3

What does T_{A} do to vectors in \mathbb{R}^{3} ?
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
b) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$9 / 8 / 23$

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \\
& T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& T(\vec{x})=A \cdot \vec{x}
\end{aligned}
$$

Example 4
A linear transformation $T: \mathbb{R}^{2} \mathbb{R}^{3}$ satisfies $^{\top}$
$A \in \mathbb{R}^{3 \times 2}$

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\underbrace{\left[\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right],} \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-3 \\
8 \\
0
\end{array}\right] \quad \begin{aligned}
& A=\left[\begin{array}{l}
\vec{v}_{1}, \vec{v}_{2}
\end{array}\right] \\
& \overrightarrow{v_{1}}, \vec{v}_{2} \in \mathbb{R}^{3}
\end{aligned}
$$

What is the matrix that represents T ?

$$
\left.\begin{array}{l}
\text { is the matrix that represents } T \text { ? } \\
\left.\begin{array}{rl}
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\vec{v}_{1}, \vec{v}_{2}\right.
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}
\end{array}=\vec{v}_{1}\right] \text { Coefficients } \quad \begin{aligned}
& =\left[\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right] \\
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\vec{v}_{1} \vec{v}_{2}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2} & =\vec{v}_{2} \\
& =\left[\begin{array}{c}
-3 \\
8 \\
0
\end{array}\right]
\end{aligned}
$$

Section 1.9 : Linear Transforms

Chapter 1 : Linear Equations

Math 1554 Linear Algebra

1.9: Matrix of a Linear Transformation

Topics

We will cover these topics in this section.

1. The standard vectors and the standard matrix.
2. Two and three dimensional transformations in more detail.
3. Onto and one-to-one transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Identify and construct linear transformations of a matrix.
2. Characterize linear transformations as onto and/or one-to-one.
3. Solve linear systems represented as linear transforms.
4. Express linear transforms in other forms, such as as matrix equations or as vector equations.

Definition: The Standard Vectors

The standard vectors in \mathbb{R}^{n} are the vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$, where:

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

For example, in \mathbb{R}^{3},

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{n}
\end{array}\right] \\
A \vec{e}_{1}=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \cdots
\end{array} \vec{v}_{n}\right.
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]=1 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}+\cdots+0 \cdot \vec{v}_{n} \quad=\vec{v}_{1} \quad, ~
$$

A Property of the Standard Vectors

Note: if A is an $m \times n$ matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, then

$$
A \vec{e}_{i}=\vec{v}_{i}, \text { for } i=1,2, \ldots, n
$$

So multiplying a matrix by \vec{e}_{i} gives column i of A.
Example

$$
\left.\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \stackrel{[}{0} \begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad\left[\begin{array}{c}
2 \\
5 \\
8
\end{array}\right]
$$

The Standard Matrix

The matrix A is the standard matrix for a linear transformation.

$$
\left.\left[\begin{array}{cc}
\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{2}\right) \\
\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)
\end{array}=\frac{1}{\frac{1}{\sqrt{2}}} \begin{array}{cc}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] 2+\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Rotations

Example 1
What is the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=\vec{x}$ rotated counterclockwise by angle θ ?

Section $1.9 \quad$ Slide 70

$$
A=\left[\begin{array}{ll}
T\left(\overrightarrow{e_{1}}\right) & T\left(\overrightarrow{e_{2}}\right)
\end{array}\right]
$$

Standard Matrices in \mathbb{R}^{2}

- There is a long list of geometric transformations of \mathbb{R}^{2} in our textbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, ...)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

Two Dimensional Examples: Reflections

Two Dimensional Examples: Reflections

Two Dimensional Examples: Contractions and Expansions

Two Dimensional Examples: Contractions and Expansions

transformation	image of unit square	standard matrix
Vertical Contraction	x_{2}	
		$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right),\|k\|<1$

Vertical Expansion

$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right), k>1$

Two Dimensional Examples: Shears

transformation	image of unit square	standard matrix
Horizontal Shear(left)	x_{2}	
		$\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right), k<0$

Horizontal Shear(right)

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right), k>0
$$

Two Dimensional Examples: Shears

Two Dimensional Examples: Projections

transformation	image of unit square	standard matrix

Projection onto the x_{1}-axis

$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Projection onto the x_{2}-axis

$\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

Onto is an existence property: for any $\vec{b} \in \mathbb{R}^{m}, A \vec{x}=\vec{b}$ has a solution.

Examples

- A rotation on the plane is an onto linear transformation.
- A projection in the plane is not onto.

Useful Fact

T is onto if and only if its standard matrix has a pivot in every row.
consistent
for any \vec{b}

$$
\left[\begin{array}{ccc|c}
\cdots & \cdots & - & 0 \\
\cdots & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \vdots
\end{array}\right]_{\text {Not a pivot column }}
$$

T is $1-1 \quad$ if (\Leftrightarrow)

$$
T(\vec{x})=\overrightarrow{0} \quad \text { implies } \quad \vec{x}=\overrightarrow{0}
$$

One-to-One

Definition
A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if for all $\vec{b} \in \mathbb{R}^{m}$ there is at most one (possibly no) $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$.

One-to-one is a uniqueness property, it does not assert existence for all \vec{b}.
Examples

- A rotation on the plane is a one-to-one linear transformation.
- A projection in the plane is not one-to-one.

Useful Facts

- T is one-to-one if and only if the only solution to $T(\vec{x})=0$ is the zero vector, $\vec{x}=\overrightarrow{0}$.
- T is one-to-one if and only if the standard matrix A of T has no free variables.

Section 1.9 Slide 80
\Leftrightarrow Columns of A are
ITrearly independent
 Ir. index.

Example

Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn't possible to do so,

a) A is a 2×3 standard matrix for a one-to-one linear transform.

$$
A=\left(\begin{array}{lll}
1 & 0 & \\
0 & & 1
\end{array}\right) \quad \max \text { pivot }=2 \quad \text { need } 3 \Rightarrow \text { N.P. }
$$

b) B is a 3×2 standard matrix for an onto linear transform.
c) C is a 3×3 standard matrix of a linear transform that is one-to-one and

$$
\left.C=\left(\begin{array}{ccc}
(1) & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
\vec{b}
\end{array}\right)^{d}
$$

Possible
Not onto

$$
C \vec{x}=\vec{b}
$$

$$
\left[\begin{array}{cc}
c & 1 \\
& \vec{b} \\
& \sim
\end{array}\right]
$$

$$
\begin{aligned}
& B=\left(\begin{array}{c}
1 \\
)^{\text {now }} \text { Colum } \\
\end{array}\right. \\
& m \text { dx pinot }=2 \\
& \text { pinot } \\
& \text { s) } \\
& \text { NiP. }
\end{aligned}
$$

Theorem

Every row in A has pinot
For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is onto. \Leftrightarrow for any $\vec{b} \in \mathbb{R}^{m}$, there exists $\vec{x} \in \mathbb{R}^{n}$ st. $T(\vec{x})=\vec{b}$
2. The matrix A has columns which span \mathbb{R}^{m}.
3. The matrix A has m pivotal columns.

