Chapter 2. Discrete Distributions

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Random Variables of the Discrete Type

Definition
the set of all outcomes
Given a random experiment with a sample space S, a function X that assigns one and only one real number $X(s)=r$ to each elements in S is called a random variable.

The space of X is the set of real numbers $\{x: X(s)=x, s \in S\}$ and denoted by $S(X)=$ the support of X

Example $S=\{$ Male, Female S
$X: S \rightarrow \mathbb{R}=\{$ Real numbers $\}$
Male $\longmapsto 1$
Female $\longrightarrow 2$

$$
S(x)=\{1,2\}
$$

Random variables

Example

A rat is selected at random from a cage and its sex is determined.
The set of possible outcomes is female and male. Thus, the sample space is $S=\{$ female, male $\}$.

Random variables

Example

Consider a random experiment in which we roll a six-sided die.
The sample space associated with this experiment is $S=\{1,2,3,4,5,6\}$.
Let $\underbrace{X(s)=s}$. Compute $\mathbb{P}(2 \leq X \leq 4)$.

$$
\begin{aligned}
& \mathbb{P}(2 \leqslant x \leqslant 4) \\
= & \mathbb{P}(x=2 \text { or } 3 \text { or } 4) \\
= & \mathbb{P}(x=2)+\mathbb{P}(x=3)+\mathbb{P}(x=4) \\
= & \frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} .
\end{aligned}
$$

Discrete random variables
ex $\quad S=[0,1]$: uncoutable outcomes
Definition
Let X be a random variable defined on a sample space S.
If S consists of finite outcomes or countable outcomes, then X is called a discrete random variable.

$$
f: \quad S(x) \xrightarrow{\mathbb{R}} \rightarrow \mathbb{R}
$$

The probability mass function (mf) of X is $\quad f(x)=\mathbb{P}(X=x)$ only for discrete RV
The cumulative distribution function (cdr) of X is $F(x)=\mathbb{P}(X \leqslant x)$
for any RV

$$
F: \mathbb{R} \rightarrow \mathbb{R}
$$

Discrete random variables

$$
f(x)=中(X=x)
$$

Properties of PMF

The mf $f(x)$ of a discrete random variable X is a function that satisfies the following properties:

- $f(x) \geq 0$ for all x. $=\mathbb{P}(S)$
- $\sum_{x \in S(X)} f(x)=1$, and
- $\mathbb{P}(X \in A)=\sum_{x \in A} f(x)$.

Discrete random variables

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \downarrow \neq \downarrow, ~ \\
& \text { tome. } \\
& 1
\end{aligned}
$$

Find the mf and the pdf of X.

$$
\text { MF: } \quad f(x)=\mathbb{P}(X=x)= \begin{cases}\frac{1}{6} & \text { for } x=1, \cdots, 6 \\ 0 & \text { otherwise }\end{cases}
$$

$$
C D F: F(x)=\mathbb{P}(X \leqslant x)=0 \text { for } x<1
$$

$$
F(-1)=P(x \leqslant-1)=0]\left[\begin{array}{lll}
\frac{1}{6} & \text { for } & 1 \leqslant x<2 \sigma_{6} \\
2 & 0)-\mathbb{P}(x \leqslant 0)=0
\end{array}\right.
$$

$$
F(0)=\mathbb{P}(X \leqslant 0)=0 \quad \frac{2}{6} \quad \text { for } \quad 2 \leqslant x<3
$$

$$
\frac{3}{6} \quad \text { fr } \quad 3 \leqslant x<4
$$

$$
\frac{4}{6} \quad \text { fr } \quad 4 \leqslant x<5
$$

$\frac{5}{6}$ for $5 \leqslant x<6$

$$
\frac{6}{6} \text { for } x \geqslant 6
$$

Discrete random variables

Example
Roll a fair four-sided die twice.
$(3,4)$

Let X equal the larger of the two outcomes if they are different and the common value if they are the same.

Find the mf and the cdf of X.

$$
S(x)=\{1,2,3,4\}
$$

$$
=\left\{\begin{array}{cc}
0 & x<1 \\
\frac{1}{16} & 1 \leqslant x<2 \\
\frac{1}{16}+\frac{3}{16}=\frac{4}{16} & 2 \leqslant x<3 \\
\frac{1}{16}+\frac{3}{16}+\frac{5}{16}=\frac{9}{16} & 3 \leqslant x<4 \\
1 & x \geqslant 4
\end{array}\right.
$$

$$
\begin{aligned}
R V: & X: \begin{array}{l}
S \\
\uparrow \\
\\
\\
\text { sample. }
\end{array} & X \mathbb{R} \quad \begin{array}{c}
\text { Discrete } R V \text { of } \\
\\
\end{array} & S \text { finite, countable. }
\end{aligned}
$$

$$
\begin{aligned}
& S(x)=\{S: X=s\} \\
& P M F \quad f(x)=f_{X}(x)=\mathbb{P}(X=x) \\
& C D F \quad F(x)=F_{X}(x)=\mathbb{P}(x \leqslant x)
\end{aligned}
$$

Bar graph, Probability histogram, relative frequency histogram

$$
\$=\{(1,1)(1,2)(1,3), \cdots\}
$$

Example
A fair four-sided die with outcomes $1,2,3$, and 4 is rolled twice.
Let X equal the sum of the two outcomes.

$$
S(x)=\{2,3, \cdots, 8\}
$$

MF $f(x)= \begin{cases}1 / 16 & x=2 \\ 2 / 16 & x=3 \\ 3 / 16 & x=4 \\ 4 / 16 & x=5 \\ 3 / 16 & x=6 \\ 2 / 16 & x=7 \\ 1 / 16 & x=8 \\ 0 & \text { otherwise }\end{cases}$

Bar graph, Probability histogram, relative frequency histogram

Example

Two fair four-sided dice are rolled. Write down the sum of the two outcomes. Repeat this 1000 times.

Section 2.

Mathematical Expectation

Definition of Expectation

$$
\begin{aligned}
\mathbb{E}[u[x]] & =\mathbb{P}(A) \cdot 1^{2}+\mathbb{P}(B) \cdot 2^{2}+\mathbb{P}(f) \cdot 3^{2} \\
& =\sum u(x) \mathbb{P}(x=x)
\end{aligned}
$$

Example
Consider the following game. A player roll a fair die.
If the event $A=\{1,2,3\}$ occurs, he receives one dollar.
If $B=\{4,5\}$ occurs, he receives two dollars.
If $C=\{6\}$ occurs, he receives three dollars.
If the game is repeated a large number of times, what is the average payment?
Suppose play 6000 times A happens about 300 times

$$
\Rightarrow \quad \$ 3000 \times 1
$$

, B happens about 2000 times

$$
\Rightarrow \quad \$ 2000 \times 2
$$

- 1 happens about Loootires

$$
\Rightarrow \quad \$ 1000 \times 3
$$

Expected Profit per Game

$$
\begin{aligned}
& \text { Profit per Game } \\
= & \frac{1}{6000} \cdot(3000-\mathbb{P}(A) \\
= & \mathbb{P}(A) \cdot 1+\mathbb{6 0 0} \cdot \mathbb{P}(B) \quad 6000 \cdot \mathbb{P}(C) \\
= & \mathbb{P}(X=1) \cdot 1+2000 \cdot 2+1000 \cdot 3) \\
= & +P(X=2) \cdot 2+\mathbb{P}(C)-3 \\
= & P(X=3)-3
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in S(x)}^{\sum_{i}^{t}} x \cdot \underbrace{P P(X \geq x)} \\
& =\sum_{x \in S(x)}^{1} x \cdot F(x)=\mathbb{T}[x]
\end{aligned}
$$

Definition
If $f(x)$ is the mf of a discrete random variable X with the space $S(X)$, and if the summation

$$
\sum_{x \in S(X)} u(x) f(x)
$$

exists, then the sum is called the mathematical expectation or the expected value of $u(X)$, and denoted by $\mathbb{E}[u(X)]$.

