Section 3.1 : Introduction to Determinants

Chapter 3 : Determinants

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The definition and computation of a determinant
- 2. The determinant of triangular matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute determinants of $n \times n$ matrices using a cofactor expansion.
- 2. Apply theorems to compute determinants of matrices that have particular structures.

A Definition of the Determinant Only for Square Matrices

Suppose A is $n \times n$ and has elements a_{ij} .

- 1. If $n = 1$, $A = [a_{11}]$, and has determinant $\det A = a_{11}$.
- 2. <mark>Inductive</mark> case: for $n > 1$, $n \times n$ det u sizy $(n-1) \times (n-1)$ determinant

det $A = a_{11} \det A_{11} - a_{12} \det A_{12} + \cdots + (-1)^{1+n} a_{1n} \det A_{1n}$ where *Aij* is the submatrix obtained by eliminating row *i* and column *j* of *A*. $A = a_{11} \det A_{11}$ Determinant $O_{n|y}$ of C_{quark} M

d has elements a_{ij} .

], and has determinant $\frac{det A = a_{11}}{w \rightarrow y}$ (n-1) x (n-1)
 $A_{11} - a_{12} \det A_{12} + \cdots + (-1)^{1+n} a_{1n} \det A_{1n}$
 $\frac{A_{11}}{(a+b)\kappa(n+1)}$ $\frac{C_{n+1}\kappa(n+1)}{(w+1)\kappa(n+1)}$ $\frac{C_{n+$

Example 1

Compute det
$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
.
\n
$$
\frac{def}{=} a_{11} \cdot det A_{11} - a_{12} \cdot det A_{12}
$$
\n
$$
= a \cdot det \begin{bmatrix} d \\ d \end{bmatrix} - b \cdot det \begin{bmatrix} c \\ d \end{bmatrix}
$$
\n
$$
= a d - b c
$$
\nRecall
\n
$$
\frac{Recall}{=} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$
\n
$$
\frac{det(A)}{=} \begin{bmatrix} a & b \\ det(A) \end{bmatrix}
$$
\n
$$
\therefore \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ invertible } \Leftrightarrow add - bc \neq o
$$
\nSection 31. Solve 4

Example 2

Compute
$$
\det \begin{bmatrix} 1 & -5 & 0 \ 2 & 4 & -1 \ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -5 & 0 \ 2 & 4 & -1 \ 0 & 2 & 0 \end{bmatrix}
$$

\n
$$
= \alpha_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}
$$
\n
$$
= 1 \cdot \det \begin{bmatrix} 4 & -1 \ 2 & 0 \end{bmatrix} - (-5) \det \begin{bmatrix} 2 & -1 \ 0 & 0 \end{bmatrix}
$$
\n
$$
+ 0 \cdot \det \begin{bmatrix} 2 & 4 \ 0 & 2 \end{bmatrix}
$$
\n
$$
= 1 \cdot (4 \cdot 0 - (-1) \cdot 2) - (-5) \cdot (2 \cdot 0 - (-1) \cdot 0)
$$
\n
$$
+ 0 \cdot (2 \cdot 2 - 4 \cdot 0)
$$

Section 3.1 Slide 5

 \equiv

Cofactors give us a more convenient notation for determinants.

Definition: Cofactor
\nThe
$$
(i, j)
$$
 cofactor of an $n \times n$ matrix A is $(n-i) \times (n+i)$
\n $C_{ij} = (-1)^{i+j} \det(A_{ij})$
\n $\underbrace{maxin}_{r \in [n]} \overline{a}^{*h}$ row
\n $\underbrace{sumin}_{j} \overline{a}^{*h}$ row

$$
\begin{array}{cccc}\n+ & - & + & - & \dots \\
- & + & - & + & \dots \\
+ & - & + & - & \dots \\
- & + & - & + & \dots \\
- & + & - & + & \dots \\
\vdots & \vdots & \vdots & \vdots & \n\end{array}
$$

Section 3.1 Slide 6

The

$$
\det(A) = \det(A) \cdot \det(A) \cdot \det(A)
$$
\n
$$
= \frac{Q_{11} C_{11} + Q_{12} C_{12} + \cdots + Q_{1n} C_{1n}}{\frac{T_{nm}}{T_{nm}}} \cdot \frac{C_{\text{factor}}}{C_{\text{factor}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}}
$$
\n
$$
= \frac{C_{\text{factor}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{warm}}}
$$
\n
$$
= \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}}
$$
\n
$$
= \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}} \cdot \frac{C_{\text{param}}}{C_{\text{param}}}
$$

This gives us a way to calculate determinants more efficiently.