Theorem

For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is one-to-one.
2. The unique solution to $T(\vec{x})=\overrightarrow{0}$ is the trivial one. $\vec{X}=\overrightarrow{0}$
3. The matrix A linearly independent columns.
4. Each column of A is pivotal.

Additional Examples

1. Construct a matrix $A \in \mathbb{R}^{2 \times 2}$, such that $T(\vec{x})=A \vec{x}$, where T is a linear transformation that rotates vectors in \mathbb{R}^{2} counterclockwise by $\pi / 2$ radians about the origin, then reflects them through the line $x_{1}=x_{2}$.
2. Define a linear transformation by

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)
$$

Is T one-to-one? Is T onto?

Section 2.1 : Matrix Operations

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

1. Identity and zero matrices
2. Matrix algebra (sums and products, scalar multiplies, matrix powers)
3. Transpose of a matrix

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply matrix algebra, the matrix transpose, and the zero and identity matrices, to solve and analyze matrix equations.

Definitions: Zero and Identity Matrices

1. A zero matrix is any matrix whose every entry is zero.

$$
0_{2 \times 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad 0_{2 \times 1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. The $n \times n$ identity matrix has ones on the main diagonal, otherwise all zeros.

$$
I=I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: any matrix with dimensions $n \times n$ is square. Zero matrices need not be square, identity matrices must be square.

$$
5\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
5.1 & 5-2 \\
5-3 & 5.4
\end{array}\right]
$$

Sums and Scalar Multiples $=$ Component wisely.

Suppose $A \in \mathbb{R}^{m \times n}$, and $a_{i, j}$ is the element of A in row i and column j.

1. If A and B are $m \times n$ matrices, then the elements of $A+B$ are $a_{i, j}+b_{i, j} . \quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{cc}5 & 6 \\ -7 & 8\end{array}\right]$
2. If $\underset{\sim}{c} \in \mathbb{R}$, then the elements of $c A$ are $\left(C_{i, j}\right.$.

For example, if

$$
=\left[\begin{array}{ll}
1+5 & 2+6 \\
3+7 & 4+8
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+c\left[\begin{array}{lll}
7 & 4 & 7 \\
0 & 0 & k
\end{array}\right]=\left[\begin{array}{ccc}
15 & 10 & 17 \\
4 & 5 & 16
\end{array}\right]
$$

What are the values of c and k ?

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{ll}
3 & 4
\end{array}\right] \quad \begin{aligned}
& \text { is not } \\
& \\
& \text { defined }
\end{aligned}
$$

Properties of Sums and Scalar Multiples

Scalar multiples and matrix addition have the expected properties.
If $r, s \in \mathbb{R}$ are scalars, and A, B, C are $m \times n$ matrices, then

1. $A+0_{m \times n}=A$
2. $(A+B)+C=A+(B+C)$
3. $r(A+B)=r A+r B$
4. $(r+s) A=r A+s A$
5. $r(s A)=(r s) A$

$$
\left.A \in \mathbb{R}^{m \times n} \quad \underset{\underline{n}}{\vec{x}} \longmapsto A \overrightarrow{\mathbb{R}^{n}}\right] \in \mathbb{R}^{m}
$$

$$
\begin{array}{lll}
A & B & \in \mathbb{R}^{m \times p} \\
\overbrace{1} & \uparrow \\
\mathbb{R}^{m \times n} & \mathbb{R}^{n \times p} &
\end{array}
$$

Matrix Multiplication

$A \cdot(B)=A \cdot\left[\begin{array}{llll}\overrightarrow{x_{1}} & \overrightarrow{x_{2}} & \cdots & \vec{x}_{p}\end{array}\right]$

$\in \mathbb{R}^{m \times p}$
Definition
Let A be a $m \times n$ matrix, and B be a $n \times p$ matrix. The product is $A B$ a $m \times p$ matrix, equal to

$$
A B=A\left[\begin{array}{lll}
\vec{b}_{1} & \cdots & \vec{b}_{p}
\end{array}\right]=\left[\begin{array}{lll}
A \vec{b}_{1} & \cdots & A \vec{b}_{p}
\end{array}\right]
$$

Note: the dimensions of A and B determine whether $A B$ is defined, and what its dimensions will be.

Dot product

Ex

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
4
\end{array}\right]=1 \cdot 3+2 \cdot 4
$$

$$
\mathbb{R}^{m \times n} \rightarrow A \cdot B^{\in \mathbb{R}^{n \times p}}
$$

Row Column Rule for Matrix Multiplication

The Row Column Rule is a convenient way to calculate the product $A B$ that many students have encountered in pre-requisite courses.

Row Column Method

If $A \in \mathbb{R}^{m \times n}$ has rows \vec{a}_{i}, and $B \in \mathbb{R}^{n \times p}$ has columns \vec{b}_{j}, each element of the product $C=A B$ is $c_{i j}=\vec{a}_{i} \cdot \vec{b}_{j}$.

Example

Compute the following using the row-column method.

$$
\underset{\substack{\lambda \\
2 \times 2}}{\stackrel{2 \times 3}{*}}=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 1 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
6 & 0 & * \\
* & -5 & *
\end{array}\right)
$$

Properties of Matrix Multiplication

Let A, B, C be matrices of the sizes needed for the matrix multiplication to be defined, and A is a $m \times n$ matrix.

