Chapter 2. Discrete Distributions

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1. Random Variables of the Discrete Type

Random variables

Definition

Given a random experiment with a sample space S, a function X that assigns one and only one real number X(s) = r to each elements in S is called a random variable.

the set of all outcomes

The space of X is the set of real numbers $\{x : X(s) = x, s \in S\}$ and denoted by S(X) = the support of X

Example
$$S' = \int Male$$
, Female i
 $X : S \rightarrow R = \int Real numbers i$
 $Mle \rightarrow 1$ $S(x) = f1, 2i$ 1
Female $i \rightarrow 2$
 $Y : S \rightarrow R$
 $Male \rightarrow -1$ $S(Y) = f-1, 3S$
Female $i \rightarrow 3$
 $Female i \rightarrow 3$

Random variables

Example

A rat is selected at random from a cage and its sex is determined.

The set of possible outcomes is female and male. Thus, the sample space is $S = \{\text{female, male}\}.$

Random variables

Example

Consider a random experiment in which we roll a six-sided die.

The sample space associated with this experiment is $S = \{1, 2, 3, 4, 5, 6\}$.

Let X(s) = s. Compute $\mathbb{P}(2 \le X \le 4)$.

$$X : S^{1} \rightarrow \mathbb{R} \qquad P(2 \leq X \leq 4)$$

$$= P(X = 2 \circ 3 \circ 4)$$

$$= P(X = 2) + P(X = 3) + P(X = 4)$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

$$f(x) = P(X = x)$$

Properties of PMF

The pmf f(x) of a discrete random variable X is a function that satisfies the following properties:

•
$$f(x) \ge 0$$
 for all x = $\mathbb{P}(S)$

•
$$\sum_{x \in S(X)} f(x) = 1$$
, and
• $\mathbb{P}(X \in A) = \sum_{x \in A} f(x)$.

 $RV: X: S^{l} \rightarrow R$ X Discrete RV of sample. X Discrete RV of Sample.

$$\begin{aligned} \xi'(\chi) &= \left\{ \begin{array}{l} S: \quad \chi = s \right\} \\ PMF \quad f(\chi) &= \begin{array}{l} F(\chi) = P(\chi = \chi) \\ CDF \quad F(\chi) &= F_{\chi}(\chi) = P(\chi \leq \chi) \end{aligned}$$

Bar graph, Probability histogram, relative frequency histogram

Example

A fair four-sided die with outcomes 1, 2, 3, and 4 is rolled twice.

Let X equal the sum of the two outcomes.

Bar graph, Probability histogram, relative frequency histogram

Example

Two fair four-sided dice are rolled. Write down the sum of the two outcomes. Repeat this 1000 times.

Section 2. Mathematical Expectation

Definition of Expectation

$\mathbb{E}[\mathcal{U}(\mathbf{x})] = \mathbb{P}(\mathbf{A}) \cdot \frac{1}{2} + \mathbb{P}(\mathbf{B}) \cdot \frac{1}{2} + \mathbb{P}(\mathbf{c}) \cdot \frac{3}{2}$ $= \mathbb{E}[\mathcal{U}(\mathbf{x}) \mathbb{P}(\mathbf{x} = \mathbf{x})]$

Example

Consider the following game. A player roll a fair die.

If the event $A = \{1, 2, 3\}$ occurs, he receives one dollar.

If $B = \{4, 5\}$ occurs, he receives two dollars.

If $C = \{6\}$ occurs, he receives three dollars.

If the game is repeated a large number of times, what is the average payment?

$$= \sum_{x \in S(x)}^{t} x \cdot P(X = x)$$

= $\sum_{x \in S(x)}^{t} x \cdot f(x) = E[x]$
 $x \in S(x)$
Expected value

Definition of Expectation

Definition

If f(x) is the pmf of a discrete random variable X with the space S(X), and if the summation

$$\sum_{x \in S(X)} u(x) f(x)$$

exists, then the sum is called the mathematical expectation or the expected value of u(X), and denoted by $\mathbb{E}[u(X)]$.

$$\underbrace{\mathbb{E}}_{X_{1}} \mathbb{E}[X] = x_{1} \cdot \mathbb{P}(X = x_{1}) + x_{2} \mathbb{P}(X = x_{2}) + \cdots - \\ \mathbb{E}[x^{2}] = x_{1}^{2} \cdot \mathbb{P}(X = x_{1}) + x_{2}^{2} \mathbb{P}(X = x_{2}) + \cdots - ,$$

11

Definition of Expectation

Example

Let the random variable X have the pmf $f(x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\} = S(X)$. Let $Y = u(X) = X^2$. Find the pmf of Y and $\mathbb{E}[Y] = \mathbb{E}[X^2]$. $f'_Y(Y) = \begin{cases} Y = Y \\ Y = Y \end{cases} = \begin{cases} \frac{1}{2} & Y = 0 \\ \frac{2}{3} & Y = 1 \\ 0 & \text{otherwise} \end{cases}$ $\mathbb{E}[Y] = \begin{cases} \frac{21}{3} & Y \cdot \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} \in S(Y) \end{cases} = 0 \cdot \frac{1}{3} (x) + 1 - \frac{1}{3} (x) = \frac{2}{3}$ 12 $\mathbb{E}[X^2] = \begin{cases} \frac{21}{3} & x^2 \cdot \frac{1}{3} \\ x \in \frac{1}{3} \end{cases} = \begin{cases} -1, 0, 1 \\ 0 & \frac{1}{3} \end{cases} = 1$

Properties of Expectation

Theorem

- 1. If c is a constant, then $\mathbb{E}[c] = c$.
- 2. If c is a constant and u is a function, then $\mathbb{E}[cu(X)] = c\mathbb{E}[u(X)]$.
- 3. If c_1 and c_2 are constants and u_1 and u_2 are functions. then

$$\mathbb{E}[c_1u_1(X)+c_2u_2(X)]=c_1\mathbb{E}[u_1(X)]+c_2\mathbb{E}[u_2(X)]$$

<u>Ex</u>

$$E\left[\begin{array}{c} \chi(\chi-2) \right] = \frac{\chi}{1} \times (\chi-2) f(\chi) \\ \chi \\ = E\left[\begin{array}{c} \chi^{2} - 2\chi \end{array}\right] = E\left[\chi^{2}\right] - E\left[2\chi\right]$$

$$= E\left[\chi^{2}\right] - 2 \cdot E\left[\chi\right],$$

13

Properties of Expectation

f(x) = 1, 2, 3, 4								
$f(x) = \sqrt{\frac{1}{5}} x = 5$								
Example								
Let X have the pmf $f(x) = \frac{x}{10}$ for $x = 1, 2, 3, 4.$								
Example Let X have the pmf $f(x) = \frac{x}{10}$ for $x = 1, 2, 3, 4$. Find $\mathbb{E}[X]$, $\mathbb{E}[X^2]$ and $\mathbb{E}[X(5-X)]$. $\frac{4}{\sqrt{5}}$ $\kappa = 4$								
$\frac{4}{6}$ $\kappa = 4$								
$\mathbb{E}[X] = 1 \cdot \frac{1}{10} + 2 \cdot \frac{2}{10} + 3 \cdot \frac{3}{10} + 4 \cdot \frac{4}{10}$								
$= \frac{1}{10} - \left(\frac{1^2}{2^2} + \frac{3^2}{2^2} + \frac{3^2}{4^2} \right) = 3$								
$\mathbb{F}[X^{2}] = 1^{2} \cdot \frac{1}{6} + 2^{2} \cdot \frac{2}{6} + 3^{2} \cdot \frac{3}{6} + 4^{2} \cdot \frac{4}{6}$	14							
$= -\frac{1}{2} \left(\frac{1^{2}}{1^{2}} + 2^{2} + 3^{3} + 4^{3} \right) = 10$								
$= \frac{1}{10} \cdot \left(\frac{1^3}{10} + \frac{2^3}{10} + \frac{3^3}{10} + \frac{4^3}{10} \right) = 10$								
$\mathbb{E}[x(\overline{z-x})] = \mathbb{E}[z - x^2] = z - \mathbb{E}[x] - \mathbb{E}[x^2]$								
= 5.3 - 10 = 5.								