Ex $\mathbb{E}[X]=x_{1} \cdot \mathbb{P}\left(X=x_{1}\right)+x_{2} \mathbb{P}\left(X=x_{2}\right)+\cdots$

$$
\mathbb{E}\left[x^{2}\right]=x_{1}^{2}-\mathbb{P}\left(X=x_{1}\right)+x_{2}^{2} \mathbb{P}\left(X=x_{2}\right)+\cdots
$$

$$
\text { Ex } \begin{aligned}
& S(x)=\{1,2,3,4, f \\
& Y= f_{x} \\
& S(Y)=\{1, \\
& S(x)\{, 2,6,12\} \\
& f_{Y}(0)=f_{x}(1), f_{y}(2)=f_{x}(2), f_{Y}(6)=f_{x}(3)
\end{aligned}
$$

Definition of Expectation

Example
Let the random variable X have the mf $f(x)=\frac{1}{3}$ for $x \in\{-1,0,1\}=S(X)$.
Let $Y=u(X)=X^{2}$.
Find the pmf of Y and $\mathbb{E}[Y]=\mathbb{E}\left[X^{2}\right]$.

$$
S(Y)=\{0,1\}
$$

$$
f_{Y}(y)=\mathbb{P}(Y=y)=\left\{\begin{array}{cl}
\frac{1}{3} & y=0 \\
\frac{2}{3} & y=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{y \in S(Y)}^{1} y \cdot f_{Y}(y)=0 \cdot f_{Y}(0)+1 \cdot f_{Y}(1)=\frac{2}{3} \cdot{ }^{12} \\
\mathbb{E}\left[x^{2}\right] & =\sum_{x \in S(x)} x^{2} \cdot f_{X}(x) \\
& =(-1)^{2}-\underbrace{f_{X}(-1)}_{u \frac{1}{3}}+0^{2} \cdot f_{X}(0)+1^{2} \cdot \underbrace{f_{x}(1)}_{\frac{1}{3}}=\frac{2}{3}
\end{aligned}
$$

Theorem

1. If c is a constant, then $E[c]=c$.
2. If c is a constant and u is a function, then $\mathbb{E}[c \mu(X)]=c \mathbb{E}[u(X)]$.
3. If c_{1} and c_{2} are constants and u_{1} and u_{2} are functions. then

$$
\mathbb{E}\left[c_{1} u_{1}(X) \oplus c_{2} u_{2}(X)\right]=c_{1} \mathbb{E}\left[u_{1}(X)\right] \oplus c_{2} \mathbb{E}\left[u_{2}(X)\right]
$$

Ex

$$
\begin{aligned}
\mathbb{E}[\underbrace{x(x-2)}_{Y}] & =\sum_{x \in \mathbb{L}(x)} x(x-2) f(x) \\
=\mathbb{E}\left[x^{2}-2 x\right] & =\mathbb{E}\left[x^{2}\right]-\mathbb{E}[2 x] \\
& =\mathbb{E}\left[x^{2}\right]-2 \cdot \mathbb{E}[x] .
\end{aligned}
$$

Properties of Expectation

Example

$$
J(x)=\{1,2,3,4\}
$$

Let X have the imf $f(x)=\frac{x}{10}$ for $x=1,2,3,4$.
Find $\mathbb{E}[X], \mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}[X(5-X)]$.

$$
f(x)= \begin{cases}\frac{1}{10} & x=1 \\ \frac{2}{10} & x=2 \\ \frac{3}{10} & x=3 \\ \frac{4}{10} & x=4\end{cases}
$$

$$
\begin{aligned}
& \mathbb{E}[x]=1 \cdot \frac{1}{10}+2 \cdot \frac{2}{10}+3 \cdot \frac{3}{10}+4 \cdot \frac{4}{10} \\
&=\frac{1}{10} \cdot\left(1^{2}+2^{2}+3^{2}+4^{2}\right)=3 . \\
& \mathbb{E}\left[x^{2}\right]=1^{2} \cdot \frac{1}{10}+2^{2} \cdot \frac{2}{10}+3^{2} \cdot \frac{3}{10}+4^{2} \cdot \frac{4}{10} \\
&=\frac{1}{10} \cdot\left(1^{3}+2^{2}+3^{3}+4^{3}\right)=10 \\
& 1827-64 \\
& \mathbb{E}[x(5-x)]=\mathbb{E}\left[5 x-x^{2}\right]=5 \cdot \mathbb{E}[x]-\mathbb{E}\left[x^{2}\right] \\
&=5 \cdot 3-10=5 .
\end{aligned}
$$

Note

$$
\begin{aligned}
& \mathbb{E}\left[x^{2}\right] \neq(\mathbb{E}[x])^{2} \\
& \mathbb{E}[u(x)] \neq u(\mathbb{E}[x])
\end{aligned}
$$

ϵ : belongs to
$(0,1)$: open interval
Properties of Expectation

$$
S^{\prime}(x)=\{1,2,3, \ldots\}
$$

Example
An experiment has probability of success $P \notin(0,1)$ and probability of failure $q=1-p$.
This experiment is repeated independently until the first success occurs.
Let X be the number of trials. Find $\mathbb{E}[X]$.

$$
\mathbb{E}[x]=\frac{1}{p}
$$

$$
\begin{array}{ll}
x=1: H & f(1)=\mathbb{P}(x=1)=p \\
x=2: T H & f(2)=\mathbb{P}(x=2)=(1-p) p
\end{array}
$$

$$
x=3: T T H \quad f(3)=(1-p)^{2} p
$$

$$
f(4)=(1-p)^{3} \cdot p
$$

$$
\begin{aligned}
& A=E[x]=1 \cdot p+2(1-p) p+3 \cdot(1-p)^{2} p+4(1-p)^{3} p+\cdots \\
& -\left((\mathcal{L}) A=(1)(1-p) p+2(1-p)^{2} p+3(1-p)^{3} \rho+\cdots\right. \\
& A-(1-p) A=1 \cdot p \frac{x(1-p)}{+1 \cdot(1-p) \cdot p+1 \cdot(1-p)^{2} p+1 \cdot(1-p)^{3} p f \ldots} \begin{array}{l}
x \cdot(1-p)_{1}=r
\end{array} \\
& \text { PA Geometric series }=\frac{\text { First }}{1-\text { ratio }}=\frac{p}{1-(1-p)}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[x]=\sum_{x \in S}^{-1} \underset{S}{x} \underset{\sim}{f(x)}: \mathbb{P}(x=x) \\
& \mathbb{E}\left[\frac{u(x)]}{\text { New RV }}=\sum_{x \in S^{+}(x)} u(x) f(x)\right. \text {. }
\end{aligned}
$$

$$
I^{s t} \text { trial } \begin{array}{lll}
\pi & H, \mathbb{E}[\# \text { of trials }] & =1 \\
\text { s } T & =1+A
\end{array}
$$

$$
\mathbb{E}[x]=A
$$

$$
\Rightarrow \mathbb{E}[x]=A=p \cdot 1+(1-p)(1+A)
$$

Section 3.
Special Mathematical Expectations

Moments

The expectation or mean of a random variable X is

$$
\underset{m_{u}}{\mu}=\mathbb{E}\left[X^{1}\right]=\sum x f(x)
$$

This is also called the first moment about the origin.
This is also called the first moment about the origin.
The first moment about the mean μ is $\mathbb{E}[X-\mu]^{\frac{1}{]}}=\mathbb{E}[x]-\mathbb{E}[\mu]=\mathbb{E}[x]-\mu^{\frac{\mathbb{E}}{E}[x]}=0$ $1^{\text {st }}$ moment of $x^{b^{\prime \prime}}$ about $b=\mathbb{E}[x-b]$

$$
\mu=\mathbb{E}[x]
$$

The second moment of X about b is $\mathbb{E}\left[(X-b)^{2}\right]$.