Example
\n
$$
det(A) = 0_{31}C_{31} + a_{32}C_{32} + \cdots + a_{3n}C_{3n}
$$

\n $= 0_{4}C_{14} + 0_{24}C_{24} + \cdots + a_{n4}C_{n4}$
\n $a_{log} + b_{log}$

Example 3

Compute the determinant of
$$
\begin{bmatrix} 5 & 4 & 3 & 2 \ 0 & 1 & 2 & 0 \ 0 & -1 & 1 & 0 \ 0 & 1 & 1 & 3 \end{bmatrix}
$$
 = A
\n
$$
\begin{array}{c}\n\text{Q}_{11} \\
\text{Q}_{21} \\
\text{Q}_{22} \\
\text{Q}_{23} \\
\text{Q}_{34} \\
\text{Q}_{45} \\
\text{Q}_{46} \\
\text{Q}_{47} \\
\text{Q}_{48} \\
\text{Q}_{49} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{44} \\
\text{Q}_{45} \\
\text{Q}_{46} \\
\text{Q}_{47} \\
\text{Q}_{48} \\
\text{Q}_{49} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{44} \\
\text{Q}_{45} \\
\text{Q}_{46} \\
\text{Q}_{47} \\
\text{Q}_{48} \\
\text{Q}_{49} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{44} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{43} \\
\text{Q}_{40} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{42} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{40} \\
\text{Q}_{41} \\
\text{Q}_{40} \\
\text{Q}_{
$$

$$
\frac{\text{Example}}{\text{det}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0_{11} & 0 & 0 & 0 \\ 1 & (-1) & 0 & 0 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}
$$

= 1.2.(-1)¹⁺¹ det $\begin{bmatrix} 3 & 4 \\ 0 & 4 \end{bmatrix}$
= 1.2.3.4

Triangular Matrices

Example 4

Compute the determinant of the matrix. Empty elements are zero.

Note that computation of a co-factor expansion for an $N \times N$ matrix requires roughly *N*! multiplications.

- A 10×10 matrix requires roughly $10! = 3.6$ million multiplications
- A 20×20 matrix requires $20! \approx 2.4 \times 10^{18}$ multiplications

Co-factor expansions may not be practical, but determinants are still useful.

- We will explore other methods for computing determinants that are more efficient.
- Determinants are very useful in multivariable calculus for solving certain integration problems.

Section 3.2 : Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

"A problem isn't finished just because you've found the right answer." - Yōko Ogawa

We have a method for computing determinants, but without some of the strategies we explore in this section, the algorithm can be very inefficient.

Topics and Objectives

Topics

We will cover these topics in this section.

The relationships between row reductions, the invertibility of a matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
- 2. Use determinants to determine whether a square matrix is invertible.

Sway	R ₁ \leftrightarrow R ₂	Sign Chapter
Replacing	R ₃ \rightarrow R ₃ $-2R_2$	Desn't charge
Scal	R ₁ \rightarrow 5-R ₁	det \rightarrow 5-dt

Row Operations

- We saw how determinants are difficult or impossible to compute with a cofactor expansion for large *N*.
- \bullet Row operations give us a more efficient way to compute determinants.

Theorem: Row Operations and the Determinant

Let *A* be a square matrix.

- 1. If a multiple of a row of *A* is added to another row to produce *B*, then $\det B = \det A$.
- 2. If two rows are interchanged to produce *B*, then $\det B = -\det A$.
- 3. If one row of *A* is multiplied by a scalar *k* to produce *B*, then $\det B = k \det A$.