Note

 $E[x^{\perp}] \neq (E[x])^{2}$ $E[u(x)] \neq u(E[x])$

$$E[X] = \sum_{x \in S(X)} (x - f(x)) \ge P(X = x)$$

$$E[(u(X)] = \sum_{x \in S(X)} u(x) f(x)]$$

$$\in : belongs to (0, 1) : open informal$$
Properties of Expectation
$$\int (x) = \int f(x) = \int f(x) \int f(x) = \int$$

Section 3. Special Mathematical Expectations

The expectation or mean of a random variable X is

С

$$\mu = \mathbb{E}[X] = \sum xf(x).$$

This is also called the first moment about the origin. The first moment about the mean μ is $\mathbb{E}[(X - \mu)] = \mathbb{E}[X] - \mathbb{E}[\mu] = \mathbb{E}[X] - \mu = 0$ $\int_{0}^{r} \mu = 0$ $\int_{0}^{r} \mu = 0$

16

$$M = \mathbb{E}[X]$$

The second moment of X about b is $\mathbb{E}[(X - b)^2]$. If $b = \mu$, it is also called **the variance of** X and denoted by $Var(X) = \sigma^2$. Its positive square root is **the standard deviation** of X and denoted by $Std(X) = \sigma$.

$$\mu = \mu_{X} = \mathbb{E}[X], \quad \sigma^{2} = \sigma_{X}^{2} = \mathbb{E}[(X - \mu)^{2}] = V_{or}(X)$$

$$= \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$S + d(X) = \sigma_{X} = \sigma = \sqrt{\mathbb{E}[(X - \mu)^{2}]}$$

$$V = \begin{cases} 1 & v_{2}p_{1} & \frac{1}{2} & \frac{$$

Example

Roll a fair die and let X be the outcome.

Find $\mathbb{E}[X]$ and Var(X).

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$$

$$= \frac{1}{6} \cdot (1 + 2 + \dots + 6) = \frac{21}{6} = \frac{7}{2} = M$$

$$V_{or}(X) = E[(X - \mu)^{2}] = E[(X - \frac{7}{2})^{2}]$$
18

$$= \left(1 - \frac{1}{2}\right)^{2} - \frac{1}{6} + \left(2 - \frac{7}{2}\right)^{2} - \frac{1}{6} + \dots + \left(6 - \frac{7}{2}\right)^{2} - \frac{1}{6}$$

$$= \frac{1}{6} \cdot \left(-\frac{5}{2}\right)^{2} + \left(-\frac{3}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + \left(\frac{3}{2}\right)^{2} + \left(\frac{5}{2}\right)^{2}\right)$$

$$= \frac{1}{6} \cdot \left(3 - \frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + \left(\frac{3}{2}\right)^{2} + \left(\frac{5}{2}\right)^{2}\right)$$

$$= \frac{1}{6} \cdot \left(3 - \frac{1}{2}\right)^{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{35}\right)^{2} = \left(\frac{35}{12}\right)^{2}$$

In general, the *r*-th moment of X about *b* is $\mathbb{E}[(X - b)^r]$.

$$\gamma = \frac{\mathbb{E}\left[\left(X - \mu\right)^{3}\right]}{\sigma^{3}}$$

Example

Let $f(x) = \frac{4-x}{6}$ for x = 1, 2, 3 be the pmf of X. Compute the index of skewness.

$$E[X] = \frac{5}{3} = 1 \cdot \frac{(4-1)}{6} + 2 \cdot \frac{(4-2)}{6} + 3 \cdot \frac{(4-3)}{6}$$

$$= \frac{1}{6} \cdot ((\cdot 3 + 2 \cdot 2 + 3 \cdot 1)) = \frac{10}{6} = \frac{5}{3}.$$

$$t^{2} = V_{0r}(X) = E[(X - \frac{5}{3})^{2} \cdot \frac{3}{6} + (2 - \frac{5}{3})^{2} \cdot \frac{2}{6} + (3 - \frac{5}{3})^{2} \frac{1}{6}^{20}$$

$$= \frac{4}{9} \cdot \frac{1}{2} + \frac{1}{9} \cdot \frac{1}{3} + \frac{16}{9} \cdot \frac{1}{6}$$

$$= \frac{4}{9} \cdot \frac{1}{2} + \frac{1}{9} \cdot \frac{1}{3} + \frac{16}{9} \cdot \frac{1}{6}$$

$$t = \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{3} + \frac{16}{9} \cdot \frac{1}{6}$$

$$E[(X - \frac{5}{3})^{2} \cdot \frac{3}{6} + (2 - \frac{5}{3})^{2} \cdot \frac{2}{6} + (3 - \frac{5}{3})^{2} \frac{1}{6}$$

 $= \frac{1}{6} \cdot \left[-\frac{8}{27} \cdot 3 + \frac{1}{27} \cdot 2 + \frac{64}{27} \cdot 1 \right]$

$$= \frac{1}{27 \cdot 6} \left[-24 + 2 + 64 \right] = \frac{7}{27}$$

$$\left(\sqrt{3} \right) = \frac{1}{\sqrt{7}} \left(\frac{3}{\sqrt{5}} \right)^{3}$$

$$= \frac{7}{27} \left(\frac{3}{\sqrt{5}} \right)^{3}$$

$$= \frac{7}{25 \sqrt{5}} \left(70 \right)$$

$$\left(\sqrt{5} \right) = \frac{7}{\sqrt{5}}$$

$$a_{r} = \sum_{i}^{k} \left(\frac{\lambda - \mu}{\lambda} \right)_{r} \frac{\lambda \sigma}{1 + i} \sum_{i=1}^{k} \frac{\lambda \sigma}{\lambda}$$

Theorem

$$0 \leq \sigma^{2} = \mathbb{E}[(X - \mu)^{2}] = \mathbb{E}[X^{2}] - \mu^{2} = \mathbb{E}[\chi^{2}] - (\mathbb{E}[X])^{2}$$

$$= \mathbb{E}\left[\chi^{2} - Q[X] + \mu^{2}\right]$$

$$- \mathbb{E}[\chi^{2}] - \mu \mathbb{E}[X] + \mu^{2}$$

$$= \mathbb{E}[\chi^{2}] - \mu \mathbb{E}[X] + \mu^{2} = \mathbb{E}[\chi^{2}] - \mu^{2}$$

$$\mathbb{E}[\chi^{2}] - 2\mu^{2} + \mu^{2} = \mathbb{E}[\chi^{2}] - \mu^{2}$$
21
$$Mode = \mathbb{E}[\chi^{2}] \geq (\mathbb{E}[X])^{2}$$

Moment generating functions

For
$$u(x) = e^{\pm x}$$

$$\mathbb{E}\left(-e^{\mathsf{f}X}\right) = \mathbb{E}\left[u(x)\right]$$

Definition

Let X be a discrete random variable and assume that there exists h > 0 such that

Small to
$$\mathbb{E}[e^{tX}] = \sum e^{tx} f(x)$$

is finite for all $\overset{\flat}{t} \in (-h, h)$. Then, $M(t) = \mathbb{E}[e^{tX}]$ is called **the moment generating** function (mgf).