Its positive square root is the standard deviation of X and denoted by $\operatorname{Std}(X)=\sigma$.

$$
\begin{aligned}
\mu=\mu_{x}=\mathbb{E}[x], \sigma^{2}=\sigma_{x}^{2} & =\mathbb{E}\left[(x-\mu)^{2}\right]=\operatorname{Vor}(x) \\
& =\mathbb{E}\left[(x-\mathbb{E}(x])^{2}\right]
\end{aligned}
$$

with probability

$$
\begin{aligned}
& \text { Ex } \\
& x=\left\{\begin{array}{ccc}
1 & \omega \cdot p \cdot & \frac{1}{2} \\
-1 & \omega-p \cdot \frac{1}{2}
\end{array}, \quad f_{x}(x)=\frac{1}{2} \quad \text { for } x=1,-1\right. \\
& Y=\left\{\begin{array}{ccc}
10 & \text { wp. } & \frac{1}{2} \\
-10 & \text { wp. } & \frac{1}{2}
\end{array}, \quad f_{y}(y)=\frac{1}{2}, \quad f_{o} y=10,-10\right. \\
& \mathbb{E}[x]=\mu_{x}=4 \cdot \frac{1}{2}+(-1) \cdot \frac{1}{2}=0, \quad \mathbb{E}[Y]=10 \cdot \frac{1}{2}+(-10) \cdot \frac{1}{2}=0 \\
& \operatorname{Var}(X)=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\mathbb{E}\left[X^{2}\right] \quad ; \operatorname{Var}(Y)=\mathbb{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]=\mathbb{E}\left[Y^{2}\right] \\
& =1^{2} \cdot \frac{1}{2}+(-1)^{2} \cdot \frac{1}{2}=1 \quad=10^{1} \cdot \frac{1}{2}+(-10)^{2} \cdot \frac{1}{2}=100
\end{aligned}
$$

Moments

Example
Roll a fair die and let X be the outcome.
Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.

$$
\begin{aligned}
\mathbb{E}[x] & =1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} \\
& =\frac{1}{6} \cdot(1+2+\cdots+6)=\frac{21}{6}=\frac{7}{2}=\mu \\
\operatorname{Var}(x) & =\mathbb{E}\left[(x-\mu)^{2}\right]=\mathbb{E}\left[\left(x-\frac{7}{2}\right)^{2}\right] \\
& =\left(1-\frac{7}{2}\right)^{2} \cdot \frac{1}{6}+\left(2-\frac{7}{2}\right)^{2}-\frac{1}{6}+\cdots+\left(6-\frac{7}{2}\right)^{2} \cdot \frac{1}{6} \\
& =\frac{1}{6} \cdot\left[\left(-\frac{5}{2}\right)^{2}+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}\right] \\
& =\frac{1}{6} \cdot 8 \cdot \frac{1}{4} \cdot\left[\frac{1^{2}+3^{2}+5^{2}}{35}\right)=\left(\frac{35}{12}\right]
\end{aligned}
$$

Moments

In general, the r-th moment of X about b is $\mathbb{E}\left[(X-b)^{r}\right]$.

Definition

Index of skewness is defined by
$\gamma \geqslant 0$ skew to right

$$
\gamma=\mathbb{E}\left[(X-\mu)^{3}\right] / \sigma^{3} .
$$

$$
\gamma=\frac{\mathbb{E}\left[(x-\mu)^{3}\right]}{\sigma^{3}}
$$

Example
Let $f(x)=\frac{4-x}{6}$ for $x=1,2,3$ be the mf of X. Compute the index of skewness.

$$
\begin{aligned}
& \mathbb{E}[x]=\frac{5}{3}=1 \cdot \frac{(4-1)}{6}+2 \cdot \frac{(4-2)}{6}+3 \cdot \frac{(4-3)}{6} \\
& =\frac{1}{6}-(1.3+2 \cdot 2+3.1)=\frac{10}{6}=\frac{5}{3} \text {. } \\
& \sigma^{2}=\operatorname{Var}(x)=\mathbb{E}\left[\left(x-\frac{5}{3}\right)^{2}\right] \\
& =\left(1-\frac{5}{3}\right)^{2} \cdot \frac{3}{6}+\left(2-\frac{5}{3}\right)^{2} \cdot \frac{2}{6}+\left(3-\frac{5}{3}\right)^{2} \frac{1}{6} 20 \\
& =\frac{4}{9} \cdot \frac{1}{2}+\frac{1}{9} \cdot \frac{1}{3}+\frac{16}{9} \cdot \frac{1}{6} \\
& =\frac{1}{9 \cdot 6}(\underbrace{(2+2+16}_{3})=\frac{5}{9} \\
& \sigma=\frac{\sqrt{5}}{3} \\
& -\frac{2}{3} \\
& \mathbb{E}\left[(x-\mu)^{3}\right]=\left(1-\frac{5}{3}\right)^{3} \cdot \frac{3}{6}+\left(2-\frac{5}{3}\right)^{3} \cdot \frac{2}{6}+\left(3-\frac{5}{3}\right)^{3} \frac{1}{6} \\
& =\frac{1}{6} \cdot\left[-\frac{8}{27} \cdot 3+\frac{1}{27} \cdot 2+\frac{64}{27} \cdot 1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{27 \cdot 6}[-24+2+64]=\frac{7}{27} \\
& \gamma=\frac{\tilde{\mathbb{E}}\left[(x-\mu)^{3}\right]}{\sigma^{3}}=\frac{4}{27}\left(\frac{3}{\sqrt{5}}\right)^{3} \\
& =\frac{7}{25 \cdot \sqrt{5}}>0
\end{aligned}
$$

Moments

$$
\sigma^{2}=\sum_{i}^{\frac{(x-\mu)^{2}}{\geqslant 0}} \xrightarrow{f(x)} \geqslant 0
$$

$$
\begin{aligned}
& \text { Theorem } \\
& 0 \leqslant \sigma^{2}=\underbrace{\mathbb{E}\left[(x-\mu)^{2}\right]}=\mathbb{E}\left[x^{2}\right]-\mu^{2}=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2} \\
&\left.=\mathbb{E}\left[x^{2}-2 x-\mu\right)+\mu^{2}\right] \\
&=\mathbb{E}\left[x^{2}\right]-2 \mu \underbrace{\mathbb{E}[x]}_{{ }^{1}}+\mu^{2} \\
&=\mathbb{E}\left[x^{2}\right]-2 \mu^{2}+\mu^{2}=\mathbb{E}\left[x^{2}\right]-\mu^{2}
\end{aligned}
$$

Note

$$
\mathbb{E}\left[x^{2}\right] \geqslant(\mathbb{E}[x])^{2}
$$

Moment generating functions

$$
\text { For } u(x)=e^{t x}, \quad \mathbb{E}\left[e^{t x}\right]=\mathbb{E}[u(x)]
$$

Definition

Let X be a discrete random variable and assume that there exists $h>0$ such that

$$
\operatorname{small}_{\mathcal{C}} t \text { around o } \mathbb{E}\left[e^{t X}\right]=\sum e^{t x} f(x)
$$

is finite for all $t \in(-h, h)$. Then, $M(t)=\mathbb{E}\left[e^{t X}\right]$ is called the moment generating function (mgr).