1. (Associative) $(A B) C=A(B C)$
2. (Left Distributive) $A(B+C)=A B+A C$
3. (Right Distributive) $\cdots(A+B) \cdot C=A C+B C$
4. (Identity for matrix multiplication) $I_{m} A=A I_{n}=A$

Warnings:

1. (non-commutative) In general, $A B \neq B A$.
$\overbrace{}^{2}$. (non-cancellation) $A B=A C$ does not mean $B=C$.
2. (Zero divisors) $A B=0$ does not mean that either $A=0$ or $B=0$.

$$
\text { In } \mathbb{R}, \quad a \cdot b=0 \quad \Rightarrow \quad a=0 \quad \text { or } \quad b=0
$$

$$
A \cdot B=0 \text { and } A \neq 0, B=0
$$

Section $2.1 \quad$ Slide 8

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \quad \Rightarrow \quad A \cdot B \in \mathbb{R}^{m \times p} \text { defined } \\
& B \in \mathbb{R}^{n \times p} \quad B \cdot A \text { not defined } \\
& n \times p \quad m \times n \text { unless }
\end{aligned}
$$

The Associative Property

The associative property is $(A B) C=A(B C)$. If $C=\vec{x}$, then

$$
(A B) \vec{x}=A(B \vec{x})
$$

Schematically:

The matrix product $A B \vec{x}$ can be obtained by either: multiplying by matrix $A B$, or by multiplying by B then by A. This means that matrix multiplication corresponds to composition of the linear transformations.

Example

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Give an example of a 2×2 matrix B that is non-commutative with A.

$$
\left.\begin{array}{rl}
\text { Find } & B \text { st. } A B \neq B A \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}
\end{array} \neq\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right\}
$$

Additional Examples

True or false:

1. For any I_{n} and any $A \in \mathbb{R}^{n \times n},\left(I_{n}+A\right)\left(I_{n}-A\right)=I_{n}-A^{2}$.
2. For any A and B in $\mathbb{R}^{n \times n},(A+B)^{2}=A^{2}+B^{2}+2 A B$.

The Transpose of a Matrix
A^{T} is the matrix whose columns are the rows of A.
Example

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 2 & 0
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 0 \\
4 & 2 \\
5 & 0
\end{array}\right]} \\
& \text { ix Transpose }
\end{aligned}
$$

Properties of the Matrix Transpose

1. $\left(A^{T}\right)^{T}=$

A
2. $(A+B)^{T}=A^{\top}+B^{\top}$
3. $(\underset{=}{r} A)^{T}=r \cdot A^{\top}$
4. $(A B)^{T}=B^{\top} \cdot A^{\top}$

$$
\begin{gathered}
\begin{array}{c}
A \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{n \times p} \\
\downarrow \\
\underbrace{A^{\top} \in \mathbb{R}^{n \times m} \quad B^{\top} \in \mathbb{R}^{p \times n}}
\end{array} \underbrace{A^{\top} \cdot B^{\top} \quad \text { not defined }}_{\mathbb{L} \cdot B \in \mathbb{R}^{m \times p}} \\
B^{\top} \cdot A^{\top} \in \mathbb{R}^{p \times n}
\end{gathered}
$$

$$
A^{3}=A_{A \cdot A \cdot A}^{3 \text { times }}
$$

Matrix Powers

For any $n \times n$ matrix and positive integer k, A^{k} is the product of k copies of A.

$$
A^{k}=A A \ldots A
$$

Example: Compute C^{8}.

Section 2.1 Slide 12

$$
=\left[\begin{array}{ccc}
1^{2} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
G^{8}=\left[\begin{array}{lll}
1^{8} & 0 & 0 \\
0 & 2^{8} & 0 \\
0 & 0 & 2^{8}
\end{array}\right]
$$

$$
\begin{aligned}
C^{3}=C^{2} \cdot C & \left.=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \sqrt{1} \begin{array}{lll}
0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]
\end{aligned}
$$

Example

Define

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 8
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Which of these operations are defined, and what are the dimensions of the result?

1. $A+3 C \quad N . D$.
2. $A(A B)^{T}$

$\frac{A}{2 \times 2} \cdot \frac{(A B)^{\top}}{3 \times 2} \quad$ Not defined.

Section $2.1 \quad$ Slide 13

Section 2.2: Inverse of a Matrix

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

> "Your scientists were so preoccupied with whether or not they could, they didn't stop to think if they should."

- Spielberg and Crichton, Jurassic Park, 1993 film

The algorithm we introduce in this section could be used to compute an inverse of an $n \times n$ matrix. At the end of the lecture we'll discuss some of the problems with our algorithm and why it can be difficult to compute a matrix inverse.

Topics and Objectives

Topics

We will cover these topics in this section.

1. Inverse of a matrix, its algebraic properties, and its relation to solving systems of linear equations.
2. Elementary matrices and their role in calculating the matrix inverse.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply the formal definition of an inverse, and its algebraic properties, to solve and analyze linear systems.
2. Compute the inverse of an $n \times n$ matrix, and use it to solve linear systems.
3. Construct elementary matrices.

Motivating Question

Is there a matrix, A, such that $\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right] \quad A=I_{3}$?
2.2 Slide 16

The Matrix Inverse

Definition
$A \in \mathbb{R}^{n \times n}$ is invertible (or non-singular) if there is a $C \in \mathbb{R}^{n \times n}$ so that

$$
\left.\begin{array}{l}
A C=C A=I_{n} .=\left[\begin{array}{lll}
1 & & 0 \\
1 & \ddots & \\
0 & \ddots & \\
0 & & 1
\end{array}\right] \\
\\
\\
\\
\\
\end{array}\right]=A^{-1} . \quad .
$$

If there is, we write $C=A^{-1}$.
facts

The Inverse of a 2×2 Matrix

There's a formula for computing the inverse of a 2×2 matrix.

Theorem

The 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \begin{gathered}\text { Tovertibte } \\ \text { is non-singular if and only if }\end{gathered}$ $a d-b c \neq 0$, and then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Example

State the inverse of the matrix below.

$$
\left[\begin{array}{rr}
2^{r^{a}} & 5 \\
-3 & -7 \\
{ }_{k}^{\prime \prime} & -{ }^{\prime \prime}
\end{array}\right]_{d}^{b}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& 4 \text { variables } \\
& 4 \text { equations. } \\
& \text { (Thenar } \\
& (5) \cdot(-3)=1 \neq 0
\end{aligned}
$$

invertible

$$
\left[\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right]^{-1}=\frac{1}{\frac{1}{=}}\left[\begin{array}{cc}
-7 & -5 \\
-(-3) & 2
\end{array}\right]=\left[\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array}\right]
$$

$$
\begin{gathered}
A \vec{x}=\vec{b} \\
A^{-1} \cdot \vec{A}=A^{-1} \cdot \vec{b} \\
\vec{x}=I_{n} \cdot \vec{x}=A^{-1}-\vec{b}
\end{gathered}
$$

The Matrix Inverse

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{n}
$$

Theorem
$A \in \mathbb{R}^{n \times n}$ has an inverse if and only if for all $\vec{b} \notin \mathbb{R}^{n}, A \vec{x}=\vec{b}$ has a unique solution. And, in this case, $\vec{x}=\vec{A}^{-1} \vec{b}$.