)

22

r^{th} moment about b = E[(X - b)]

Moment generating functions

$$\mathcal{W}(e) = \mathbb{E}[e_{e_{x}}]$$

Properties

- 1. M(0) = 1
- 2. $M'(0) = \mathbb{E}[X]$
- 3. $M''(0) = \mathbb{E}[X^2]$
- 4. In general, $M^{(r)}(0) = \mathbb{E}[X^r]$.

$$M(o) = E[e^{o \cdot X}] = E[1] = 1$$

$$M(o) = \frac{d}{dt} E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = \frac{d}{dt}$$

$$= X \cdot e^{tX}$$

$$= E[X]$$

$$M(t) = \mathbb{E}\left[e^{tX}\right] \quad \text{for } -h \langle t \langle h \rangle, \quad h > 0$$

$$M(o) = 1$$

$$M'(o) = \left[\frac{d}{dt}M(t)\right]_{t=0} = \mathbb{E}\left[\left|Xe^{tX}\right|\right|_{t=0} = \mathbb{E}\left[X\right]$$

$$M''(o) = \mathbb{E}\left[\left|X^{2}\right|\right]$$

$$M''(o) = \mathbb{E}\left[\left|X^{3}\right|\right]$$

Moment generating functions

$$M(t) = \frac{Pe^{t} \cdot e^{-t}}{(1 - e^{t}(t-p)) \cdot e^{t}} = \frac{P}{e^{t} - (t-p)}$$

$$M'(t) = P \cdot \frac{d}{dt} \left(\frac{L}{h(t)}\right) = -P \cdot \frac{1}{h(t)^{2}} \cdot h'(t) \left(\frac{1}{x}\right)' = -\frac{1}{x^{2}}$$

$$= -P \cdot \frac{1}{(e^{t} - (t-p))^{2}} \cdot (-e^{-t})$$

$$M'(c) = (-P) \cdot \frac{1}{(1 - (t-p))^{2}} \cdot (-1) = \frac{1}{P} = E[X].$$

Section 4. The Binomial Distribution

Bernoulli random variables

A Bernoulli experiment, more commonly called a Bernoulli trial, is a random experiment with two outcomes.

Say $S = \{$ success, failure $\}$ and $\mathbb{P}($ success) = p for some $p \in (0, 1)$. Then $\mathbb{P}($ failure) = q = 1 - p.

A random variable X is a **Bernoulli random variable** with success probability p is X = 1 if success and 0 otherwise.

X = { 1 with success probability P 0 otherwise

• PMF $f(x) = \begin{cases} P & x = 1 \\ (-P) & x = 0 \\ 0 & y & \text{otherwise} \end{cases}$

• $\mathbb{E}[X] = 1 \cdot p + 0 \cdot ((-p)) = p \cdot = \mu$

$$Var(X) = \mathbb{E}[(X - \mu)^{2}] = \mathbb{E}[(X - p)^{2}]$$

= $(1 - p)^{2} \cdot p + (0 - p)^{2} \cdot (1 - p) = (1 - p)^{2} \cdot p + p^{2} \cdot (1 - p)$
= $P \cdot (1 - p) \cdot ((1 - p) + p) = P \cdot (1 - p)$.

$$V_{ar}(x) = \sigma^{2} = E[x^{2}] - (E[x])^{2} = P - P^{2} = p(1-p).$$
$$(E[x^{2}] = 1^{2} \cdot P + o^{2} \cdot (1-p) = P)$$
$$\cdot M(t) = E[e^{tx}] = e^{t\cdot 1} + e^{t\cdot 0}(1-p) = pe^{t} + (1-p)$$

Bernoulli random variables

Theorem Let X be a Bernoulli random variable with success probability p. q = 1 - p, $\mathbb{E}[X] = p$ $Var[X] = p \cdot ((-p)) = p - g$

Consider a sequence of independent Bernoulli experiments with success probability *p*.

Let X be the number of success trials in the first n experiments.

This is called a **Binomial random variable** with the number of trials *n* and success probability *p*.

We use the notation
$$X \sim b(n, p) = Bin(n, p)$$
.

$$E_{X} \qquad n = 5 \qquad , p = 0.5 = \frac{1}{2} \qquad \text{textbook} \qquad \text{almost everywe} \\ X = \# \circ 5 \qquad \text{Heads} \qquad X \sim b(5, \frac{1}{2}) = Bin(5, \frac{1}{2}) \qquad \text{vec thir.} \\ X = \# \circ 5 \qquad \text{Heads} \qquad X \sim b(5, \frac{1}{2}) = Bin(5, \frac{1}{2}) \qquad \text{vec thir.} \\ Y = 5(x) = (\frac{1}{2})^{5(x-1)} + (y)^{5(x-1)} = (x = 0, (1, 2, 3, 4, 5)) \qquad 27 \qquad 10 = 5(x) = (\frac{5}{2})^{5(x-1)} + (y)^{5(x-1)} + (y)^{5(x-1$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} (1) \\ 2 \end{pmatrix}^{5} + \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} (1) \\ 2 \end{pmatrix}^{5} + \cdots + \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} (1) \\ 2 \end{pmatrix}^{5} = 1$$

$$\begin{cases} ecall \\ f(s) \\ f(s)$$

$$V_{0n}(x) = n \cdot p \cdot (1-p) = n \cdot p \cdot q \qquad g = 1-p \qquad g = 1-p \qquad x \sim \beta_{0n}(n,p)$$
Theorem
Let X a binomial random variable with the number of trials n and success probability
p.
The pmf of X is
$$f(x) = \binom{n}{x} p^{X} \cdot (1-p)^{n-x}, \quad x = 0, 1, \cdots, n$$

$$E[X] = np$$

$$Var[X] = E[\chi^{n}) - (E[\chi])^{2}, \quad E[(x(x-1))] + E[x] = E[x^{2}]$$

$$Var[X] = \sum_{x=p_{1}}^{n_{1}} x \cdot f(x) = \sum_{x=1}^{n_{1}} \sum_{x=1}^{n_{1}} (N \cdot \binom{n}{x}) p^{X} (1-p)^{n-x}$$

$$x \cdot \binom{n}{x} = n \cdot \frac{n!}{x} \cdot \frac{x}{(n-x)!} = n \cdot \frac{(n-1)!}{(x-1)!} = n \cdot \binom{n-1}{x-1}^{28}$$

$$P = n \cdot \sum_{x=1}^{n_{1}} (n+1) \cdot \binom{n}{y} p^{X-1} (1-p)^{(n+1)-(x+1)}$$

$$= n \cdot p \cdot \sum_{x=1}^{n_{1}} (n+1) \cdot p^{X-1} (1-p)^{(n+1)-(x+1)}$$

$$= n \cdot p \cdot \sum_{x=1}^{n_{1}} (n+1) \cdot p^{X-1} (1-p)^{(n+1)-(x+1)}$$

$$= n \cdot p \cdot \sum_{x=1}^{n_{1}} (n+1) \cdot p^{X-1} (1-p)^{(n+1)-(x+1)}$$

$$\sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} (1-p)^{(n+1)-(x-1)} = \sum_{y=0}^{n-1} \binom{n-1}{y} p^{y} (1-p)^{(n+1)-y} = \frac{1}{2}$$

Example 100
Out of millions of instant lottery tickets, suppose that 20% are winners. If eight such tickets are purchased, what is the probability of purchasing two vinning ticket?

$$X = \# \circ f \quad \text{winning fickets} \sim Bin (8, 0.2)$$

$$P(X = 2) = \binom{9}{2}(0.23)(1-0.2)^{6}$$

$$P(X = 4) = \binom{9}{2}(0.23)(1-0.2)^{6}$$

$$X = \# \circ f \quad \text{Success} \quad \text{success probability} = P \quad (0
$$T = Binomial RV \quad X \sim Bin (n, p) = b(n, p)$$

$$PMF : \quad f(x) = \binom{n}{x} p^{x} \cdot (i-p)^{n-x}$$

$$E[X] = n p$$

$$Var(X) = n \cdot p \cdot (i-p)$$$$

Example

H5N1 is a type of influenza virus that causes a severe respiratory disease in birds called avian influenza (or "bird flu").

