Section 3.1 : Introduction to Determinants

Chapter 3 : Determinants

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The definition and computation of a determinant
- 2. The determinant of triangular matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute determinants of $n \times n$ matrices using a cofactor expansion.
- 2. Apply theorems to compute determinants of matrices that have particular structures.

A Definition of the Determinant Only for Square Matrices

Suppose A is $n \times n$ and has elements a_{ij} .

- 1. If n = 1, $A = [a_{11}]$, and has determinant $\det A = a_{11}$.
- 2. Inductive case: for n > 1, $n \times n$ det using $(n-1) \times (n-1)$ determinant

 $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$ where A_{ij} is the submatrix obtained by eliminating row i and column j of A.

Example 1

Compute det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

$$\frac{det}{d} = a_{11} \cdot det A_{11} - a_{12} det A_{12}$$

$$= a \cdot det [d] - b \cdot det [c]$$

$$= a d - b c$$

$$\frac{Recall}{c d} - b c$$

$$\frac{Recall}{c d} - b c$$

$$\frac{a - b}{c d} - b c$$

Example 2

Compute det
$$\begin{bmatrix} 1 & -5 & 0 \\ 2 & 4 & -1 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -5 & 0 \\ 2 & 4 & -1 \\ 0 & 2 & 0 \end{bmatrix}$$

$$= a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$$

$$= 1 \cdot \det \begin{bmatrix} 4 & -1 \\ 2 & 0 \end{bmatrix} - (-5) \det \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix} .$$

$$= 1 \cdot (4 \cdot 0 - (-1) \cdot 2) - (-5) \cdot (2 \cdot 0 - (-1) \cdot 0) + 0 \cdot (2 \cdot 2 - 4 \cdot 0) + 0 \cdot (2 \cdot 2 - 4 \cdot 0)$$

Section 3.1 Slide 5

Ξ

det A =
$$\alpha_{11}$$
 (-1) det A₁₁ + α_{12} (-1) det A₁₂ + α_{13} (-1) det A₁₃
 α_{11} +--- α_{1n} (-1) det A_{1n} α_{13}
= α_{11} C₁₁ + α_{12} C₁₂ +--+ α_{1n} C_{1n}
Cofactors Cofactors along 1st row.

Cofactors give us a more convenient notation for determinants.

Definition: CofactorThe
$$(i, j)$$
 cofactor of an $n \times n$ matrix A is $(n-i) \times (n-i)$ $C_{ij} = (-1)^{i+j} \det(A_{ij})$ $matrix$ $remainf$ $remainf$ pattern for the negative signs is and j^{th} col.

$$\begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ - & + & - & + & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

Section 3.1 Slide 6

The

$$det(A) \stackrel{def}{=} Cofactor Expansion along 1st now$$

$$= Q_{11} C_{11} + Q_{12} C_{12} + \dots + Q_{1n} C_{1n}$$

$$= The Cofactor Expansion along it h now it h column.$$
Theorem
The determinant of a matrix A can be computed down any row or column of the matrix. For instance, down the j^{th} column, the determinant is
$$det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}.$$

This gives us a way to calculate determinants more efficiently.

$$\frac{\text{Example}}{\text{def}(A)} = \alpha_{31} \mathcal{L}_{31}^{+} \alpha_{32} \mathcal{L}_{32}^{+} \cdots + \alpha_{3n} \mathcal{L}_{3n}^{+} \alpha_{3n} \mathcal{L}_{3n}^{+} \alpha_{3n} \mathcal{L}_{3n}^{+} \alpha_{3n} \mathcal{L}_{3n}^{+} \alpha_{3n} \mathcal{L}_{3n}^{+} \alpha_{3n} \mathcal{L}_{3n}^{+} \mathcal{L}_{3n}^{$$

Example 3

$$\frac{\text{Example}}{\det\left(\begin{array}{c} 0 & 2 & + \\ 0 & 0 & 3 \\ 0 & 0 & 0 & 4\end{array}\right)} = \frac{(1 \cdot (-1)^{1+1}}{1 \cdot (-1)^{1+1}} \det\left(\begin{array}{c} 2 & (x) \\ 0 & 3 \\ 0 & 0 & 4\end{array}\right) \\
= 1 \cdot 2 \cdot (-1)^{1+1} \det\left(\begin{array}{c} 3 & x \\ 0 & 4\end{array}\right) \\
= 1 \cdot 2 \cdot 3 \cdot 4 .$$

Triangular Matrices

Example 4

Compute the determinant of the matrix. Empty elements are zero.

Note that computation of a co-factor expansion for an $N \times N$ matrix requires roughly N! multiplications.