Example
Solve the linear system.

$$
\begin{gathered}
3 x_{1}+4 x_{2}=7 \\
5 x_{1}+6 x_{2}=7 \\
\mathbb{d} \\
A_{\|}\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\vec{x}=\left[\begin{array}{c}
7 \\
7
\end{array}\right]
\end{gathered}
$$

(1) A is invertible?

$$
a d-b c=3.6-4.5=-2 \neq 0
$$

(2) $A^{-1}=\frac{1}{-2} \cdot\left[\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right]$

$$
\begin{align*}
\vec{x}=A^{-1} \cdot \vec{b} & =-\frac{1}{2}\left[\begin{array}{rr}
6 & -4 \\
-5 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
7 \\
7
\end{array}\right] \tag{3}\\
& =\left[\begin{array}{l}
-7 \\
7
\end{array}\right]
\end{align*}
$$

Properties of the Matrix Inverse
A and B are invertible $n \times n$ matrices.

1. $\left(A^{-1}\right)^{-1}=A$

$$
A \cdot\left(A^{-1}\right)=I
$$

2. $(A B)^{-1}=B^{-1} A^{-1}$ (Non-commutative!)
3. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Exercise

Example
True or false: $\left(\frac{(A B C)^{-1}}{C^{-1} B^{-1} A^{-1}}\right.$.

$$
\begin{aligned}
& \underbrace{A\left[\vec{x}_{1} \vec{x}_{2} \cdots \vec{x}_{n}\right]}_{\|}=I=\left[\begin{array}{lll}
\overrightarrow{e_{1}} & \overrightarrow{e_{2}} & \ldots
\end{array}\right] \\
& {\left[\begin{array}{llll}
A \vec{x}_{1} & A \vec{x}_{2} & \cdots & A \vec{x}_{n}
\end{array}\right] n\left\{\begin{array}{l}
A \vec{x}_{1}=\vec{e}_{1} \\
A \vec{x}_{2}=\vec{e}_{2}
\end{array}\right.} \\
& {\left[A\left[\begin{array}{l}
1 \\
0 \\
0 \\
i
\end{array}\right],\left[A \left\lvert\, \begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right.\right] ;-\left[A \left\lvert\, \begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right.\right] \begin{array}{l}
n \\
n
\end{array}\right] \quad A \vec{x}_{n}=\overrightarrow{e_{n}}}
\end{aligned}
$$

An Algorithm for Computing A^{-1}

If $A \in \mathbb{R}^{n \times n}$, and $n>2$, how do we calculate A^{-1} ? Here's an algorithm we can use:

1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$
2. If reduction has form $\left(I_{n} \mid B\right)$ then A is invertible and $B=A^{-1}$. Otherwise, A is not invertible.

Example

$$
\begin{aligned}
& \text { Compute the inverse of } A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
0 & 0 & 1
\end{array}\right] \text {. } \\
& {\left[\begin{array}{c|cccc}
A & \vdots & 0 & 0 & 0 \\
\vdots & \vdots & \cdots & j
\end{array}\right] \xrightarrow{\text { r.or }}\left[\begin{array}{ll|l}
1 & 0 & \\
y & 0 & ? \\
0 & 1 & ?
\end{array}\right]}
\end{aligned}
$$

Section 2.2 Slide 21

$$
\begin{aligned}
& {[A \mid I] \underset{\text { r.0. }}{\left[\begin{array}{ll}
I & ? \\
\uparrow & A^{-1} \\
&
\end{array}\right]}} \\
& A \text { and } 1 \\
& \text { possible } \\
& \text { are row equicatent, all riot } \\
& {[A \mid \underbrace{\mid \vec{e}_{1} \vec{e}_{2} \cdots \vec{e}_{n}}_{I}]=[A \mid I] \underset{\substack{\text { operation } \\
\text { op }}}{ } \quad \underset{\substack{\text { Every }\left(\begin{array}{c}
\text { row } \\
\text { column }
\end{array}\right) \text { has picot }}}{\left[\begin{array}{c}
b \\
R R E F
\end{array} *\right]}}
\end{aligned}
$$

$A \in \mathbb{R}^{n \times n}$ is invertible
$\Leftrightarrow \quad$ There exists $\quad C \in \mathbb{R}^{n \times n}$

$$
A \cdot G=I=C \cdot A
$$

$\Leftrightarrow \quad A \cdot\left[\begin{array}{llll}\vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n}\end{array}\right]=\left[\begin{array}{llll}\vec{e}_{1} & \vec{e}_{2} & \cdots & \vec{e}_{n}\end{array}\right]$
\Leftrightarrow For any $\vec{b} \in \mathbb{R}^{n}$

Why Does This Work?

$$
\left\{\begin{array}{l}
\Delta \vec{x}_{1}=\overrightarrow{\vec{e}_{1}} \\
A \vec{x}_{2}==\begin{array}{c}
\vec{e}_{2} \\
=
\end{array} \quad \& \text { Consistent }
\end{array}\right.
$$

$A \vec{x}=\vec{b} \quad$ consistent $b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ $\sim \uparrow$ solution

$$
L_{c}-\underline{\vec{x}_{I}^{\prime}}+\cdots+b_{n}-\underline{x_{m}}=
$$

We can think of our algorithm as simultaneously solving n linear systems:

$$
\begin{gathered}
A \vec{x}_{1}=\vec{e}_{1} \\
A \vec{x}_{2}=\vec{e}_{2} \\
\vdots \\
A \vec{x}_{n}=\vec{e}_{n}
\end{gathered}
$$

Each column of A^{-1} is $A^{-1} \vec{e}_{i}=\vec{x}_{i}$.
Over the next few slides we explore another explanation for how our algorithm works. This other explanation uses elementary matrices.