Although human cases are rare, they are deadly; according to the World Health Organization the mortality rate among humans is 60%. \rightarrow survival prob = 0, q

Let X equal the number of people, among the next 25 reported cases, who survive the disease. $\chi \sim B_{in} (25.04)$

Assuming independence, the distribution of X is b(25, 0.4). What is the probability that ten or fewer of the cases survive?

$$F(10) = P(X \le 10) = \sum_{X=0}^{10} P(X=x) = \sum_{X=0}^{10} \left(\frac{25}{x}\right)(0.4)^{-1} (0.6)^{3}$$

30

				\sim	DF				$\chi = 10$	t i k	
Гab	le II	The Binon	nial Distrib		-				<u> </u>		
		f(x)									
		0.30				1.0	t				
		0.25	17	0.000				-			
		0.25		b(8, 0.2	35)	F(x) -			b(8, 0.35)		
		0.20		4		I(x)					
		0.15				0.5	-	l.			
		0.10						i i			
		0.10									
		0.05 -					•	I.			
						<u>i i</u> i	<u> </u>	- i - r -			
		0	2 <i>x</i>	4	6 8	3) 2	<i>x</i> 4	6	8	
				$\Gamma(\lambda)$	$\mathbf{D}(\mathbf{V}, \mathbf{c})$	$\sum_{n=1}^{\infty} n$! k(1	n-k			
				F(x) =	$P(X \leq x) =$	$=\sum_{k=0}^{\infty} \overline{k!(n)}$	$\frac{1!}{(k-k)!}p^k(1)$	$-p)^{n-n}$			
_	Ť				00-						
_						р					
n)	(x)	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
2	0	0.9025	0.8100	0.7225	0.6400	0.5625	0.4900	0.4225	0.3600	0.3025	0.2500
	1	0.9975	0.9900	0.9775	0.9600	0.9375	0.9100	0.8775	0.8400	0.7975	0.7500
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.8574	0.7290	0.6141	0.5120	0.4219	0.3430	0.2746	0.2160	0.1664	0.1250
	1	0.9928	0.9720	0.9392	0.8960	0.8438	0.7840	0.7182	0.6480	0.5748	0.5000
	2	0.9999	0.9990	0.9966	0.9920	0.9844	0.9730	0.9571	0.9360	0.9089	0.8750
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0	0.8145	0.6561	0.5220	0.4096	0.3164	0.2401	0.1785	0.1296	0.0915	0.0625
	1	0.9860	0.9477	0.8905	0.8192	0.7383	0.6517	0.5630	0.4752	0.3910	0.3125
	2	0.9995	0.9963	0.9880	0.9728	0.9492	0.9163	0.8735	0.8208	0.7585	0.6875
	3	1.0000	0.9999	0.9995	0.9984	0.9961	0.9919	0.9850	0.9744	0.9590	0.9375
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0	0.7738	0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
	1	0.9774	0.9185	0.8352	0.7373	0.6328	0.5282	0.4284	0.3370	0.2562	0.1875
	2	0.9988	0.9914	0.9734	0.9421	0.8965	0.8369	0.7648	0.6826	0.5931	0.5000
	3	1.0000	0.9995	0.9978	0.9933	0.9844	0.9692	0.9460	0.9130	0.8688	0.8125
	4	1.0000	1.0000	0.9999	0.9997	0.9990	0.9976	0.9947	0.9898	0.9815	0.9688
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	0	0.7351	0.5314	0.3771	0.2621	0.1780	0.1176	0.0754	0.0467	0.0277	0.0156
	1	0.9672	0.8857	0.7765	0.6553	0.5339	0.4202	0.3191	0.2333	0.1636	0.1094
	2	0.9978	0.9842	0.9527	0.9011	0.8306	0.7443	0.6471	0.5443	0.4415	0.3438
	3	0.9999	0.9987	0.9941	0.9830	0.9624	0.9295	0.8826	0.8208	0.7447	0.6562
	4	1.0000	0.9999	0.9996	0.9984	0.9954	0.9891	0.9777	0.9590	0.9308	0.8906
	5	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9982	0.9959	0.9917	0.9844
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0	0.6983	0.4783	0.3206	0.2097	0.1335	0.0824	0.0490	0.0280	0.0152	0.0078
	1	0.9556	0.8503	0.7166	0.5767	0.4449	0.3294	0.2338	0.1586	0.1024	0.0625

							р				
n x	c	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
	5	0.9997	0.9887	0.9327	0.8042	0.6172	0.4164	0.2454	0.1256	0.0553	0.0207
(6	1.0000	0.9976	0.9781	0.9133	0.7858	0.6080	0.4166	0.2500	0.1299	0.0577
2	7	1.0000	0.9996	0.9941	0.9679	0.8982	0.7723	0.6010	0.4159	0.2520	0.1316
8	8	1.0000	0.9999	0.9987	0.9900	0.9591	0.8867	0.7624	0.5956	0.4143	0.2517
9	9	1.0000	1.0000	0.9998	0.9974	0.9861	0.9520	0.8782	0.7553	0.5914	0.4119
10	0	1.0000	1.0000	1.0000	0.9994	0.9961	0.9829	0.9468	0.8725	0.7507	0.5881
S 11	1	1.0000	1.0000	1.0000	0.9999	0.9991	0.9949	0.9804	0.9435	0.8692	0.7483
12	2	1.0000	1.0000	1.0000	1.0000	0.9998	0.9987	0.9940	0.9790	0.9420	0.8684
13	3	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9935	0.9786	0.9423
14	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9936	0.9793
1.	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9941
16	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987
17	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
18	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15 (0	0.2774	0.0718	0.0172	0.0038	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
1	1	0.6424	0.2712	0.0931	0.0274	0.0070	0.0016	0.0003	0.0001	0.0000	0.0000
2	2	0.8729	0.5371	0.2537	0.0982	0.0321	0.0090	0.0021	0.0004	0.0001	0.0000
1	3	0.9659	0.7636	0.4711	0.2340	0.0962	0.0332	0.0097	0.0024	0.0005	0.0001
4	4	0.9928	0.9020	0.6821	0.4207	0.2137	0.0905	0.0320	0.0095	0.0023	0.0005
5	5	0.9988	0.9666	0.8385	0.6167	0.3783	0.1935	0.0826	0.0294	0.0086	0.0020
(6	0.9998	0.9905	0.9305	0.7800	0.5611	0.3407	0.1734	0.0736	0.0258	0.0073
2	7	1.0000	0.9977	0.9745	0.8909	0.7265	0.5118	0.3061	0.1536	0.0639	0.0216
8	8	1.0000	0.9995	0.9920	0.9532	0.8506	0.6769	0.4668	0.2735	0.1340	0.0539
9	9	1.0000	0.9999	0.9979	0.9827	0.9287	0.8106	0.6303	0.4246	0.2424	0.1148
10	0	1.0000	1.0000	0.9995	0.9944	0.9703	0.9022	0.7712	0.5858	0.3843	0.2122
11	1 -	1.0000	1.0000	0.9999	0.9985	0.9893	0.9558	0.8746	0.7323	0.5426	0.3450
12	2	1.0000	1.0000	1.0000	0.9996	0.9966	0.9825	0.9396	0.8462	0.6937	0.5000
13	3	1.0000	1.0000	1.0000	0.9999	0.9991	0.9940	0.9745	0.9222	0.8173	0.6550
14	4	1.0000	1.0000	1,0000	1.0000	0.9998	0.9982	0.9907	0.9656	0.9040	0.7878
15	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9971	0.9868	0.9560	0.8852
10	6	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9957	0.9826	0.9461
17	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9988	0.9942	0.9784
18	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9927
19	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9980
20	22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
21	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
22		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
23		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Binomial random variables