$r^{\text {th }}$ moment about $b=\mathbb{E}\left[(x-b)^{r}\right]$

Moment generating functions

$$
M(t)=\mathbb{E}\left[e^{t x}\right]
$$

Properties

1. $M(0)=1$
2. $M^{\prime}(0)=\mathbb{E}[X]$
3. $M^{\prime \prime}(0)=\mathbb{E}\left[X^{2}\right]$
4. In general, $M^{(r)}(0)=\mathbb{E}\left[X^{r}\right]$.

$$
\begin{aligned}
M(0) & =\mathbb{E}\left[e^{0 \cdot x}\right]=\mathbb{E}[1]=1 \\
M^{\prime}(0) & =\left.\frac{d}{d t} \mathbb{E}\left[e^{t x}\right]\right|_{t=7}=\left.\mathbb{E}\left[\frac{d}{d t}\left(e^{t x}\right)\right]\right|_{t=0} \\
& =\mathbb{E}[x]
\end{aligned}
$$

$$
\begin{aligned}
& M(t)=\mathbb{E}\left[e^{t X}\right] \quad \text { for }-h<t<h, \quad h>0 \\
& M(0)=1 \\
& M^{\prime}(0)=\left.\frac{d}{d t} M(t)\right|_{t=0}=\left.\mathbb{E}\left[X e^{t x}\right]\right|_{t=0}=\mathbb{E}[x] . \\
& M^{\prime \prime}(0)=E\left[X^{2}\right] \\
& M^{\prime \prime \prime}(0)=\mathbb{E}\left[x^{3}\right]
\end{aligned}
$$

Moment generating functions
X : Geometric RV.

$$
x=1,2, \cdots
$$

Example
Let $\underline{f(x)=q^{x-1} p}$ where $p \in(0,1)$ and $q=1-p$.
Compute $M(t)$.

$$
\mathbb{E}[x]=?
$$

$$
\begin{aligned}
& M(t)=\mathbb{E}\left[e^{t x}\right]=e^{t-1} \cdot \frac{q^{0} \cdot p}{f^{\prime \prime}}+e^{t \cdot 2} q^{\prime} \cdot p=f(2) \\
&=\sum_{x=1}^{\infty} e^{t x} \cdot f(x)
\end{aligned}
$$

Geometric Series

$$
\begin{aligned}
& \text { Geometric series } \\
& a+a \cdot r+a r^{2}+a r^{3}+\cdots=\frac{a^{\alpha} \text { first term }}{1-r_{\text {e ratio }}} \\
& \text { only when }|r|<1
\end{aligned}
$$ only when $|r|<1$

$$
\begin{array}{rlrl}
M(t) & =\mathbb{E}\left[e^{t x}\right]=\frac{p e^{t}}{1-e^{t}(1-p)} & \text { for } & t<\ln \left(\frac{1}{1-p}\right) . \\
|r| & =\left|e^{t} \cdot(1-p)\right|<1 \quad \longrightarrow e^{t}<\frac{1}{1-p} \rightarrow t<\ln \left(\frac{1}{1-p}\right)
\end{array}
$$

$$
\begin{aligned}
M(t) & =\frac{p e^{t} \cdot e^{-t}}{\left(1-e^{t}((-p)) \cdot e^{-t}\right.}=\frac{p}{e^{-t}-(1-p)}=h(t) \\
M^{\prime}(t) & =p \cdot \frac{d}{d t}\left(\frac{1}{h(t)}\right)=-p \cdot \frac{1}{h(t)^{2}} \cdot h^{\prime}(t) \quad\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}} \\
& =-p \cdot \frac{1}{\left(e^{-t}-(1-p)\right)^{2}} \cdot\left(-e^{-t}\right) \\
M^{\prime}(0) & =(-p) \cdot \frac{1}{(1-(1-p))^{2}} \cdot(-1)=\frac{1}{p}=\mathbb{E}[x] .
\end{aligned}
$$

Section 4.
The Binomial Distribution

Bernoulli random variables

A Bernoulli experiment, more commonly called a Bernoulli trial, is a random experiment with two outcomes.

Say $S=\{$ success, failure $\}$ and $\mathbb{P}($ success $)=p$ for some $p \in(0,1)$. Then $\mathbb{P}($ failure $)=q=1-p$.

A random variable X is a Bernoulli random variable with success probability p is $X=1$ if success and 0 otherwise.

$$
x=\left\{\begin{array}{lc}
1 & \text { with success probability } \quad P \\
0 & \text { otherwise }
\end{array}\right.
$$

- MF $\quad f(x)= \begin{cases}p, & x=1 \\ 1-p, & x=0 \\ 0, & \text { otherwise }\end{cases}$
- $\mathbb{E}[x]=1 \cdot p+0 \cdot(1-p)=p \cdot=\mu$

$$
\begin{aligned}
\operatorname{Var}(x) & =\mathbb{E}\left[(x-\mu)^{2}\right]=\mathbb{E}\left[(x-p)^{2}\right] \\
& =(1-p)^{2} \cdot p+(0-p)^{2} \cdot(1-p)=(1-p)^{2} \cdot p+p^{2} \cdot(1-p) \\
& =p \cdot(1-p) \cdot((1-p)+p)=p \cdot(1-p) .
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Var}(x)=\sigma^{2}=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}=p-p^{2}=p(1-p) \\
\left(\mathbb{E}\left[x^{2}\right]=1^{2} \cdot p+0^{2} \cdot(1-p)=p\right) \\
\cdot M(t)=\mathbb{E}\left[e^{t x}\right]=e^{t \cdot 1} p+e^{t \cdot 0}(1-p)=p e^{t}+(1-p)
\end{gathered}
$$

Bernoulli random variables

Theorem
Let X be a Bernoulli random variable with success probability $p ., q=1-p$.

$$
\begin{aligned}
& \mathbb{E}[X]=p \\
& \operatorname{Var}[X]=p \cdot(1-p)=p \cdot q
\end{aligned}
$$

Binomial random variables

Consider a sequence of independent Bernoulli experiments with success probability p.
Let X be the number of success trials in the first n experiments.
This is called a Binomial random variable with the number of trials n and success probability p.

We use the notation $X \sim b(n, p)=\operatorname{Bin}(n, p)$.
Ex $\quad n=5 \quad, \quad p=0.5=\frac{1}{2}$

$$
\left.x \sim b^{\downarrow}\left(5, \frac{1}{2}\right)=\operatorname{Bin}_{\substack{\text { textbook } \\ \text { almost even } \\ \text { use }}}^{\text {t }}, \frac{1}{2}\right)
$$

$$
f(x)=\binom{n}{x} p^{x} \cdot\left((-p)^{n-x}\right.
$$

$$
\begin{aligned}
& \binom{5}{0} \cdot\left(\frac{1}{2}\right)^{5}+\binom{5}{1}\left(\frac{1}{2}\right)^{5}+\cdots+\binom{5}{5}\left(\frac{1}{2}\right)^{5}=1 \\
& { }^{\prime \prime} f(0) \quad f^{\prime \prime}(1) \\
& (a+b)^{n}=\sum_{x=0}^{n}\binom{n}{x} a^{x} \cdot b^{n-x} \\
& \text { special case where } \\
& n=5 \quad a=\frac{1}{2}, \quad b=\frac{1}{2} .
\end{aligned}
$$

Recall

Binomial The
In general

$$
\begin{aligned}
\sum_{x=0}^{n} f(x) & =\binom{n}{0} p^{0}(1-p)^{n}+\binom{n}{1} p^{1}(1-p)^{n-1}+\cdots+\binom{n}{n} p^{n}-(1-p)^{0}=1 \\
& =(p+(1-p))^{n}
\end{aligned}
$$

Binomial random variables

$$
\begin{aligned}
\operatorname{Var}(x)=n \cdot p \cdot(1-p)= & n \cdot p-q \\
& x \sim \operatorname{Bin}(n, p) \quad ; q=1-p
\end{aligned}
$$

Let X a binomial random variable with the number of trials n and success probability p.