1 row operation
 I_{n}

 Elementary matrices
 $$
I_{3} \xrightarrow[R_{2} \leftrightarrow R_{3}]{ }\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]
$$

Elementary Matrices

An elementary matrix, E, is one that differs by I_{n} by one row operation. Recall our elementary row operations:

1. swap rows
2. multiply a row by a non-zero scalar
3. add a multiple of one row to another

We can represent each operation by a matrix multiplication with an elementary matrix.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Suppose

$$
E\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

By inspection, what is E ? How does it compare to I_{3} ?
$\Leftrightarrow \quad A$ is row equivalent to I
A is a product of elementary

$A=E_{1}^{-1} E_{2}^{-1} \cdots \cdot E_{k}^{-1} \Leftrightarrow\left(E_{k}^{\text {matrices }} \cdot E_{3} E_{2} E_{1}\right) \cdot A=I$

Returning to understanding why our algorithm works, we apply a sequence of row operations to A to obtain I_{n} :

$$
\left(E_{k} \cdots E_{3} E_{2} E_{1}\right) A=I_{n}
$$

Thus, $E_{k} \cdots E_{3} E_{2} E_{1}$ is the inverse matrix we seek.

Our algorithm for calculating the inverse of a matrix is the result of the following theorem.

Theorem
Matrix A is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row operations that transforms A into I, applied to I, generates A^{-1}.

Using The Inverse to Solve a Linear System

- We could use A^{-1} to solve a linear system,

$$
A \vec{x}=\vec{b}
$$

We would calculate A^{-1} and then:

- As our textbook points out, A^{-1} is seldom used: computing it can take a very long time, and is prone to numerical error.
- So why did we learn how to compute A^{-1} ? Later on in this course, we use elementary matrices and properties of A^{-1} to derive results.
- A recurring theme of this course: just because we can do something a certain way, doesn't that we should.

Section 2.3 : Invertible Matrices

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

"A synonym is a word you use when you can't spell the other one." - Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others.

Topics and Objectives

Topics

We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Characterize the invertibility of a matrix using the Invertible Matrix Theorem.
2. Construct and give examples of matrices that are/are not invertible.

Motivating Question

When is a square matrix invertible? Let me count the ways!

The Invertible Matrix Theorem

Invertible matrices enjoy a rich set of equivalent descriptions.

Theorem

Let A be an $n \times n$ matrix. These statements are all equivalent.
a) A is invertible.
b) A is row equivalent to I_{n}.
c) A has n pivotal columns. (All columns are pivotal.)
d) $A \vec{x}=\overrightarrow{0}$ has only the trivial solution. $\Leftrightarrow \quad T(\vec{x})=A \cdot \vec{x}$ is $1-1$
e) The columns of A are linearly independent.
f) The linear transformation $\vec{x} \mapsto A \vec{x}$ is one-to-one.
g) The equation $A \vec{x}=\vec{b}$ has a solution for all $\vec{b} \in \mathbb{R}^{n}$.
h) The columns of A span \mathbb{R}^{n}.
i) The linear transformation $\vec{x} \mapsto A \vec{x}$ is onto.
j) There is a $n \times n$ matrix C so that $C A=I_{n}$. (A has a left inverse.)
k) There is a $n \times n$ matrix D so that $A D=I_{n}$. (A has a right inverse.)

1) A^{T} is invertible.

Invertibility and Composition

The diagram below gives us another perspective on the role of A^{-1}.

The matrix inverse A^{-1} transforms $A x$ back to \vec{x}. This is because:

$$
A^{-1}(A \vec{x})=\left(A^{-1} A\right) \vec{x}=
$$

The Invertible Matrix Theorem: Final Notes

- Items j and k of the invertible matrix theorem (IMT) lead us directly to the following theorem.

Theorem
If A and B are $n \times n$ matrices and $A B=I$, then A and B are invertible, and $B=A^{-1}$ and $A=B^{-1}$.

- The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes: invertible, and non-invertible.
- As we progress through this course, we will be able to add additional equivalent statements to the IMT (that deal with determinants, eigenvalues, etc).

Example 1

Is this matrix invertible?

A invertible Columns in. index.

Example 2

If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are singular. If it is not possible to do so, state why.

Section 2.4 : Partitioned Matrices

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

"Mathematics is not about numbers, equations, computations, or algorithms. Mathematics is about understanding."

- William Paul Thurston

> Multiple perspectives of the same concept is a theme of this course; each perspective deepens our understanding. In this section we explore another way of representing matrices and their algebra that gives us another way of thinking about them.

Topics and Objectives

Topics

We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

What is a Partitioned Matrix?

Example

This matrix:
$\left[\begin{array}{lll|ll}3 & 1 & 4 & 1 & 0 \\ 1 & 6 & 1 & 0 & 1 \\ 0 & 0 & 0 & 4 & 2\end{array}\right]$
can also be written as:

We partitioned our matrix into four blocks, each of which has different dimensions.

Another Example of a Partitioned Matrix

Example: The reduced echelon form of a matrix. We can use a partitioned matrix to

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & * & \cdots & * \\
0 & 1 & 0 & 0 & * & \cdots & * \\
0 & 0 & 1 & 0 & * & \cdots & * \\
0 & 0 & 0 & 1 & * & \cdots & * \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{4} & F \\
0 & 0
\end{array}\right]
$$

This is useful when studying the null space of A, as we will see later in this course.

Row Column Method

Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,

This is the row column matrix multiplication method from Section 2.1.
Theorem
Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i, j) entry of $A B$ is
$\operatorname{row}_{i} A \cdot \operatorname{col}_{j} B$.
This is the Row Column Method for matrix multiplication.

Partitioned matrices can be multiplied using this method, as if each block were a scalar (provided each block has appropriate dimensions).

Example of Row Column Method
Recall, using our formula for 2×2 matrix, $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]^{-1}=\frac{1}{a c}\left[\begin{array}{cc}c & -b \\ 0 & a\end{array}\right]$.
Example: Suppose $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n}$, and $C \in \mathbb{R}^{n \times n}$ are invertible matrices. Construct the inverse of $\left[\begin{array}{cc}A & B \\ 0 & C\end{array}\right]$.
 Section 2.4 Slide 39

Section 2.5 : Matrix Factorizations

Chapter 2: Matrix Algebra Math 1554 Linear Algebra

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity." - Alan Turing

The use of the LU Decomposition to solve linear systems was one of the areas of mathematics that Turing helped develop.

Topics and Objectives

Topics

We will cover these topics in this section.

1. The $L U$ factorization of a matrix
2. Using the $L U$ factorization to solve a system
3. Why the $L U$ factorization works

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Compute an $L U$ factorization of a matrix.
2. Apply the $L U$ factorization to solve systems of equations.
3. Determine whether a matrix has an $L U$ factorization.

