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Section 1.

Bivariate Distributions of the

Discrete Type



Motivation

Suppose that we observe the maximum daily temperature, X , and

maximum relative humidity, Y , on summer days at a particular weather

station.

We want to determine a relationship between these two variables.

For instance, there may be some pattern between temperature and

humidity that can be described by an appropriate curve Y = u(X ).



Joint distribution

Let X and Y be two random variables defined on a discrete sample space.

Let S denote the corresponding two-dimensional space of X and Y , the

two random variables of the discrete type.

Definition

The function f (x , y) = P(X = x ,Y = y) is called the joint probability

mass function (joint pmf) of X and Y .

(pmf f(x) =4(X=x) (



Joint distribution

Note that

• 0  f (x , y)  1

•
P

(x ,y)2S f (x , y) = 1

• P((X ,Y ) 2 A) =
P

(x ,y)2A f (x , y)

3
x =y

IP(X
=4

-

Same as before.



Joint distribution

Example

Roll a pair of fair dice.

Let X denote the smaller and Y the larger outcome on the dice.

Find the joint pmf of (X ,Y ).

x >y
fix,y =[ B X =y

x, y = 1,-.6.

x<y

S
2f(1,y)

Y fx(x).
y=1,

it
istoitin
Ess 1,8

i 9/36 =fx(2)

⑧ Ys6
-

W i 7/36 =fx(3)
0 ⑧ 136 " 5/36

0 0 0
0 Y36 103/36 i

6

I
0 0 0 D 0 436

1/36

fy(y)/3646---- "/36

Afiscal +(6)



Marginal distribution

Definition

Let X and Y have the joint probability mass function f (x , y) with space

S .

The probability mass function of X , which is called the marginal

probability mass function of X , is defined by

fX (x) =
X

y

f (x , y) = P(X = x).

fx(x) =P(X =x) =2Y=y)

=2!f(x,y)
y

fy(y) =P(y =y)
=2P(X =x,y=y)

=2!f(x,y)



Marginal distribution

Definition

We say X and Y are independent if

P(X = x ,Y = y) = P(X = x)P(Y = y)

for all (x , y) 2 S .

Equivalently, f (x , y) = fX (x)fY (y) for all x , y .

Otherwise, we say X and Y are dependent.

Lef X, Y indep. If for any events

A, B

IP(x =A, Y =B) =P(x + A).P(X +B).

y
discrete type.

i Yy"
X. Y indep. with fx,y =fx fy

E(X.Y 3 =25! x.y.fx,y(x,y)
x y

=25xxy.fx(x). fy(y)
X y

=(x-fx(x))- (zy7y(y))
= E[X]. ECY]

But, E(X.Y3=ECX3-ECY] * indep



Marginal distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find the marginal pmfs of X and Y .

Determine whether they are independent.

-=

fx(x) = !,(x+y) =2.)(x+x) +(x+x) =E

fy(y) =xx+y) =5)(1 +y) +x+y) +15+y)) =t

fx(x) .fxy) =(p -(2x +3).(3y +6)(x+y)

X =1,y =1, 25. 5.9 E 2.2
not equal

X. Y dep.

for some x.y



Marginal distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
xy2

30

for x = 1, 2, 3 and y = 1, 2.

Find the marginal pmfs of X and Y .

Determine whether they are independent.

fxx =zf(x,y) =5(X-12 +x.2) =5 =5.

fy(y) =x =xy2 =3.(1 +2 +3) =7

**1. ==Exear
->X & Y indep, all x = 1,2.By

y =1,2



Expectations

Definition

Let X1 and X2 be random variables of the discrete type with the joint

pmf f (x1, x2) on the space S . If u(X1,X2) is a function of these two

random variables, then

E[u(X1,X2)] =
X

(x1,x2)2S

u(x1, x2)f (x1, x2).

In particular, if u(x1, x2) = x1, then

E[u(X1,X2)] = E[X1] =
X

(x1,x2)2S

x1f (x1, x2) =
X

x1

x1fX1(x1).

Itr joint prof

-

ux. Aix,x=x fx,xe
Ax

-> E[X1].