- A 10×10 matrix requires roughly 10! = 3.6 million multiplications
- A 20×20 matrix requires $20! \approx 2.4 \times 10^{18}$ multiplications

Co-factor expansions may not be practical, but determinants are still useful.

- We will explore other methods for computing determinants that are more efficient.
- Determinants are very useful in multivariable calculus for solving certain integration problems.

Section 3.2 : Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

"A problem isn't finished just because you've found the right answer." - Yōko Ogawa

We have a method for computing determinants, but without some of the strategies we explore in this section, the algorithm can be very inefficient.

Topics and Objectives

Topics

We will cover these topics in this section.

• The relationships between row reductions, the invertibility of a matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
- 2. Use determinants to determine whether a square matrix is invertible.

Swap
$$R_1 \leftrightarrow R_2$$
 Sign Change
Replacement $R_3 \rightarrow R_3 - 2R_2$ Doesn't change
Scaling $R_7 \rightarrow 5 \cdot R_7$ det $\rightarrow 5 \cdot det$

Row Operations

- We saw how determinants are difficult or impossible to compute with a cofactor expansion for large N.
- Row operations give us a more efficient way to compute determinants.

Theorem: Row Operations and the Determinant

Let A be a square matrix.

- 1. If a multiple of a row of A is added to another row to produce B, then $\det B = \det A$.
- 2. If two rows are interchanged to produce B, then $\det B = -\det A$.
- 3. If one row of A is multiplied by a scalar k to produce B, then det $B = k \det A$.

Invertibility

Important practical implication: If A is reduced to echelon form, by r interchanges of rows and columns, then

 $|A| = \begin{cases} (-1)^r \times \text{(product of pivots)}, & \text{when } A \text{ is invertible} \\ 0, & \text{when } A \text{ is singular}. \end{cases}$ $A \in \mathbb{R}^{n \times n}$, $C_{ij} = (-1)^{i+j} \det A_{ij}^{i+j}$ remove ith row, $d^{i+h} \operatorname{cal}$ from A Recall • det (A) = $a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$ $= \alpha_{1j} (1_j + \alpha_{2j} (2_j + \cdots + \alpha_{nj} (n_j))$ Cofactor Exansim For a triangular $A \in \mathbb{R}^{n \times n}$ Slide 15 $def(A) = \prod_{i=1}^{n} a_{ii} = a_{ii} \cdot a_{22} \cdot \cdot \cdot a_{nn}$ Section 3.2 A _____ REF (upper triangular) . Swap flips the sign replacement doesn't drange det Scalar multiple on a row = Scalar muttiple on det.

Example 2 Compute the determinant

$$det (A) = \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & 2 \end{vmatrix}$$

re divert

$$= \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 5 \end{vmatrix}$$

$$Cofuctor expansion does a finite to the expansion of the expansion o$$

Properties of the Determinant

For any square matrices A and B, we can show the following.

- 1. det $A = \det A^T$.
- 2. A is invertible if and only if det $A \neq 0$.

 $\forall 3. \det(AB) = \det A \cdot \det B.$

Note
$$det (AT \cdot A) \ge 0$$
 for $A \in \mathbb{R}^{n \times n}$
 $det (AT) \cdot det (A)$
 $(det (AT))^{2}$
 $(det (A^{2}))^{2}$
 $det (A^{2})$
 $det (A^{2})$
 $det (AB) = det (BA)$
 $det (AB) = det (BA)$
 AB invertible $\Rightarrow AB$ invertible
 AB invertible $\Rightarrow BA$ invertible

Additional Example (if time permits)

Use a determinant to find all values of
$$\lambda$$
 such that matrix C is not
invertible.

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-} \lambda I_{3} = \begin{bmatrix} 5 - \lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{bmatrix}$$

$$C \quad \text{is Not Invertible} \quad (A - \lambda I)$$

$$det C = (5 - \lambda) (-1)^{+} det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$

$$det C = (5 - \lambda) (-1)^{+} det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$

$$= (5 - \lambda) ((-\lambda)^{2} - 1^{2})$$

$$= (5 - \lambda) (\lambda + 1) (\lambda - 1) = 0$$
Section 32 Side 18 $\Rightarrow \lambda = 5 \text{ or } 1 \text{ or } -1$

$$A = \lambda = \lambda = has rontrivial solutions when $\lambda = S, (1, -)$

$$A = \sqrt{X_{1}} = 5 = \sqrt{X_{1}}$$

$$eigenvelve$$$$

$$A \vec{X}_2 = \vec{X}_2$$
$$A \vec{X}_3 = -\vec{X}_3$$

Additional Example (if time permits)