Motivation

- Recall that we could solve $A \vec{x}=\vec{b}$ by using

$$
\vec{x}=A^{-1} \vec{b}
$$

- This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n.
- Instead we could solve $A \vec{x}=\vec{b}$ with Gaussian Elimination, but this is not efficient for large n
- There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.

Matrix Factorizations

- A matrix factorization, or matrix decomposition is a factorization of a matrix into a product of matrices.
- Factorizations can be useful for solving $A \vec{x}=\vec{b}$, or understanding the properties of a matrix.
- We explore a few matrix factorizations throughout this course.
- In this section, we factor a matrix into lower and into upper triangular matrices.

Triangular Matrices

- A rectangular matrix A is upper triangular if $a_{i, j}=0$ for $i>j$. Examples:

$$
\left(\begin{array}{lll}
1 & 5 & 0 \\
0 & 2 & 4
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)
$$

- A rectangular matrix A is lower triangular if $a_{i, j}=0$ for $i<j$. Examples:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)
$$

Ask: Can you name a matrix that is both upper and lower triangular?

The $L U$ Factorization
size
any
Theorem
If A is an $m \times n$ matrix that can be row reduced to echelon form without row exchanges, then $A=L U . L$ is a lower triangular $m \times m$ matrix with 1's on the diagonal, U is an echelon form of A.
upper trianewar
Example: If $A \in \mathbb{R}^{3 \times 2}$, the LU factorization has the form:

Why We Can Compute the $L U$ Factorization

Suppose A can be row reduced to echelon form U without interchanging rows. Then,

$$
E_{p} \cdots E_{1} A=U
$$

where the E_{j} are matrices that perform elementary row operations. They happen to be lower triangular and invertible, e.g.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Therefore,

$$
A=\underbrace{E_{1}^{-1} \cdots E_{p}^{-1}}_{=L} U=L U .
$$

Using the $L U$ Decomposition

Goal: given A and \vec{b}, solve $A \vec{x}=\vec{b}$ for \vec{x}.
Algorithm: construct $A=L U$, solve $A \vec{x}=L U \vec{x}=\vec{b}$ by:

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for x in $U \vec{x}=\vec{y}$.

Example: Solve the linear system whose LU decomposition is given.

$$
A=L U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
2 \\
3 \\
2 \\
0
\end{array}\right)
$$

Solve $A \vec{x}=\vec{b} \quad(\quad L \cdot \overrightarrow{v \cdot \vec{x}}=\vec{b})$
(1) For U. $\vec{x}=\vec{y}$, Solve $L \vec{y}=\vec{b}$

Section $2.5 \quad$ Slide 47

An Algorithm for Computing LU

To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.

Note that

- In MATH 1554, the only row replacement operation we can use is to replace a row with a multiple of a row above it.
- More advanced linear algebra courses address this limitation.

Example: Compute the $L U$ factorization of A.

$$
A=\left(\begin{array}{cccc}
4 & -3 & -1 & 5 \\
-16 & 12 & 2 & -17 \\
8 & -6 & -12 & 22
\end{array}\right)
$$

(1) Find U:

Section 2.5 Slide 48 $\left(\begin{array}{cccc}4 & -3 & -1 & 5 \\ -16 \rightarrow 0 & 12 & 2 & -17 \\ 8 \rightarrow 0 & -6 & -12 & 22\end{array}\right)^{-1}$

$$
A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}}_{-1} U
$$

$\xrightarrow{\text { (1) }} \underset{R_{2} \rightarrow R_{2}+4 R_{1}}{ }\left(\begin{array}{cccc}4 & -3 & -1 & 5 \\ R_{3} \rightarrow R_{3}-2 R_{1}\end{array}\left(\begin{array}{cccc}4 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & -10 & 12\end{array}\right)\right.$
$\xrightarrow{(2)} R_{3} \rightarrow R_{3}-5 \cdot R_{2}\left(\begin{array}{cccc}4 & -3 & -1 & 5 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & -3\end{array}\right)^{y_{0}} \quad E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & +5 & 1\end{array}\right)^{-1}$

$$
\begin{aligned}
& E_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1} \\
& E_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
+2 & 0 & 1
\end{array}\right)^{-1}
\end{aligned}
$$

Summary

\vec{y}

- To solve $A \vec{x}=L U \vec{x}=\vec{b}$, y_{1}
y_{2}

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for \vec{x} in $U \vec{x}=\vec{y}$.

- To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I \& Pwouct if elementany aratrices

- The textbook offers a different explanation of how to construct the LU decomposition that students may find helpful.
- Another explanation on how to calculate the LU decomposition that students may find helpful is available from MIT OpenCourseWare: www.youtube.com/watch?v=rhNKncraJMk

Section 2.8: Subspaces of \mathbb{R}^{n}

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

1. Subspaces, Column space, and Null spaces
2. A basis for a subspace.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Determine whether a set is a subspace.
2. Determine whether a vector is in a particular subspace, or find a vector in that subspace.
3. Construct a basis for a subspace (for example, a basis for $\operatorname{Col}(\mathrm{A})$)

Motivating Question

Given a matrix A, what is the set of vectors \vec{b} for which we can solve $A \vec{x}=\vec{b}$?

Subsets of \mathbb{R}^{n}

$$
\operatorname{Span}\left(\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}\right)=\left\{c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}: c_{1}, c_{2} \in \mathbb{R}\right\}
$$

Definition
A subset H of \mathbb{R}^{n} is a subspace if it is closed under scalar multiplies and vector addition. That is: for any $c \in \mathbb{R}$ and for $\vec{u}, \vec{v} \in H$,

1. $c \vec{u} \in H$
2. $\vec{u}+\vec{v} \in H$
H is a subspace

Note that condition 1 implies that the zero vector must be in H.
Example 1: Which of the following subsets could be a subspace of \mathbb{R}^{2} ?

a) the unit square

$$
\vec{e}_{1} \in H
$$

Section 2.8
Slide 53
$2 \cdot \overrightarrow{e_{2}} \notin H$
Not a subspace.

b) a line passing through the origin
$=C \vec{v}+C^{\prime} \vec{v}$ $=\left(c+c^{\prime}\right) \vec{v}$
$c^{\prime} \cdot(c \vec{v})=\left(c^{\prime} \cdot c\right) \vec{v}$
A subspace

c) a line that doesn't pass through the origin

Not a space.