The emf of X is

$$
f(x)=\binom{n}{x} p^{x} \cdot(1-p)^{n-x}, \quad x=0,1, \cdots, n
$$

$$
\begin{aligned}
& E[X]=n p \\
& \begin{array}{l}
\operatorname{Var}[X]=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}, \mathbb{E}[x(x-1)]+\mathbb{E}[\\
\mathbb{E}[x]=\sum_{x=\phi_{1}}^{n} x \cdot f(x)=\sum_{x=1}^{n} 1 x \cdot\binom{n}{x} p^{x}(1-p)^{n-x}
\end{array} \\
& \begin{array}{l}
x \cdot\binom{n}{x}=\left(x \cdot \frac{n!}{x!(n-x)!}=n \frac{(n-1)!}{(x-1)!((n-1)-(x-1))!}=n \cdot\binom{n-1}{x-1}^{28}\right. \\
p=n \sum_{x=1}^{n}\binom{n-1}{x-1}\left(p p^{x-1}\right.
\end{array} \\
& =n p \sum_{x=1}^{n}\binom{n-1}{x-1} p^{x-1}(1-p)^{(n-1)-(x-1)} . \\
& =1 \\
& =n \cdot p \\
& \text { by Binomial Thus }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{x=1}^{n}\binom{n-1}{x-1} p^{x-1}(1-p)^{(n-1)-(x-1)} & =\sum_{y=0}^{n-1}\binom{n-1}{y} p^{y}(1-p)^{(n-1)-y} \\
& =(p+(1-p))^{n-1}=1
\end{aligned}
$$

Binomial random variables

Example

Out of millions of instant tottery tickets, suppose that 20% are winners. If eight such tickets are purchased, what is the probability of purchasing two dining ticket?
$X=\#$ of winning tickets $\sim \operatorname{Bin}(8,0.2)$

$$
\mathbb{P}(x=2)=\binom{8}{2}(0.2)^{2}(1-0.2)^{6}
$$

$\frac{\text { Binomial RV : Repeat }}{\text { indef. }} \frac{\text { Bernoulli trials }}{\text { (2 outcomes) }} n$ times
$X=\#$ of success. success probability $=p \quad(0<p<1)$
L Binomial RV. $\quad X \sim \operatorname{Bin}(n, p)=b(n, p)$

$$
\begin{aligned}
& \text { PMF: } \quad f(x)=\binom{n}{x} p^{x} \cdot(1-p)^{n-x} \\
& \mathbb{E}[x]=n p \\
& \operatorname{Var}(x)=n \cdot p \cdot(1-p) .
\end{aligned}
$$

Binomial random variables

Example

H5N1 is a type of influenza virus that causes a severe respiratory disease in birds called avian influenza (or "bird flu").

Although human cases are rare, they are deadly; according to the World Health Organization the mortality rate among humans is $60 \% . \Rightarrow$ survival prob $=0.4$
Let X equal the number of people, among the next 25 reported cases, who survive the disease.

$$
x \sim \operatorname{Bin}(25,0.4)
$$

Assuming independence, the distribution of X is $b(25,0.4)$. What is the probability that ten or fewer of the cases survive?

$$
F(10)=\mathbb{P}(X \leqslant 10)=\sum_{x=0}^{10} \mathbb{P}(X=x)
$$

$$
=\sum_{x=0}^{10}\binom{25}{x}(0.4)^{x} \cdot(0.6)^{25-x}
$$

Binomial random variables

$$
M(t)=\mathbb{E}\left[e^{t x}\right]
$$

Theorem

$$
x \sim \operatorname{Bin}(n, p)
$$

The mgf of a binomial random variable X is

$$
\begin{aligned}
& M(t)= \\
& M(t)=\mathbb{E}\left[e^{t x}\right]=\sum_{x=0}^{n} e^{t x} \cdot \frac{\left(e^{t}\right)^{x}}{\binom{n}{x}} p^{x} \cdot(1-p)^{n-x} \\
&=\sum_{x=0}^{n}\binom{n}{x}\left(e^{t} \cdot p\right)^{x}(1-p)^{n-x} \\
&=\frac{\left(e^{t} \cdot p+(1-p)\right)^{n}}{\text { Binomial Thu }}(a+b)^{n}=\sum_{x=0}^{n}\binom{n}{x} a^{x} b^{n-x}
\end{aligned}
$$

X : Bernowli RV $\quad X=\left\{\begin{array}{lll}1 & w \cdot p . & p \\ 0 & w \cdot p . & 1-p\end{array}\right.$

$$
\Rightarrow \quad M G F \quad M_{x}(t)=e^{t} p+(1-p)
$$

Y : Binomial $R V \quad Y \sim \operatorname{Bin}(n, p)$

$$
\Rightarrow \quad M G F \quad M_{Y}(t)=\left(e^{t} p+(1-p)\right)^{n}=\left(M_{X}(t)\right)^{n}
$$

Binomial random variables

Exercise

It is believed that approximately 75% of American youth now have insurance due to the health care law.

Suppose this is true, and let X equal the number of American youth in a random sample of $n=15$ with private health insurance.

How is X distributed? Find the probability that X is at least 10 . Find the mean, variance, and standard deviation of X.

$$
\begin{aligned}
& X \sim B_{\text {Tn }}(15,0.75) \quad \text { under }\left\{\begin{array}{l}
\text { indep. } \\
2 \text { outcomes } \\
\text { sane pw b. }
\end{array}\right. \\
& \mathbb{P}(X \geqslant 10)=\sum_{x=10}^{15}\binom{15}{x}(0.75)^{x}(0.25)^{15-x}
\end{aligned}
$$

Use table

$$
\begin{array}{r}
x+Y=15 \quad x=\frac{15-Y}{} \\
X=\text { of people having inswance } \\
p=0.75
\end{array}
$$

$Y=\#$ of people not hawing insurance $p=0.25$

$$
\begin{aligned}
& x \sim \operatorname{Bin}(15,0-75)=15-Y \\
& \mathbb{P}\left(x^{\prime \prime} \geqslant 10\right)=\mathbb{P}(Y \leqslant 5)
\end{aligned}
$$

Section 5.

The Hypergeometric Distribution

Ex 6 Blue Balls 4 Red Balls
Choose 4 balls with replacement $\rightarrow\left\{\begin{array}{l}\text { indep. } \\ \text { same prob. }\end{array}\right.$
$x=$ \# of Blue balls among 4 chosen balls. $x \sim \operatorname{Bin}(4,0,6)$
Q : If without replacement $B B R R$

$$
\mathbb{P}(x=2)=\frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot\binom{4}{2}=\frac{\binom{6}{2} \cdot\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right)}{\binom{10}{4}}
$$

The Hypergeometric Distribution

There is a collection of N_{1} red balls and N_{2} blue balls.
Sample n balls at random without replacement ($n \leq N_{1}+N_{2}$).
Let X be the number of red balls chosen.
Then, X is called a hypergeometric random variable with parameters N_{1}, N_{2}, n, and denoted by $\mathrm{HG}\left(N_{1}, N_{2}, n\right)$.