$$M(t) = \mathbb{E}\left[e^{tX}\right]$$

Theorem

The mgf of a binomial random variable X is

$$M(t) = M(t) = \prod_{\substack{n \neq 0 \\ x = 0}} (e^{t})^{x}$$

$$M(t) = \mathbb{E}\left[e^{t}\right]^{n} = \sum_{\substack{n \neq 0 \\ x = 0}} (e^{t})^{n} (e^$$

 $X \sim Bin(n,p)$

X: Bernoulli RV
$$X = \begin{cases} 1 & w.p. p \\ 0 & w.p. l-p \end{cases}$$

 $\Rightarrow MGF M_X(t) = etp + (l-p)$
Y: Binomial RV $Y \sim Bin(n,p)$
 $\Rightarrow MGF M_Y(t) = (etp + (l-p))^2 = (M_X(t))^2.$

Binomial random variables

Exercise

It is believed that approximately 75% of American youth now have insurance due to the health care law.

Suppose this is true, and let X equal the number of American youth in a random sample of n = 15 with private health insurance.

How is X distributed? Find the probability that X is at least 10. Find the mean, variance, and standard deviation of X.

$$X \sim B_{in} (15, 0.75) \quad \text{under} \begin{cases} \text{indep.} \\ 2 \text{ outcomes} \\ \text{same prob.} \end{cases}$$

$$\mathbb{P} (X \geqslant 10) = \sum_{X=10}^{15} {\binom{15}{X}} (0.75)^X (0.25)^{\frac{1}{9}-X} \qquad 32$$

Use table

$$x + y = 15$$
 $x = (5 - Y)$
 $X = 4$ of people having insurance
 $p = 0.75$
 $Y = 4$ of people not having insurance
 $p = 0.25$

 $X \sim B_{TN}(15, 0.75)$ 15-Y $P(X \neq 10) = P(Y \leq 5)$

Tabl	e II. co	ontinued									
							р				
n	x	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9978	0.9935
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15	0	0.4633	0.2059	0.0874	0.0352	0.0134	0.0047	0.0016	0.0005	0.0001	0.0000
	1	0.8290	0.5490	0.3186	0.1671	0.0802	0.0353	0.0142	0.0052	0.0017	0.0005
	2	0.9638	0.8159	0.6042	0.3980	0.2361	0.1268	0.0617	0.0271	0.0107	0.0037
	3	0.9945	0.9444	0.8227	0.6482	0.4613	0.2969	0.1727	0.0905	0.0424	0.0176
	4	0.9994	0.9873	0.9383	0.8358	0.6865	0.5155	0.3519	0.2173	0.1204	0.0592
	5	0.9999	0.9978	0.9832	0.9389	0.8516	0.7216	0.5643	0.4032	0.2608	0.1509
	6	1.0000	0.9997	0.9964	0.9819	0.9434	0.8689	0.7548	0.6098	0.4522	0.3036
	7	1.0000	1.0000	0.9994	0.9958	0.9827	0.9500	0.8868	0.7869	0.6535	0.5000
	8	1.0000	1.0000	0.9999	0.9992	0.9958	0.9848	0.9578	0.9050	0.8182	0.6964
	9	1.0000	1.0000	1.0000	0.9999	0.9992	0.9963	0.9876	0.9662	0.9231	0.8491
	10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9972	0.9907	0.9745	0.9408
	11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9937	0.9824
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9987	0.9989	0.9963
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
16	0	0.4401	0.1853	0.0743	0.0281	0.0100	0.0033	0.0010	0.0003	0.0001	0.0000
1993	1	0.8108	0.5147	0.2839	0.1407	0.0635	0.0261	0.0098	0.0033	0.0010	0.0003
	2	0.9571	0.7892	0.5614	0.3518	0.1971	0.0994	0.0451	0.0183	0.0066	0.0021
	3	0.9930	0.9316	0.7899	0.5981	0.4050	0.2459	0.1339	0,0651	0.0281	0.0106
	4	0.9991	0.9830	0.9209	0.7982	0.6302	0.4499	0.2892	0.1666	0.0853	0.0384
	5	0.9999	0.9967	0.9765	0.9183	0.8103	0.6598	0.4900	0.3288	0.1976	0.1051
	6	1.0000	0.9995	0.9944	0.9733	0.9204	0.8247	0.6881	0.5272	0.3660	0.2272
	7	1.0000	0.9999	0.9989	0.9930	0.9729	0.9256	0.8406	0.7161	0.5629	0.4018
	8	1.0000	1.0000	0.9998	0.9985	0.9925	0.9743	0.9329	0.8577	0.7441	0.5982
	9	1.0000	1.0000	1.0000	0.9998	0.9984	0.9929	0.9771	0.9417	0.8759	0.7728
	10	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9938	0.9809	0.9514	0.8949
	11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987	0.9951	0.9851	0.9616
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9991	0.9965	0.9894
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9979
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0	0.3585	0.1216	0.0388	0.0115	0.0032	0.0008	0.0002	0.0000	0.0000	0.0000
20	1	0.7358	0.3917	0.0388	0.0692	0.0032	0.0076	0.0002	0.0005	0.0001	0.0000
	2	0.9245	0.6769	0.4049	0.2061	0.0243	0.0355	0.0021	0.00036	0.0009	0.0002
	3	0.9243	0.8670	0.6477	0.2001	0.0913	0.1071	0.0121	0.0050	0.0009	0.0002
	4	0.9841	0.9568	0.8298	0.6296	0.2232	0.2375	0.0444	0.0100	0.0189	0.0013
	4	0.9974	0.9508	0.6298	0.0290	0.4148	0.2373	0.1182	0.0510	0.0169	0.0039

Section 5. The Hypergeometric Distribution

Ex 6 Blue Balls 4 Red Balls Indep.
Choose 4 balls with replacement from prob.

$$X = \#$$
 of Blue balls among 4 chosen balls.
 $X \sim Bin(4, 0.6)$
Q: If without replacement p B R R
 $P(x = 2) = \frac{6}{10} \frac{5}{7} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot (\frac{4}{2}) = \frac{(\frac{6}{2}) \cdot (\frac{4}{2})}{(\frac{10}{9})}$

There is a collection of N_1 red balls and N_2 blue balls.

Sample *n* balls at random without replacement $(n \le N_1 + N_2)$.

Let X be the number of red balls chosen.

Then, X is called a hypergeometric random variable with parameters N_1 , N_2 , n, and denoted by HG(N_1 , N_2 , n).