The Column Space and the Null Space of a Matrix

Recall: for $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$, that $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is:

$$
\begin{aligned}
&\left(c_{1} \overrightarrow{v_{1}}+\cdots+c_{p} \overrightarrow{r_{p}}\right)+\left(c_{1}^{\prime} \vec{v}_{1}+\cdots+c_{p}^{\prime} \vec{v}_{p}^{\prime}\right) \\
&\left.=\left(c_{1}+c_{1}^{\prime}\right) \vec{v}_{1}+\cdots+\left(c_{p}+c_{p}^{\prime}\right) \overrightarrow{v_{p}} \in \text { Span }\left\{\vec{v}_{1} \vec{v}_{1}+\cdots, \vec{v}_{p}\right\} \overrightarrow{v_{p}}: c_{1}, \cdots, c_{p} \in \mathbb{R}\right\}
\end{aligned}
$$

This is a subspace, spanned by $\vec{v}_{1}, \ldots, \vec{v}_{p}$.
Definition
Given an $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]$

1. The column space of $A, \operatorname{Col} A$, is the subspace of \mathbb{R}^{m} spanned by $\vec{a}_{1}, \ldots, \vec{a}_{n}$. columns
2. The null space of $A, \operatorname{Null} A$, is the subspace of \mathbb{R}^{n} spanned by the set of all vectors \vec{x} that solve $A \vec{x}=\overrightarrow{0}$.

Solutions

$$
\begin{aligned}
\text { Column space of } A & =\text { Span }\{\text { Columns }\} \\
& =\text { Range of } T(\vec{x})=A \vec{x}
\end{aligned}
$$

Null Space of $A=$ Span $\{$ Solution to $A \vec{x}=\overrightarrow{0}\}$

$$
\text { Solution set }=\{\text { Solutions to } A \vec{x}=\overrightarrow{0}\}
$$

$$
\vec{u}, \vec{v}, \text { solution }
$$

$$
\vec{u}+\vec{v} \quad \text { Solution }
$$

$$
c \cdot \vec{u}
$$

Example
Is \vec{b} in the column space of A ?

$$
A=\left[\begin{array}{rrr}
1 & -3 & -4 \\
-4 & 6 & -2 \\
-3 & 7 & 6
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -3 & -4 \\
0 & -6 & -18 \\
0 & 0 & 0
\end{array}\right], \quad \vec{b}=\left(\begin{array}{c}
3 \\
3 \\
-4
\end{array}\right)
$$

(a) $\vec{b} \in \operatorname{Cot}(A) ?$
$\Leftrightarrow \vec{b}=$ lin. combi. of Columns
$\Leftrightarrow \quad A \vec{x}=\vec{b}$ is consistent

$$
\left[\begin{array}{l|l}
A & \vec{b}
\end{array}\right]
$$

$$
\vec{v}=\left(\begin{array}{cc}
-5 & \lambda \\
-3 & \lambda \\
\lambda
\end{array}\right) \in \operatorname{Nulld} 56(A) ?
$$

Section 2.8 Slide $56 \quad \vec{v}$ is a solution to $\overrightarrow{A X}=\overrightarrow{0}$

$$
\left.\begin{array}{l}
\Leftrightarrow \\
\Leftrightarrow \vec{v}=\overrightarrow{0} \\
\Leftrightarrow
\end{array} \begin{array}{ccc}
1 & -3 & -4 \\
0 & -6 & -18 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-5 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Example 2 (continued)

Using the matrix on the previous slide: is \vec{v} in the null space of A ?

$$
\vec{v}=\left(\begin{array}{c}
-5 \lambda \\
-3 \lambda \\
\lambda
\end{array}\right), \lambda \in \mathbb{R}
$$

Basis

(1) Lin. indef

Definition

A basis for a subspace H is a set of linearly independent vectors in H that span H.

Example

a) H is a null space for what matrix A ?
defined by
equation
b) Construct a basis for H.

Null (A) $=$

$$
=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right] r\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right] r\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

9/25/23
Def

$$
H \text { is a subspace of } \mathbb{R}^{n} \text { if }\left\{\begin{array}{c}
H \subseteq \mathbb{R}^{n} \text { (subset) } \\
\vec{u}, \vec{v} \in H \text { implies } \vec{u}+\vec{v} \in H \\
\vec{u} \in H, c \in \mathbb{R} \text { implies } c \cdot \vec{u} \in H
\end{array}\right.
$$

Examples
$\{\overrightarrow{0}\}, \mathbb{R}^{n}, \quad \operatorname{Span}\left\{\vec{v}_{1}, \cdots, \overrightarrow{v_{p}}\right\}$ are subspaces.

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, A=\left[\overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}}\right], \overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}} \in \mathbb{R}^{m} \\
& \operatorname{Col}(A)={\operatorname{Span}\left\{\overrightarrow{a_{1}} ; \cdots, \overrightarrow{a_{n}}\right\} \subseteq \mathbb{R}^{m}}_{\operatorname{Null}(A)=\left\{\vec{x}^{\in}: A \overrightarrow{R^{n}}=0\right\} \subseteq \mathbb{R}^{n}}
\end{aligned}
$$

Basis
H is a subspace
Spam $\left\{\vec{v}_{1}, \cdots, \vec{v}_{r}\right\}$
$B \subset H$ is a basis if $\quad S_{\text {pan }} B=H$
$\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$
(B) is linearly index.

Example
Construct a basis for Null A and a basis for $\operatorname{Col} A$. free

$$
A=\left[\begin{array}{rrrr}
-3 & 6 & -1 & 0 \\
1 & -2 & 2 & 0 \\
2 & -4 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(1) $\quad \operatorname{Nul}(A)=\left\{\vec{x} \in \mathbb{R}^{4}: A \vec{x}=\overrightarrow{0}\right\}$

$$
\begin{gathered}
x_{1}^{x_{1}-\frac{2 x_{2}}{x_{3}}=0}=0 \quad x_{2}, x_{4} \text { free } \\
\qquad=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0 \\
x_{4}
\end{array}\right]\right\}=\left\{x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\} \\
=\operatorname{Spom}\{\underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} .
\end{gathered}
$$

$$
\Rightarrow \quad B=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} \text { is basis for Nurll}(A) \text { in dep }
$$

Example

Construct a basis for $\operatorname{Null} A$ and a basis for $\operatorname{Col} A$.