If with replacement $\quad X \sim \operatorname{Bin}\left(n, \frac{N_{1}}{N_{1}+N_{2}}\right)$

The Hypergeometric Distribution

Example 2 kind

In a small pond there are 50 fish, ten of which have been tagged.
If a fisherman's catch consists of seven fish selected at random and without replacement, and X denotes the number of tagged fish,
what is the probability that exactly two tagged fish are caught?
$\mathrm{N}_{1} \quad \overline{\mathrm{~N}_{2}} n$

$$
\begin{gathered}
x \sim H G(10,40,7) \\
\mathbb{P}(X=2)=\frac{\binom{10}{2}\binom{40}{5}}{\binom{50}{7}}=\frac{10}{50} \cdot \frac{9}{49} \cdot \frac{40}{48} \cdot \frac{39}{47} \cdots \\
x\binom{7}{2}
\end{gathered}
$$

$10 R \quad 5 \mathrm{~B} \quad \xrightarrow{\text { Chose }} 12$ balls
$x=\#$-f Red balls chosen

$$
\begin{aligned}
x \sim H G(10,5,2) \quad \begin{aligned}
f(k) & =\cdots \\
k & =0,1, \cdots, 10
\end{aligned} \\
\end{aligned}
$$

The Hypergeometric Distribution

With replace rent

$$
\begin{aligned}
\operatorname{Bin}\left(n, \frac{N_{1}^{\prime l}}{N_{1}+N_{2}}\right) \rightarrow E \operatorname{Exp} & =n \cdot p \\
& =n \cdot \frac{N_{1}}{N_{1}+N_{2}}
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {or }} & =n \cdot p \cdot\left(1-q^{\prime \prime}\right) \\
& =n \cdot \frac{N_{1}}{N_{1}+N_{2}} \cdot \frac{N_{2}}{N_{1}+N_{2}}{ }^{35}
\end{aligned}
$$

If N_{1}, N_{2} large

Figure 2.5-2 Binomial and hypergeometric (shaded) probability histograms

$$
\begin{aligned}
& \frac{N_{1}}{N_{1}+N_{2}} \rightarrow p \\
& \operatorname{HG}\left(N_{1}, N_{2}, n\right) \approx \operatorname{Bin}(n, p) \\
& S \\
& Y \\
& Y \\
& P(Y=k) \approx \\
& \mathbb{P}(X) \\
& X
\end{aligned}
$$

Exercise
In a lot (collection) of 100 light bulbs, there are five bad bulbs.
An inspector inspects ten bulbs selected at random.
Find the probability of finding at least one defective bulb.

$$
\begin{aligned}
& x=\# \text { of defective } \sim H G(5,95,10) \\
& \mathbb{P}(x \geqslant 1)=1-\mathbb{P}(x=0) \\
& =1-\frac{\binom{5}{0}\binom{95}{10}}{\binom{100}{10}}
\end{aligned}
$$

Section 6.

The Negative Binomial Distribution

Geometric random variables

tossing a coin
Consider a sequence of independent Bernoulli trials with success probability $\quad P \in(0,1)$ Let X be the number of trials until the first success.

This random variable is called a geometric random variable.

$$
\begin{aligned}
& H: x=1 \\
& \text { TH: } \quad x=2 \\
& \text { TH: } \quad X=3 \\
& \begin{array}{l}
2 \\
6 \\
6
\end{array} \\
& \begin{array}{c}
f(x)=(1-p)^{x-1} \cdot p \quad \underbrace{}_{(x-1)} \quad x=1,2, \ldots \ldots, \text { times }
\end{array}
\end{aligned}
$$

Geometric random variables

$$
q=1-p
$$

Theorem
The emf of X is $\quad f_{x}(x)=(1-p)^{x-1} \cdot p \quad x=1,2, \cdots$
$\mathbb{E}[X]=\frac{1}{p} \quad \&$ covered previously.
$\operatorname{Var}[X]=\frac{q}{p^{2}} \quad \leftarrow$ use MGF
$M(t)=\frac{p e^{t}}{1-(1-p) e^{t}} \quad \& \quad$ for $t<-\ln (1-p)$.
Geom. Series: $a \overbrace{+a \cdot r+a \cdot r^{2}+\cdots=\frac{a}{1-r}}^{x r}$
when $\quad|r|<1$.

Example
Some biology students were checking eye color in a large number of fruit flies.
For the individual fly, suppose that the probability of white eyes is $1 / 4$ and the probability of red eyes is $3 / 4$, and that we may treat these observations as independent Bernoulli trials.

What is the probability that at least four flies have to be checked for eye color to observe a white-eyed fly?

$$
p=\frac{1}{4}
$$

$x=$ \# of observations until the first white.

$$
\begin{aligned}
& \sim G \operatorname{com}\left(\frac{1}{4}\right) \\
& \mathbb{P}(x>3)=\mathbb{P}(x \geqslant 4)=\sum_{x=4}^{\infty} \mathbb{P}(x=x)^{\prime \prime} f(x) \\
&=\sum_{x=4}^{\infty}(1-p)^{x-1} \cdot p \\
&=(1-p)^{3^{k k}} \cdot p+(1-p)^{4} \cdot p+(1-p)^{5} \cdot p+\cdots \\
&=\frac{(1-p)^{3} \cdot p}{1-(1-p)}=(1-p)^{3}=\left(\frac{3}{4}\right)^{3} .
\end{aligned}
$$

Note:

$$
\mathbb{P}(x>k)=(1-p)^{k} .
$$

Negative Binomial random variables

Consider a sequence of independent Bernoulli trials with success probability
Let X be the number of trials until the r-th success.
This random variable is called a negative binomial random variable.

$$
\begin{aligned}
& x \sim \operatorname{Neg} \operatorname{Bin}(r, p) \\
& f_{x}(x)=\mathbb{P}(X=x) \\
&=\binom{x-1}{r-1} P^{r} \cdot(1-p)^{x-r}
\end{aligned}
$$

x_{1}, x_{2}, x_{3}

$$
x=13 .
$$

$$
x=x_{1}+x_{2}+x_{3} .
$$

Negative Binomial random variables
Theorem
The mf of X is

$$
f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

for $k=r, r+1, \cdots$ and otherwise zero.

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{r}{p} \\
& \operatorname{Var}[X]=\frac{r q}{p^{2}} \\
& M(t)=\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r}
\end{aligned}
$$

A negative binomial random variable can be written as a sum of independent geometric random variables.

$$
\begin{aligned}
& X \sim \operatorname{NegBin}(r, p) \\
& X=X_{1}+X_{2}+\cdots+X_{r} \\
&
\end{aligned}
$$

Negative Binomial random variables

Example

Suppose that during practice a basketball player can make a free throw 80% of the time.

Furthermore, assume that a sequence of free-throw shooting can be thought of as independent Bernoulli trials.

Let X equal the minimum number of free throws that this player must attempt to make a total of ten shots.

Find the mean of X.

$$
\begin{aligned}
x & \sim \operatorname{Neg} \operatorname{Bin}(10,0.8) \\
\mathbb{E}[X] & =10 \cdot \frac{5}{4}=\frac{25}{2}=12.5
\end{aligned}
$$

$$
\frac{10}{12.5}=80 \%
$$

"Coupon Collectryg Problem,"
Exercise
One of four different prizes was randomly put into each box of a cereal.
If a family decided to buy this cereal until it obtained at least one of each of the four different prizes, what is the expected number of boxes of cereal that must be purchased? $\quad P=\frac{3}{4}$

$$
x_{4} \sim G \operatorname{com}\left(\frac{1}{4}\right)
$$

$\mathbb{E}[\#$ of boxes purchased $]$

$$
\begin{aligned}
& =\mathbb{E}\left[x_{1}+x_{2}+x_{3}+x_{4}\right] \\
& =\mathbb{E}\left[x_{1}\right]+\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right] \\
& =1+\frac{4}{3}+2+4=7+\frac{4}{3}=\frac{25}{3}
\end{aligned}
$$

Section 7.