Invertibility

Important practical implication: If *A* is reduced to echelon form, by *r* interchanges of rows and columns, then

 $|A| =$ $\int_{0}^{1} (-1)^{r} \times ($ product of pivots), when *A* is invertible $0,$ when A is singular. Section 3.2 Recall $A \in \mathbb{R}^{n \times n}$, $C_{ij} = (-1)^{i+j} det A_{ij}^{j+j}$ from A $C_{\lambda j} = (-1)^{\lambda+j} det A_{ij}^{\lambda-j}$ fim A \cdot det (A) = $a_{i1}C_{i1}$ + $a_{i2}C_{i2}$ + --- + $a_{in}C_{in}$ = $a_{1}c_{1} + a_{2}c_{2} + \cdots + a_{n}c_{n}$ Cofactor Exansin votation computer AER nx n Slide 15 $\det(A) = \prod_{i=1}^{n} A_{i}$ = $a_{ii} \cdot a_{\infty} \cdot \cdot \cdot a_{nn}$ R EF (upper triangular) $det(A) = \frac{n}{i}$
A $\rightarrow \frac{1}{i}$'s operations swap flips the Sign So replacement doesn't drange det scalar multiple on a row ⁼ scalar multiple on def.

Example 2 Compute the determinant

Properties of the Determinant

For any square matrices A and B , we can show the following.

- 1. $\det A = \det A^T$.
- 2. A is invertible if and only if $\det A \neq 0$.

 $\sqrt{3} \cdot \det(AB) = \det A \cdot \det B$.

Note	1	det (AT.A) ≥ 0	for A $\in \mathbb{R}^{n \times n}$
det (AT).det(A)	1		
det (AT).det(A)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (A ⁺)	1		
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			
det (AB) = det (BA)			

Additional Example (if time permits)

Use a determinant to find all values of
$$
\lambda
$$
 such that matrix C's not invertible.
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5-\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5-\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5-\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 1 & -\lambda & 1 \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5-\lambda & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5-\lambda & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda I_3 = \begin{pmatrix} 5 &
$$

$$
A \quad \vec{x}_2 = \vec{x}_2
$$
\n
$$
A \quad \vec{x}_3 = -\vec{x}_3
$$

Additional Example (if time permits)

Determine the value of

Use (if time permits)

\nLet
$$
A = \det \left(\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix}^8 \right)
$$
.

\n
$$
= \left(\det \begin{pmatrix} 0 & \frac{2}{5} & 0 \\ 1 & 1 & 3 \end{pmatrix} \right)^8
$$
\n
$$
= \left(\begin{array}{ccc} \det \begin{pmatrix} 0 & \frac{2}{5} & 0 \\ 1 & 3 & 3 \end{pmatrix} \right)^8
$$
\n
$$
= \left(\begin{array}{ccc} 2 & (-1)^{1+2} & \det \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \right)^8
$$
\n
$$
= \left(\begin{array}{ccc} 2 & (-1)^{1+2} & \det \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \right)^8
$$
\n
$$
= \left(\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 1 & 3 \end{array} \right)
$$
\n
$$
= \left(\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 1 & 3 \end{array} \right)
$$
\n
$$
= \left(\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 1 & 3 \end{array} \right)
$$
\n
$$
= \left(\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 1 & 3 \end{array} \right)
$$

Section 3.3 : Volume, Linear Transformations

Chapter 3 : Determinants

Math 1554 Linear Algebra

Topics and Objectives **/**
6ء

Topics

Geometric Meanig of Determinant.

We will cover these topics in this section.

1. Relationships between area, volume, determinants, and linear transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Use determinants to compute the area of a parallelogram, or the volume of a parallelepiped, possibly under a given linear transformation.

Students are not expected to be familiar with Cramer's rule.

Determinants, Area and Volume "Matrix as a collection of ⁿ column vectors. $\frac{d}{dx}Mdx$ as a collection
 $\frac{d}{dx}Gdx$ Alto $\frac{d}{dx}Gdx$

(Case

In \mathbb{R}^2 , determinants give us the area of a parallelogram.

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors \vec{a}, \vec{b} is equal to the area spanned by $\vec{a}, c\vec{a} + \vec{b}$, for any scalar *c*.

FIGURE 2 Two parallelograms of equal area.

Example 1

Calculate the area of the parallelogram determined by the points $(-2, -2), (0, 3), (4, -1), (6, 4)$

FIGURE 5 Translating a parallelogram does not change its area. λ

$$
\mathcal{V}_1 = \begin{bmatrix} 4 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}
$$

$$
\mathcal{V}_2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}
$$

$$
A_{H\alpha} = |det[\gamma_{1} \gamma_{2}]|
$$

= |det [{6 \ 2 \ 1 \ 5]} = |65 - 21|
= 28

 \bigotimes (det [V1, V2] ($\frac{1}{2}$ \equiv Area $\sqrt{2}$ $\sqrt{1}$ \mathbf{z} $\mathbb R$ R^2 $\tau(x) = Bx$ $\sqrt{\nu}$ $B - V_2$ $\sqrt{}$ $B - U_1$ $\sqrt{2}$ $\sqrt{\sqrt{1}}$ Ner-Area Bv_1 Bv_2 det det β ł, $det(A)$ $det(B)$ \sim $=$ d