If with replacement

$$\chi \sim Bin(n, \frac{N_i}{N_1 + N_2})$$

2
-≺
\mathbf{J}

Example 2 kind. In a small pond there are 50 fish, ten of which have been tagged. If a fisherman's catch consists of seven fish selected at random and without replacement, and X denotes the number of tagged fish, what is the probability that exactly two tagged fish are caught? $X \sim H \subseteq (I \circ I 40, T)$ $P(X = a) = \frac{\binom{10}{2}\binom{40}{5}}{\binom{50}{7}} = \frac{10}{50} \cdot \frac{1}{49} \cdot \frac{40}{48} \cdot \frac{39}{47} \cdots$ 34

$$(OR 5B Choose 12 balls X = 4 -f Red balls chosen X \sim HG(0, 5, 2) f(k) = - ... fk=0.1 ... (0)$$

Figure 2.5-2 Binomial and hypergeometric (shaded) probability histograms

Exercise

In a lot (collection) of 100 light bulbs, there are five bad bulbs.

An inspector inspects ten bulbs selected at random.

Find the probability of finding at least one defective bulb.

 $X = \# \text{ of detective } \sim HG(5, 95, 10)$ $P(X \ge 1) = 1 - P(X = 0)$ $= 1 - \frac{(5)(75)}{(0)}$ 36

Section 6. The Negative Binomial Distribution

Geometric random variables

 $\begin{array}{c} to sime for a coin \\ Consider a sequence of independent Bernoulli trials with success probability P \in (0, 1) . \end{array}$ Let X be the number of trials until the first success.

This random variable is called a **geometric random variable**.

H :
$$X = 1$$

TH : $X = \lambda$
TTH : $X = 3$
 $f(x) = (1-p) \cdot p$ $x = 1, 2, \dots$
 $f = 1, \dots$
 $f =$

Geometric random variables

$$q = 1 - p$$
.

Geometric random variables

Example

Some biology students were checking eye color in a large number of fruit flies.

For the individual fly, suppose that the probability of white eyes is 1/4 and the probability of red eyes is 3/4, and that we may treat these observations as independent Bernoulli trials.

What is the probability that at least four flies have to be checked for eye color to observe a white-eyed fly? $\rho = \frac{1}{4}$

$$X = \# \text{ of observations until the first (white.}$$

$$\sim (\text{Geom}(\frac{1}{4})) \qquad \text{fix})$$

$$P(X > 3) = P(X > 4) = \sum_{x=4}^{\infty} P(X = x)$$

$$= \sum_{x=4}^{\infty} (1-p)^{x-4} \cdot p$$

$$= (1-p)^{3-p} + (1-p)^{4} \cdot p + (+p)^{5} \cdot p + \cdots$$

$$= (1-p)^{3-p} = [(1-p)^{4} = (\frac{3}{4})^{3}.$$
Note: $P(X > k) = (1-p)^{k}.$

Consider a sequence of independent Bernoulli trials with success probability Let X be the number of trials until the *r*-th success. This random variable is called a **negative binomial random variable**.

$$\begin{aligned} \chi &\sim \operatorname{NegBin}(r,p) \\ f_{\chi}(\chi) &= \operatorname{P}(\chi = \chi) \qquad \chi = r, r+1, \cdots \\ &= \binom{\chi-1}{r-1} \operatorname{P}^{r} \cdot (1-p)^{\chi-r} \end{aligned}$$

$$\begin{array}{c} H = (r-1) \text{ many} \\ T = (x-r) \text{ many} \\ (x-1) \text{ trials} \end{array}$$

Theorem

The pmf of X is

$$f(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

for $k = r, r + 1, \cdots$ and otherwise zero.

$$\mathbb{E}[X] = \frac{r}{p}$$

$$Var[X] = \frac{rq}{p^2}$$

$$M(t) = \left(\frac{pe^t}{1 - (1 - p)e^t}\right)^r$$

A negative binomial random variable can be written as a sum of independent geometric random variables.

$$X \sim Neglin(r,p)$$

$$X = X_1 + X_2 + \dots + X_r$$

$$X_{r} \sim Geom(p)$$

$$Tridep.$$
(1)

Example

Suppose that during practice a basketball player can make a free throw 80% of the time.

Furthermore, assume that a sequence of free-throw shooting can be thought of as independent Bernoulli trials.

Let X equal the minimum number of free throws that this player must attempt to make a total of ten shots.

Find the mean of X.

$$X \sim Neg Bin(10, 0.8)$$

 $E[X] = 10 \cdot \frac{5}{4} = \frac{25}{2} = 12.5.$ 42

$$\frac{10}{12.5} = 80\%$$

Section 7. The Poisson Distribution

Some experiments result in counting the number of times particular events occur at given times or with given physical objects.

Example

- the number of cell phone calls passing through a relay tower between 9 and 10am.
- the number of flaws in 100 feet of wire
- the number of customers that arrive at a ticket window between noon and 2pm.
- the number of defects in a 100-foot roll of aluminum screen that is 2 feet wide.

Counting such events can be looked upon as observations of a random variable associated with an **approximate Poisson process**, provided that the conditions in the following definition are satisfied.

Let the number of occurrences of some event in a given continuous interval be counted. Then we have an **approximate Poisson process** with parameter $\lambda > 0$ if

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.

Under these assumption, consider the number of occurrences in a time interval [0, 1].

Split [0,1] into *n* subintervales $[0,\frac{1}{n}], [\frac{1}{n},\frac{2}{n}], \cdots, [\frac{n-1}{n},1].$

In each subinterval, at most one event occurs with probability $\frac{\lambda}{n}$.

Thus, the number of occurrences is a binomial random variable with n and $\frac{\lambda}{n}$.

As $n o \infty$, the random variable gets close to some random variable X.

We say X is a **Poisson random variable with parameter** λ if its pmf is

$$\mathbb{P}(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$$

for $k = 0, 1, 2, \cdots$.

Example

In a large city, telephone calls to 911 come on the average of two every 3 minutes.

If one assumes an approximate Poisson distribution, what is the probability of five or more calls arriving in a 9 minute period?

 $X \sim Pois(\lambda)$: # of customer in 1 hr.

•
$$f(x) = e^{-\lambda} \frac{x^{\kappa}}{x!}$$
, $x = 0, 1, 2, \dots$
• $E[x] = \lambda$, $Var(x) = \lambda$, $M(t) = e^{\lambda(e^{t}-1)}$

$$\begin{array}{cccc} & \times & \sim & B_{Tn}(n,p) & \text{large } n, & \text{Small } p \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}$$

Poisson Approximation to Binomial

$$X \sim Pois(\lambda) \leftarrow From Bidm, A)$$

Supose X is a binomial random variable b(n, p), n is large, and p is small but np converges to some constant, say λ .

In this case, X can be approximated by a Poisson random variable with parameter λ . This approximation is quite accurate if $n \ge 20$, $p \le 0.05$ or $n \ge 100$, $p \le 0.1$.

Bin
$$(n, p)$$
 n large p small
SS $n \cdot p \approx \lambda$
Pois (λ)

Poisson Approximation to Binomial

Example

A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs are defective.

Assuming independence, the number of defective bulbs in a box of 100 bulbs has a binomial distribution with parameters n = 100 and p = 0.02.