The Poisson Distribution

Definition

Some experiments result in counting the number of times particular events occur at given times or with given physical objects.

Example

- the number of cell phone calls passing through a relay tower between 9 and 10am.
- the number of flaws in 100 feet of wire
- the number of customers that arrive at a ticket window between noon and 2 pm .
- the number of defects in a 100 -foot roll of aluminum screen that is 2 feet wide.

Definition

Counting such events can be looked upon as observations of a random variable associated with an approximate Poisson process, provided that the conditions in the following definition are satisfied.

Definition

Let the number of occurrences of some event in a given continuous interval be counted. Then we have an approximate Poisson process with parameter $\lambda>0$ if

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.

Under these assumption, consider the number of occurrences in a time interval $[0,1]$.

Send $n \rightarrow \infty$

$$
\rho=\frac{\lambda}{n}
$$

$$
x=\# \text { of customers }
$$

$$
\mathbb{E}[x]=\lambda .
$$

$x \approx \frac{\operatorname{Bin}(n, \stackrel{\downarrow}{p})}{L}$

$$
n p=\operatorname{Exp} .=\lambda
$$

Definition

Split $[0,1]$ into n subintervales $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \cdots,\left[\frac{n-1}{n}, 1\right]$.
In each subinterval, at most one event occurs with probability $\frac{\lambda}{n}$.
Thus, the number of occurrences is a binomial random variable with n nad $\frac{\lambda}{n}$.
As $n \rightarrow \infty$, the random variable gets close to some random variable X.
We say X is a Poisson random variable with parameter λ if its mf is

$$
\mathbb{P}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

for $k=0,1,2, \cdots$.

$$
\begin{aligned}
x & \operatorname{Pois}(\lambda) \\
f(x) & =e^{-\lambda} \frac{\lambda^{k}}{k!} \quad k=0,1,2, \cdots .
\end{aligned}
$$

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Theorem

$$
\begin{aligned}
& \mathbb{E}[X]=\lambda \\
& \operatorname{Var}[X]=\lambda \\
& M(t)=e^{\lambda\left(e^{t}-1\right)} \\
& \mathbb{E}[x]=\sum_{k=0}^{\infty} k \cdot f(k)=\sum_{k=\phi_{1}}^{\infty} k \cdot e^{-\lambda} \lambda^{k}(k-1)! \\
& \underline{n}=k-1 \\
& =e^{-\lambda}\left(\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\right)^{\lambda}=\lambda \text {. } \\
& \operatorname{Var}(x)=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2} \\
& \mathbb{E}\left[x^{2}\right]=\mathbb{E}[x(x-1)]{ }^{\uparrow} \mathbb{E}[x] \text {. }
\end{aligned}
$$

Definition

Example

In a large city, telephone calls to 911 come on the average of two every 3 minutes.
If one assumes an approximate Poisson distribution, what is the probability of five or more calls arriving in a 9 minute period?

$$
\begin{aligned}
& x=\# \text { of calls in } 9 \mathrm{~min} \\
& x \sim P_{\text {dis }}(6) \\
& \mathbb{P}(x \geqslant 5)=\sum_{k=5}^{\infty} e^{-6} \frac{6^{k}}{k!}
\end{aligned}
$$

$X \sim \operatorname{Pois}(\lambda): \#$ of customer in 1 hr.

$$
\begin{aligned}
& \text {. } f(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \cdots \\
& \mathbb{E}[x]=\lambda, \quad \operatorname{Var}(x)=\lambda, \quad M(t)=e^{\lambda\left(e^{t}-1\right)} \\
& x \sim \operatorname{Bin}(n, p) \text { large } n \text {, small } p \\
& n-p=\lambda \quad \Rightarrow \quad x \quad \operatorname{PoTS}(\lambda) \\
& \binom{n}{k} P^{k}(1-p)^{n-k}=\mathbb{P}(x=k) \approx e^{-\lambda} \frac{x^{k}}{k!}
\end{aligned}
$$

Poisson Approximation to Binomial

$$
x \sim \operatorname{Pois}(\lambda) \quad \leftarrow \text { From } \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)
$$

Supose X is a binomial random variable $b(n, p), n$ is large, and p is small but $n p$ converges to some constant, say λ.
In this case, X can be approximated by a Poisson random variable with parameter λ.
This approximation is quite accurate if $n \geq 20, p \leq 0.05$ or $n \geq 100, p \leq 0.1$.

$$
\begin{array}{lc}
\operatorname{Bin}(n, p) & n \text { lunge } p \text { small } \\
\text { ss } & n \cdot p \approx \lambda \\
\operatorname{Pois}(\lambda) &
\end{array}
$$

Example
A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs are defective.
Assuming independence, the number of defective bulbs in a box of 100 bulbs has a binomial distribution with parameters $\mathrm{n}=100$ and $\mathrm{p}=0.02$.

Find the probability that a box of 100 of these bulbs contains at most/three defective bulbs.
$x=$ \# of defective ones in a box $\sim \operatorname{Bin}\left(\begin{array}{cc}100, & 0.02 \\ \uparrow & \uparrow \\ \text { large } & \text { small }\end{array}\right.$

$$
100-0.02=2
$$

$$
\begin{aligned}
\mathbb{P}(x \leqslant 3) & \approx \mathbb{P}(Y \leqslant 3) \\
& =\sum_{k=0}^{3} 1 e^{-2} \frac{2^{k}}{k!} \\
& =e^{e^{-2}(\underbrace{\frac{2}{3}}+\frac{2^{2}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!})} \\
& =\underbrace{\frac{19}{3} \cdot e^{-2}}:
\end{aligned}
$$

$\leftrightarrow \quad C D F$										
Table III The Poisson Distribution										
				on, $\lambda=$ $F(x)$	12 $X \leq x)$		\curvearrowleft 4	oisson 8	12	
	$\lambda=E(X)$									
x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0	0.905	0.819	0.741	0.670	0.607	0.549	0.497	0.449	0.407	0.368
1	0.995	0.982	0.963	0.938	0.910	0.878	0.844	0.809	0.772	0.736
2	1.000	0.999	0.996	0.992	0.986	0.977	0.966	0.953	0.937	0.920
3	1.000	1.000	1.000	0.999	0.998	0.997	0.994	0.991	0.987	0.981
4	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.998	0.996
5	1.0001.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
6		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0	0.333	0.301	0.273	0.247	0.223	0.202	0.183	0.165	0.150	0.135
1	0.699	0.663	0.627	0.592	0.558	0.525	0.493	0.463	0.434	0.406
2	0.900	0.879	0.857	0.833	0.809	0.783	0.757	0.731	0.704	0.677
3	0.974	0.966	0.957	0.946	0.934	0.921	0.907	0.891	0.875	0.857
4	0.995	0.992	0.989	0.986	0.981	0.976	0.970	0.964	0.956	0.947
5	0.999	0.998	0.998	0.997	0.996	0.994	0.992	0.990	0.987	0.983
6	1.000	1.000	1.000	0.999	0.999	0.999	0.998	0.997	0.997	0.995
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0
0	0.111	0.091	0.074	0.061	0.050	0.041	0.033	0.027	0.022	0.018
1	0.355	0.308	0.267	0.231	0.199	0.171	0.147	0.126	0.107	0.092
2	0.623	0.570	0.518	0.469	0.423	0.380	0.340	0.303	0.269	0.238
3	0.819	0.779	0.736	0.692	0.647	0.603	0.558	0.515	0.473	0.433
4	0.928	0.904	0.877	0.848	0.815	0.781	0.744	0.706	0.668	0.629
5	0.975	0.964	0.951	0.935	0.916	0.895	0.871	0.844	0.816	0.785
6	0.993	0.988	0.983	0.976	0.966	0.955	0.942	0.927	0.909	0.889
7	0.998	0.997	0.995	0.992	0.988	0.983	0.977	0.969	0.960	0.949
8	1.000	0.999	0.999	0.998	0.996	0.994	0.992	0.988	0.984	0.979
9	1.000	1.000	1.000	0.999	0.999	0.998	0.997	0.996	0.994	0.992
10	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.998	0.997
11	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999
12	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table III continued											
x	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	