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
-3 & 6 & -1 & 0 \\
1 & -2 & 2 & 0 \\
2 & -4 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
C_{0}(A) & =\operatorname{Span}\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}, \overrightarrow{a_{4}}\right\} \\
& =\operatorname{Span}\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}\right\}
\end{aligned}
$$

- Spar $\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{3}}\right\}$

$$
B=\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{3}} \left\lvert\,=\left\{\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right]\right\}\right.\right.
$$

Section 2.8 Slide 59 - a basis for Col (A)
Note $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ is Not.

Additional Example

Let $V=\left\{\left.\binom{a}{b} \in \mathbb{R}^{2} \right\rvert\, a b=0\right\}$.

1. Give an example of a vector that is in V.
2. Give an example of a vector that is not in V.
3. Is the zero vector in V ?
4. Is V a subspace?

Section 2.9 : Dimension and Rank

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

1. Coordinates, relative to a basis.
2. Dimension of a subspace.
3. The Rank of a matrix

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Calculate the coordinates of a vector in a given basis.
2. Characterize a subspace using the concept of dimension (or cardinality).
3. Characterize a matrix using the concepts of rank, column space, null space.
4. Apply the Rank, Basis, and Matrix Invertibility theorems to describe matrices and subspaces.

Choice of Basis

Key idea: There are many possible choices of basis for a subspace. Our choice can give us dramatically different properties.

Example: sketch $\vec{b}_{1}+\vec{b}_{2}$ for the two different coordinate systems below.

$$
B_{2}=\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
$$

Coordinates

Definition
Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ be a basis for a subspace H. If \vec{x} is in H, then coordinates of \vec{x} relative \mathcal{B} are the weights (scalars) c_{1}, \ldots, c_{p} so that

$$
\underline{\vec{x}}=\underline{c_{1} \vec{b}_{1}+\cdots+c_{p} \vec{b}_{p}}=\mathrm{A} \cdot[x]_{\mathbb{B}}
$$

And

$$
[x]_{\mathcal{B}}=\left[\begin{array}{r}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]
$$

is the coordinate vector of \vec{x} relative to \mathcal{B}, or the \mathcal{B}-coordinate vector of \vec{x}

$$
A=\left[\overrightarrow{b_{1}} \cdots \cdots \vec{b}_{p} \mathbb{R}^{n}\right]^{n} \in \mathbb{R}^{n \times p}
$$

Example 1

Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\vec{x}=\left[\begin{array}{l}5 \\ 3 \\ 5\end{array}\right]$. Verify that \vec{x} is in the span of $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, and calculate $[\vec{x}]_{\mathcal{B}}$.

$$
\begin{aligned}
& \vec{x}=c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}} \quad ? \\
& {\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array} \vec{x}\right] \text { is consistent? }} \\
& {\left[\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
1 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array} \quad\right. \text { consistent }} \\
& C_{1}=a \quad C_{2}=3
\end{aligned}
$$

Dimension

Definition
The dimension (or cardinality) of a non-zero subspace H, $\operatorname{dim} H$, is the number of vectors in a basis of H. We define $\operatorname{dim}\{0\}=0$.

Theorem
Any two choices of bases \mathcal{B}_{1} and \mathcal{B}_{2} of a non-zero subspace H have the same dimension.
Examples:

1. $\operatorname{dim} \mathbb{R}^{n}=n$
$\left\{\vec{e}_{1}, \vec{e}_{2}, \cdots, \vec{e}_{n}\right\}$ basis for \mathbb{R}^{n}
. $H=\operatorname{Mull}(A)$
2. $\left.H=\overline{\overline{\{ }}\left(x_{1}, \ldots, x_{n}\right): x_{1}+\cdots+x_{n}=0\right\}$ has dimension $n-1$
3. $\operatorname{dim}(\operatorname{Null} A)$ is the number of free variable
4. $\operatorname{dim}(\operatorname{Col} A)$ is the number of pions

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
i \\
1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
-1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
-1
\end{array}\right] \cdots\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

Rank

The rank of a matrix A is the dimension of its column space.

Example 2: Compute $\operatorname{rank}(\mathrm{A})$ and $\operatorname{dim}(\operatorname{Nul}(\mathrm{A}))$.

$$
\left[\begin{array}{rrrrr}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & 2 & 4 \\
0 & -9 & 6 & 5 & -6
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrrr}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{dim}(\underbrace{\operatorname{Col}(A)}_{n})=\operatorname{rank}(A)=\#$ of pivot columns Span \{ Columns in $A\}$
$\operatorname{dim}(\operatorname{Null}(A))=\#$ of free var. $=\#$ of non-pinot
To find a basis, parametric vector form

Rank, Basis, and Invertibility Theorems
Theorem (Rank Theorem) $\operatorname{dim}\left(C_{0}^{\prime \prime}(A)\right) \quad \#$ of free var.
If a matrix A has n columns, then $\underline{\operatorname{Rank} A}+\operatorname{dim}(\operatorname{Nul} A)=n$.
Theorem (Basis Theorem)
Any two bases for a subspace have the same dimension.
Theorem (Invertibility Theorem)
Let A be a $n \times n$ matrix. These conditions are equivalent.

1. A is invertible.
2. The columns of A are a basis for \mathbb{R}^{n}.
3. $\operatorname{Col} A=\mathbb{R}^{n}$. $=$ Range of $T \Leftrightarrow T$ is onto.
4. $\operatorname{rank} A=\operatorname{dim}(\operatorname{Col} A)=n$. \& full rout.
5. Null $A=\{\overrightarrow{0}\}$.
\Leftrightarrow Columns in A In. indep.
\# of pivots $\leqslant \min \{\#$ of Col ;

$$
\left.A=\left[\begin{array}{lll}
* & * & \star \\
* & * & *
\end{array}\right] \quad \begin{array}{c}
\# \\
\text { of rows }
\end{array}\right\}
$$

Examples

If possible give an example of a 2×3 matrix A, that is in RREF and has the given properties.
a) $\operatorname{rank}(A)=3$ Not possible.
b) $\operatorname{rank}(A)=2$
\Downarrow 2 pivots

c) $\operatorname{dim}(\operatorname{Null}(A))=2$

』
2 non pivot \& 1 pivot $\left[\begin{array}{ccc}1 & * & * \\ 0 & 0 & 0\end{array}\right]$
d) $\operatorname{Null} A=\{0\}$
$\Leftrightarrow T$ is $1-1$
Not Possible.

Section 2.9 sided 69 becallse $\operatorname{dim}(\operatorname{Null}(A)) \geqslant 1$