Find the probability that a box of 100 of these bulbs contains at most three defective bulbs.

$$X = 4 \text{ of defective ones in a box}$$

$$\sim B_{in} (100, 0.02)$$

$$\lim_{\substack{n \neq e \\ n \neq e}} (100 - 0.02 = 2)$$

$$\approx P_{0is} (2) \sim (Y)$$

$$P(X \leq 3) \approx P(Y \leq 3)$$

$$= \sum_{\substack{n \neq e = 0 \\ k = 0}}^{3} \frac{2^{n}}{k!} + \frac{2^{n}}{2!} + \frac{3^{n}}{3!}$$

$$= \frac{19}{3} - e^{-2}$$

			¢	C	PF.					
Table	III The Poi	sson Distri								
	f(x) 0.20 - 0.15 - 0.10 - 0.05 -		Po	isson, λ = 3.8	1.0 0.3 0.0 <i>F</i> (<i>x</i> 0.4		1 1	Poisson, λ=	= 3.8	
	0	2 x 4	4 6	F(x) = I	12 $P(X \le x) =$	$\int_{k=0}^{x} \frac{\lambda^{k} e^{-\lambda}}{k!} \frac{\lambda^{k} e^{-\lambda}}{k!}$: 4 6	8 10) 12	
					$\lambda = l$	$\tilde{c}(X)$				
x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0 1 2 3 4 5 6	0.905 0.995 1.000 1.000 1.000 1.000 1.000	0.819 0.982 0.999 1.000 1.000 1.000 1.000	0.741 0.963 0.996 1.000 1.000 1.000 1.000	0.670 0.938 0.992 0.999 1.000 1.000 1.000	0.607 0.910 0.986 0.998 1.000 1.000 1.000	0.549 0.878 0.977 0.997 1.000 1.000 1.000	0.497 0.844 0.966 0.994 0.999 1.000 1.000	0.449 0.809 0.953 0.991 0.999 1.000 1.000	0.407 0.772 0.937 0.987 0.998 1.000 1.000	0.368 0.736 0.920 0.981 0.996 0.999 1.000
x	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0 1 2 3 4 5	0.333 0.699 0.900 0.974 0.995 0.999	0.301 0.663 0.879 0.966 0.992 0.998	0.273 0.627 0.857 0.957 0.989 0.998	0.247 0.592 0.833 0.946 0.986 0.997	0.223 0.558 0.809 0.934 0.981 0.996	0.202 0.525 0.783 0.921 0.976 0.994	0.183 0.493 0.757 0.907 0.970 0.992	0.165 0.463 0.731 0.891 0.964 0.990	0.150 0.434 0.704 0.875 0.956 0.987	0.135 0.406 0.677 (0.857) 0.947 0.983
6 7	1.000	1.000	1.000	0.999	0.999	0.999	0.998	0.997	0.997 0.999 1.000	0.995
8 x	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0
0 1 2 3 4	0.111 0.355 0.623 0.819 0.928	0.091 0.308 0.570 0.779 0.904	0.074 0.267 0.518 0.736 0.877	0.061 0.231 0.469 0.692 0.848	0.050 0.199 0.423 0.647 0.815	0.041 0.171 0.380 0.603 0.781	0.033 0.147 0.340 0.558 0.744	0.027 0.126 0.303 0.515 0.706	0.022 0.107 0.269 0.473 0.668	0.018 0.092 0.238 0.433 0.629
5 6 7 8 9	0.975 0.993 0.998 1.000 1.000	0.964 0.988 0.997 0.999 1.000	0.951 0.983 0.995 0.999 1.000	0.935 0.976 0.992 0.998 0.999	0.916 0.966 0.988 0.996 0.999	0.895 0.955 0.983 0.994 0.998	0.871 0.942 0.977 0.992 0.997	0.844 0.927 0.969 0.988 0.996	0.816 0.909 0.960 0.984 0.994	0.785 0.889 0.949 0.979 0.992
10 11 12	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	0.999 1.000 1.000	0.999 1.000 1.000	0.998 0.999 1.000	0.997 0.999 1.000

$P(Y=4, 5, 6) = P(Y \le 6) - P(Y \le 3)$

				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.762	- 0_	265		ppendix B T	ables 4
Гаble	III continue	ed						,		
x	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0
0	0.015	0.012	0.010	0.008	0,007	0.006	0.005	0.004	0.003	0.00
1	0.078	0.066	0.056	0.048	0.040	0.034	0.029	0.024	0.021	0.01
2	0.210	0.185	0.163	0.143	0.125	0.109	0.095	0.082	0.072	0.00
3	0.395	0.359	0.326	0.294	0.265	0.238	0.213	0.191	0.170	0.15
4	0.590	0.551	0.513	0.476	0.440	0.406	0.373	0.342	0.313	0.28
5	0.753	0.720	0.686	0.651	0.616	0.581	0.546	0.512	0.478	0.44
6	0.867	0.844	0.818	0.791	0.762	0.732	0.702	0.670	0.638	0.60
7	0.936	0.921	0.905	0.887	0.867	0.845	0.822	0.797	0.771	0.74
8	0.972	0.964	0.955	0.944	0.932	0.918	0.903	0.886	0.867	0.84
9	0.989	0.985	0.980	0.975	0.968	0.960	0.951	0.941	0.929	0.9
0	0.996	0.994	0.992	0.990	0.986	0.982	0.977	0.972	0.965	0.9
1	0.990	0.994	0.992	0.996	0.995	0.982	0.990	0.972	0.985	0.9
2	1.000	0.999	0.999	0.999	0.998	0.995	0.996	0.988	0.993	0.99
3	1.000	1.000	1.000	1.000	0.999	0.999	0.999	0.998	0.997	0.99
4	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999	0.9
5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.99
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.00
x	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.
0	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1	0.011	0.007	0.005	0.003	0.002	0.001	0.001	0.000	0.000	0.00
2	0.043	0.030	0.020	0.014	0.009	0.006	0.004	0.003	0.002	0.00
3	0.112	0.082	0.059	0.042	0.030	0.021	0.015	0.010	0.007	0.0
4	0.224	0.173	0.132	0.100	0.074	0.055	0.040	0.029	0.021	0.0
5	0.369	0.301	0.241	0.191	0.150	0.116	0.089	0.067	0.050	0.0
6	0.527	0.450	0.378	0.313	0.256	0.207	0.165	0.130	0.102	0.0
7	0.673	0.599	0.525	0.453	0.386	0.324	0.269	0.220	0.179	0.14
8	0.792	0.729	0.662	0.593	0.523	0.456	0.392	0.333	0.279	0.23
9	0.877	0.830	0.776	0.717	0.653	0.587	0.522	0.458	0.397	0.34
0	0.933	0.901	0.862	0.816	0.763	0.706	0.645	0.583	0.521	0.4
1	0.966	0.901	0.921	0.888	0.849	0.803	0.752	0.697	0.639	0.5
2	0.984	0.973	0.921	0.936	0.909	0.876	0.836	0.792	0.742	0.68
3	0.993	0.987	0.978	0.966	0.949	0.926	0.898	0.864	0.825	0.78
4	0.997	0.994	0.990	0.983	0.973	0.959	0.940	0.917	0.888	0.8
5	0.999	0.998	0.995	0.992	0.986	0.978	0.967	0.951	0.932	0.90
6	1.000	0.998	0.995	0.992	0.986	0.978	0.987	0.931	0.932	0.90
7	1.000	1.000	0.998	0.998	0.995	0.989	0.982	0.975	0.980	0.9
8	1.000	1.000	1.000	0.998	0.997	0.993	0.991	0.980	0.978	0.98
9	1.000	1.000	1.000	1.000	0.999	0.998	0.998	0.993	0.988	0.9
20	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.998	0.997	0.99
21	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.99
22	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.99
3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.00