Exercise
Suppose that the probability of suffering a side effect from a certain flu vaccine is 0.005 . If 1000 persons are vaccinated, approximate the probability that (a) At most one person suffers. (b) Four, five, or six persons suffer.

$$
\begin{aligned}
& X=\# \text { of people suffering a side eff } \\
& \sim B_{\text {in }}(1000,0.005) \approx P_{0 i s}(5) \sim Y . \\
& 1000.0 .005
\end{aligned}
$$

(a)

$$
\begin{aligned}
\mathbb{P}(x \leqslant 1) \approx \mathbb{P}(Y \leqslant 1) & =e^{-5} \frac{5^{0}}{0!}+e^{-5} \frac{5^{1}}{1!}{ }^{52} \\
& =6 \cdot e^{-5} \approx 0.04
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathbb{P}(x=4,5,6) & \approx P(Y=4,5,6) \\
& =e^{-5} \cdot\left(\frac{5^{4}}{4!}+\frac{5^{5}}{5!}+\frac{5^{6}}{6!}\right) \\
& \approx \\
& \text { using table. }
\end{aligned}
$$

\#5
(a) with replacement.
$5 G, T R \rightarrow$ Sample 9 .

$$
\begin{aligned}
& \mathbb{P}(B)=\mathbb{P}(X=4)=\binom{9}{4}\left(\frac{5}{12}\right)^{4}\left(\frac{7}{12}\right)^{5} \\
& (4 G, 5 R) \\
& x=\# \text { of } G \quad \text { in } 9 \text { samples } \\
& \sim \operatorname{Bin}\left(9, \frac{5}{12}\right)
\end{aligned}
$$

(b) without replacement.

$$
\begin{aligned}
& \text { Without replacement. } \\
& \mathbb{P}(A)=\frac{5}{12} \cdot \frac{4}{11} \cdot \frac{5}{10}=\frac{1}{22}=\frac{\binom{5}{3}}{\binom{12}{3}}=\frac{\frac{5 \cdot 4 \cdot 3}{3!}}{\frac{12 \cdot 11 \cdot 10}{3!}} \\
& \mathbb{P}(B)=\mathbb{P}(Y=4)=\frac{\binom{5}{4} \cdot\binom{7}{5}}{\binom{12}{9}}
\end{aligned}
$$

$Y=\#$ of G in 9 sample Without replacencut.

$$
\sim H G(5,7,9)
$$

$$
\begin{aligned}
& \mathbb{P}(B \mid A)=P(z=1)=\frac{\binom{2}{1}\binom{7}{5}}{\binom{9}{6}}=\frac{2 \cdot \frac{\frac{7 \cdot 6}{2}}{\frac{9 \cdot 8 \cdot 7}{3!}}=\frac{6 \cdot 6}{9-8}}{3!}=\frac{1}{2} . \\
& G G G(Z \sim \operatorname{HG}(2,7,6)
\end{aligned}
$$

6 sample from $9(2 G, T R)$ without replacenet.

$$
\mathbb{P}(A \mid B)=\mathbb{P}(B \mid A) \cdot \frac{\mathbb{P}(A)}{\mathbb{P}(B)}=\frac{1}{21}
$$

\#3 Exhourstive : $\quad A_{1} \cup A_{2} \cup \cdots \cup A_{6}=\$$
Mutually exclusive: $\quad A_{1} \cap A_{2}=A_{2} \cap A_{3}=\cdots=\phi$

$$
\begin{array}{r}
\Rightarrow \mathbb{P}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{6}\right)=1 \\
\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)+\cdots+\mathbb{P}\left(A_{6}\right) \\
\mathbb{P}\left(A_{1}\right)=\frac{\mathbb{P}\left(A_{2}\right)}{2}=\frac{\mathbb{P}\left(A_{3}\right)}{3}=\cdots=\frac{\mathbb{P}\left(A_{6}\right)}{6}=a \\
\Rightarrow \quad \mathbb{P}\left(A_{k}\right)=k \cdot a
\end{array}
$$

$$
\mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(A_{6}\right)=1-a+2-a+\cdots+6-a=1
$$

$$
a(1+\cdots+6)=1
$$

$$
a=\frac{1}{1+\cdots+6}=\frac{1}{21} .
$$

$$
P\left(A_{4}\right)=4 \cdot a=4 \cdot \frac{1}{21}
$$

(\#5)

$$
\begin{aligned}
& M(t)=C \cdot(1-2 t)^{5} \quad t<\frac{1}{2} \\
& M(t)=\mathbb{E}\left[e^{t x}\right] \\
& M(0)=1 \\
& M^{\prime}(0)=\mathbb{E}[x] \\
& M^{\prime \prime}(0)=\mathbb{E}\left[x^{2}\right]
\end{aligned}
$$

(a) $M(0)=C \cdot(1-0)^{-\delta}=C=1$.
(b) $\mathbb{E}[x]=\left.M^{\prime}(t)\right|_{t=0}$

$$
\begin{align*}
& =(-5) \cdot(1-2 t)^{-6}(\left.\underbrace{(-2 t)^{\prime}}_{10}\right|_{t=0} \\
& =\underbrace{(-5)(1-2 t)^{-6}}_{11}=
\end{align*}
$$

(c)

$$
\begin{aligned}
M^{\prime \prime}(0) & =\left.10 \cdot(-6)(1-2 t)^{-7} \cdot(-2)\right|_{t=0}=120 . \\
& =\mathbb{E}\left[x^{2}\right] \neq \operatorname{Var}(x) \\
\operatorname{Var}(x) & =\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}=120-(10)^{2}=20 \mathrm{I} .
\end{aligned}
$$

$\# 4$

$$
f(k)=\left\{\begin{array}{cl}
c & k=0 \\
\frac{1}{k!3^{k}} & k=1,2,3, \ldots
\end{array}\right.
$$

$$
1=\sum_{k=0}^{\infty} f(k)=c+\underbrace{\sum_{k=1}^{\infty} \frac{1}{k!}\left(\frac{1}{3}\right)^{k}}-1
$$

$$
c=2-e^{\frac{1}{3}}
$$

$$
\mathbb{E}[x]=\sum_{k=1}^{\infty} k \cdot f(k)=\sum_{k=1}^{\infty} k \frac{1}{k!} \cdot\left(\frac{1}{3}\right)^{k}
$$

$$
=\sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(\frac{1}{3}\right)^{(k-1)+1}
$$

$$
=\frac{1}{3} \sum_{k=1}^{\infty} \frac{1}{\substack{(k-1)!\\ n \\ n}}\left(\frac{1}{3}\right)^{(k-1)=n}
$$

$$
=\frac{1}{3} \underbrace{\sum_{n=0}^{\infty} \frac{1}{n!} \cdot\left(\frac{1}{3}\right)^{n}}_{{ }^{-1} e^{\frac{1}{3}}}=\frac{1}{3} e^{\frac{1}{3}} .
$$