Determine the value of

$$\det A = \det \left(\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix}^8 \right).$$

$$= \left(\det \left(\begin{array}{c} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{array} \right)^8 \right)$$

$$= \left(\det \left(\begin{array}{c} 0 & 2 & 0 \\ 1 & 1 & 3 \end{array} \right)^8 \right)$$

$$= \left(2 \cdot \left(-\left(\right)^{l+2} \cdot \det \left(\begin{array}{c} l & 2 \\ l & 3 \end{array} \right) \right)^8 \right)$$

$$= \left(2 \cdot \left(-\left(\right)^{l+2} \cdot \det \left(\begin{array}{c} l & 2 \\ l & 3 \end{array} \right) \right)^8 \right)$$

$$= 2 \cdot \left(2 \cdot \left(-\left(\right)^{l+2} \cdot \det \left(\begin{array}{c} l & 2 \\ l & 3 \end{array} \right) \right)^8 \right)$$

Section 3.3 : Volume, Linear Transformations

Chapter 3 : Determinants

Math 1554 Linear Algebra

Topics and Objectives 66 Geometric Meaning of Determinant

Topics

We will cover these topics in this section.

1. Relationships between area, volume, determinants, and linear transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Use determinants to compute the area of a parallelogram, or the volume of a parallelepiped, possibly under a given linear transformation.

Students are not expected to be familiar with Cramer's rule.

"Matrix as a collection of M column vectors" "Gase de the mathematical form M = 2 Case. Determinants, Area and Volume

In \mathbb{R}^2 , determinants give us the area of a parallelogram.

is a function from during, unit -> Mumbers

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors \vec{a}, \vec{b} is equal to the area spanned by $\vec{a}, c\vec{a} + \vec{b}$, for any scalar c.

FIGURE 2 Two parallelograms of equal area.

Example 1

Calculate the area of the parallelogram determined by the points $(-2,-2),\,(0,3),\,(4,-1),\,(6,4)$

FIGURE 5 Translating a parallelogram does not change its area.

$$\mathcal{V}_{1} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

$$\mathcal{V}_{2} = \begin{bmatrix} 0 \\ -3 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$Hea = \left[\det \left[v_{1} v_{2} \right] \right] \\ = \left[\det \left[\begin{array}{c} 6 & 2 \\ 1 & 5 \end{array} \right] \right] = \left[6.5 - 2.1 \right] \\ = 28$$

Linear Transformations

Theorem If $T_A : \mathbb{R}^n \mapsto \mathbb{R}^n$, and S is some parallelogram in \mathbb{R}^n , then $\operatorname{volume}(T_A(S)) = |\det(A)| \cdot \operatorname{volume}(S)$

An example that applies this theorem is given in this week's worksheets.

Example

$$\int_{0}^{1} (2x)^{\circ} dx = \int_{0}^{2} u^{\circ} (2x) du$$

$$\int_{0}^{1} (2x)^{\circ} dx = \int_{0}^{2} u^{\circ} (2x) du$$

$$\int_{0}^{1} (2x)^{\circ} dx = \int_{0}^{2} (2x)^{\circ} dx$$

$$\int_{0}^{1} (2x)^{\circ} dx$$

A is singular Q: Find & so that $A = \begin{pmatrix} 1 & -3 & \kappa \\ 7 & 2 & -3 \\ -1 & 2 & 5 \end{pmatrix}$ Row Reduce - P whether free var. (2) det(A) = 0. Solve for k. Cofactor Exp. Row Operation, 1+2 $det(A) = \frac{1}{\pi} (-1) det (2 - 2) + (-3) det (7 - 3) (-1) + (-1$ + p(-1) det (72) $= (10 - (-6)) + 3 \cdot (35 - 3) + k (14 - (-2))$ = 16 + 76 + 16b = 01 + 6 + k = 0k = -7

Suppose $\det\begin{pmatrix} a & b & c \\ g & h & i \\ g & h & i \\ d & b & c \\ d & e & f \end{pmatrix} = 4$. Find the determinant of the matrices below. $A = \begin{pmatrix} g & h & i \\ a & b & c \\ d & e & f \end{pmatrix} \qquad B = \begin{pmatrix} a & b & c \\ 2d \neq a & 2e \neq 2f \neq a \\ g & h & i \end{pmatrix} \qquad C = \begin{pmatrix} a & a & f & c \\ d & d & f \\ g & g & f & i \end{pmatrix}$ $\det(A) = \boxed{4} \qquad \det(B) = \boxed{2 \cdot 4} = 8 \qquad \det(C) = \boxed{0}$ $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \qquad (det f) = \boxed{2 \cdot 4} = 6 \qquad \det(C) = \boxed{0}$ $(a & b & c \\ g & h & i \end{pmatrix} \qquad (det f) = \boxed{2 \cdot 4} = 6 \qquad \det(C) = \boxed{0}$