#### 500 Appendix B Tables

Tab	leIII continue	ed								
x	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.003	0.002	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000
4	0.011	0.008	0.005	0.004	0.003	0.002	0.001	0.001	0.001	0.000
5	0.028	0.020	0.015	0.011	0.008	0.006	0.004	0.003	0.002	0.001
6	0.060	0.046	0.035	0.026	0.019	0.014	0.010	0.008	0.006	0.004
7	0.114	0.090	0.070	0.054	0.041	0.032	0.024	0.018	0.013	0.010
8	0.191	0.155	0.125	0.100	0.079	0.062	0.048	0.037	0.029	0.022
9	0.289	0.242	0.201	0.166	0.135	0.109	0.088	0.070	0.055	0.043
10	0.402	0.347	0.297	0.252	0.211	0.176	0.145	0.118	0.096	0.077
11	0.520	0.462	0.406	0.353	0.304	0.260	0.220	0.185	0.154	0.127
12	0.633	0.576	0.519	0.463	0.409	0.358	0.311	0.268	0.228	0.193
13	0.733	0.682	0.629	0.573	0.518	0.464	0.413	0.363	0.317	0.275
14	0.815	0.772	0.725	0.675	0.623	0.570	0.518	0.466	0.415	0.368
15	0.878	0.844	0.806	0.764	0.718	0.669	0.619	0.568	0.517	0.467
16	0.924	0.899	0.869	0.835	0.798	0.756	0.711	0.664	0.615	0.566
17	0.954	0.937	0.916	0.890	0.861	0.827	0.790	0.749	0.705	0.659
18	0.974	0.963	0.948	0.930	0.908	0.883	0.853	0.819	0.782	0.742
19	0.986	0.979	0.969	0.957	0.942	0.923	0.901	0.875	0.846	0.812
20	0.992	0.988	0.983	0.975	0.965	0.952	0.936	0.917	0.894	0.868
21	0.996	0.994	0.991	0.986	0.980	0.971	0.960	0.947	0.930	0.911
22	0.999	0.997	0.995	0.992	0.989	0.983	0.976	0.967	0.956	0.942
23	0.999	0.999	0.998	0.996	0.994	0.991	0.986	0.981	0.973	0.963
24	1.000	0.999	0.999	0.998	0.997	0.995	0.992	0.989	0.984	0.978
25	1.000	1.000	0.999	0.999	0.998	0.997	0.996	0.994	0.991	0.987
26	1.000	1.000	1.000	1.000	0.999	0.999	0.998	0.997	0.995	0.993
27	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.998	0.997	0.996
28	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999	0.998
29	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999
30	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
32	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
33	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
34	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
35	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

# **Poisson Approximation to Binomial**

#### Exercise

Suppose that the probability of suffering a side effect from a certain flu vaccine is 0.005. If 1000 persons are vaccinated, approximate the probability that (a) At most one person suffers. (b) Four, five, or six persons suffer.

$$X = \# \text{ of people suffering a side effect.}$$

$$\sim B_{Tn}(1000, 0.005) \approx P_{0Ts}(\frac{1}{n}) \sim Y.$$

$$1000 \cdot 0.005$$

$$(a) P(X \leq 1) \approx P(Y \leq 1) = e^{-5} \frac{5^{\circ}}{0!} + e^{-5} \frac{5^{1}}{1!} 5^{2}$$

$$= 6 \cdot e^{-5} \approx 0.04.$$

(b) 
$$\mathbb{P}(X = 4, 5, 6) \approx \mathbb{P}(Y = 4, 5, 6)$$
  
=  $e^{-t} \left(\frac{5^4}{4!} + \frac{5^5}{5!} + \frac{5^6}{6!}\right)$ 

~ T using table.

$$|-5, 15, 3$$

$$| 56, 7R \rightarrow \text{Suple } 9.$$
(a) with replacement.  

$$P(B) = P(X=4) = \begin{pmatrix} 4 \\ + \end{pmatrix} \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{4} \begin{pmatrix} 7 \\ 7 \end{pmatrix}^{5}$$

$$P(B) = P(X=4) = \begin{pmatrix} 4 \\ + \end{pmatrix} \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{4} \begin{pmatrix} 7 \\ 7 \end{pmatrix}^{5}$$

$$P(A, B) = \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{4} \begin{pmatrix} 7 \\ 12 \end{pmatrix}^{5}$$

$$P(A, B) = \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{4} \begin{pmatrix} 7 \\ 12 \end{pmatrix}^{5}$$

$$P(A) = 1 \cdot \begin{pmatrix} 5 \\ 2 \end{pmatrix}^{3}$$

$$P(A) = 1 \cdot \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{3}$$

$$P(A) = 1 \cdot \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{3}$$

$$P(A) = 1 \cdot \begin{pmatrix} 5 \\ 12 \end{pmatrix}^{3}$$

$$P(A) = \frac{(A)}{P(B)} = \frac{(A)}{(A)} = \frac{(A)}{(A)}$$

$$P(A) = \frac{(A)}{P(B)} = \frac{(A)}{(A)}$$

$$P(A) = \frac{(A)}{P(B)} = \frac{(A)}{(A)} = \frac{(A)}{(A)}$$

$$P(B) = P(Y=4) = \frac{(A)}{(A)} = \frac{(A)}{A}$$

$$P(B) = P(Y=4) = \frac{(A)}{(A)} = \frac{(A)}{A} = \frac{(A)}{A}$$

$$P(B) = P(Y=4) = \frac{(A)}{(A)} = \frac{(A)}{A} = \frac{(A)}{A}$$

$$P(B) = P(Z=1) = \frac{(A)}{(A)} = \frac{(A)}{A} = \frac{(A)}{A}$$

$$P(B|A) = P(Z=1) = \frac{(A)}{(A)} = \frac{(A)}{A} = \frac{(A)}{A}$$

$$P(A|B) = P(B|A), P(A) = \frac{(A)}{P(B)} = \frac{(A)}{P(B)} = \frac{(A)}{P(B)}$$

#3 Exhaustive : A₁ UA₂ U ··· UA₆ = §  
Mutually exclusive : A₁ A₂ = A₂A₃ = ··· = 
$$\phi$$
  
 $\Rightarrow$  P(A₁ UA₂ U ··· UA₆) = 1  
 $P(A_1) + p(A_2) + ··· + p(A_6)$   
 $P(A_1) = \frac{p(A_2)}{2} = \frac{p(A_2)}{2} = --- - \frac{p(A_2)}{2} = -a$   
 $\Rightarrow$  P(A₄) =  $b \cdot a$   
 $P(A_1) + ··· + p(A_6) = 1 - a + 2 \cdot a + ·· + 6 \cdot a = 1$   
 $a(1 + ··· + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(2 + 1 + 1 + 6) = 1$   
 $a(3 + 1 + 1 + 6) = 1$   
 $a(4 + 1 + 6) = 1$   
 $a(6 + 1 + 2 + 1 + 6) = 1$   
 $a(6 + 1 + 2 + 1 + 6) = 1$   
 $a(6 + 1 + 2 + 1 + 6) = 1$   
 $a(6 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6) = 1$   
 $a(1 + 1 + 2 + 1 + 6)$ 

(c) 
$$M^{\prime\prime}(o) = (0 \cdot (-6) ((-2t)^{-7} \cdot (-2))|_{t=0} = 120$$
  

$$= \mathbb{E}[\chi^{2}] \neq Var(\chi)$$

$$Var(\chi) = \mathbb{E}[\chi^{2}] - (\mathbb{E}[\chi])^{2} = 120 - (10)^{2} = 20_{\prime\prime}$$





n=0

n!

1 ei