Linear Transformations

 $\begin{array}{l} \mid$ Theorem $\mid \ \hline \hspace{0.2cm} \text{If } T_A \ : \mathbb{R}^n \mapsto \mathbb{R}^n, \text{ and } S \text{ is some parallelogram in } \mathbb{R}^n, \text{ then} \end{array}$ volume $(T_A(S)) = |\text{det}(A)| \cdot \text{volume}(S)$

An example that applies this theorem is given in this week's worksheets.

Example

\n
$$
\int_{0}^{1} \frac{(\frac{2x}{\pi})^{60} dx}{\pi u} = \int_{0}^{2} u^{100} \frac{du}{\pi} du
$$
\n
$$
\frac{dx}{\pi} = \int_{0}^{2} u^{100} \frac{du}{\pi} du
$$
\n
$$
\frac{dx}{\pi} = \int_{0}^{2} u^{100} \frac{du}{\pi} du
$$
\n
$$
\frac{dx}{\pi} = \frac{1}{2} \pi u^{100} \frac{du}{\pi}
$$
\nTherefore

Q: Find k so that A is singular $A = \begin{pmatrix} 1 & -3 & k \\ 7 & 2 & -3 \\ -1 & 2 & 5 \end{pmatrix}$ Row Reduce - P whether free var. $A = \begin{pmatrix} 1 & -3 & k \\ 7 & 2 & -3 \\ -1 & 2 & 5 \end{pmatrix}$
 $\begin{matrix} 0 & \text{Row} & \text{Reduce} & -\frac{1}{2} & \text{Subductor} & \frac{6}{16} \\ \text{Observe} & -\frac{1}{2} & \text{Subductor} & \frac{6}{16} \\ \text{Observe} & -\frac{1}{2} & \text{Subductor} & \frac{1}{2} \\ \text{Observe} & -\frac{1}{2} & \text{Subductor} & \frac{1}{2} \end{matrix}$ Cofactor Exp.
Cofactor Exp. $\overline{\Bbb{C}}$ $\begin{array}{c} \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \end{array}$ +2 $det(A) = 1 + \frac{1}{1}det$ $\frac{1}{\pi}(-1)det\begin{pmatrix}2&3\\2&5\end{pmatrix}+(1)det\begin{pmatrix}-1\\-3\end{pmatrix}$ $Q_{\overline{H}}$ $\overline{+}$ $+ 2.7$ (-1) $det(\begin{array}{cc} 7 & 2 \\ -1 & 2 \end{array})$ $= (10 - (-6)) + 3 \cdot (35 - 3) + k(14 - (-2))$ $= 16 + 96 + 16k = 0$ $1 + 6 + k = 0$ $k = -7$ $k = -7$

Suppose $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 4$. Find the determinant of the matrices below. $A = \begin{pmatrix} g & h & i \\ a & b & c \\ d & e & f \end{pmatrix} \qquad B = \begin{pmatrix} a & b & c \\ 2d & e & 2e & 2f & 2f \\ g & h & i & i \end{pmatrix} \qquad C = \begin{pmatrix} a & a & d & c \\ d & d & f & f \\ g & g & w & i \end{pmatrix}$ $\det(A) = \begin{array}{|c|c|} \hline \text{det}(B) & \det(B) = \text{det}(B) \\ \hline \end{array} \quad \ \ \det(B) = \begin{array}{|c|c|} \hline \text{det}(C) & \det(C) \\ \hline \end{array} \quad \ \ \text{det}(C) = \begin{array}{|c|c|} \hline \text{det}(C) & \det(C) \\ \hline \end{array}$ $\begin{array}{c} \begin{array}{ccc} \alpha & b & c \\ d & e & f \\ q & h & \ddot{q} \end{array} & \longrightarrow & \begin{array}{ccc} d & e & f \\ \alpha & b & c \\ g & h & i \end{array} \end{array}$ \longrightarrow $\begin{array}{cc} & g h & \lambda \\ & \lambda & \lambda \\ & & \lambda & \lambda \\ & & & \lambda \end{array}$