Recall *I discrete RVs

fx,yx,y)=P(X =x,Y=y) :jointpart ofX.Y.

f(x) =P(X
=x) =(X =x,y=y) =3fx,y(x,y)

i marginal put of X.



fy(y) =4(Y =y) =5P(X=x,y=y)
=

2x,y,y)

E[u(X,Y)] ex) u(x,y)
=

x.y ,
E(u(x,y)] =E(X.Y].

=2E, uy).fx,

Ex) u(x,y) =x+y
E[u(X,3)] =E(X+Y) =2 , (x,5.fx,3.3)-

=

8x,y(x,y)
+xy)

=Ex.(x,y) +5y(E2x,y,x,y))
-

=2y(x)
=Fly)

=

E[X] + ECYS.

But, ECX.Y] = ECX]. ECYJ, ingeneral.



Expectations

Example

There are eight similar chips in a bowl: three marked (0, 0), two marked

(1, 0), two marked (0, 1), and one marked (1, 1).

A player selects a chip at random.

Let X1 and X2 represent those two coordinates.

Find the joint pmf.

Compute E[X1 + X2].

E(X1 +x2] =E(X13 +E(X) =2E(X1) =2.(0.4+1.)
=E.

2x,x(0.0)
=3/8

E fx,x(0,1) =2x,x",0) =48
fx,x2,1) =48

ineedi
fx,0)



Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and

defective.

Let p1, p2, p3 be the corresponding probabilities.

Repeat the experiment n times and let X , Y be the numbers of perfect

and seconds.

We say (X ,Y ) has the trinomial distribution.



Trinomial distribution

Example

In manufacturing a certain item, it is found that in normal production

about 95% of the items are good ones, 4% are ”seconds,” and 1% are

defective.

A company has a program of quality control by statistical methods, and

each hour an online inspector observes 20 items selected at random,

counting the number X of seconds and the number Y of defectives.

Suppose that the production is normal.

Find the probability that, in this sample of size n = 20, at least two

seconds or at least two defective items are discovered.



Exercise

Roll a pair of four-sided dice, one red and one black.

Let X equal the outcome of the red die and let Y equal the sum of the

two dice.

Find the joint pmf.

Are they independent?

X
Y 2 3456 I 8 fx,x)

-

I %16 Y16 Y6 Yid 00 ⑧ Y4

2 0 Yo Yo Yo Yis 0 ⑧ "4

3
P 0 4o Yo Yo Yis 0 Y4

↳
000 110 Y10 Ys Yis Y4

7xxy))40269/10*040410 YS

Dependant.



Section 2.

The Correlation Coe�cient



Covariance and Correlation coe�cient

Definition

The covariance of X and Y is

Cov(X ,Y ) = E[(X � µX )(Y � µY )].

The correlation coe�cient of X and Y is

⇢ =
Cov(X ,Y )

�X�Y
.

My =E(X]

My =E[Y]

T

who
rx =y-r(x) =StdIX)

N =NY)



Covariance and Correlation coe�cient

Properties

1. If X and Y are independent, then Cov(X ,Y ) = 0.

2. Cov(X ,Y ) = E[XY ]� E[X ]E[Y ].

3. �1  ⇢  1.

E(XY) =E(X). E[Y]

N H

Bof(
CoviX,Y) =5[(X-E(x3). (Y -(Y))]
me

=E(XY - E(x].Y - E(Y). X
+E(X] ECY3]

-
=E(xY) - E(E(x).Y 3-

*E(Y).X]
+E[X]. ECY]

-E(XY3 - E(X) - E(Y] - (X]
+E([Y]



Covariance and Correlation coe�cient

Properties

1. If X and Y are independent, then Cov(X ,Y ) = 0.

2. Cov(X ,Y ) = E[XY ]� E[X ]E[Y ].

3. �1  ⇢  1.

X =x-Mx =X- E(X)
=>CovIX,Y]

Y =Y-My
=x- E(Y) =E(X.5]

&

0xE((Y - +x)] =E) Y2 - zt.X.Y ++x2]

&-t
- #(Y3 - 2+Ys + -2 -x2)
-

Vor"(Y) Corix,y) vor"x)
a =rx ↑
b =Cov(X,Y) minimize in t

c =r
b
2

=r-sat
2
- 2b + +c =

a
-minimum? O

2at - 26 =0 at =# =Co



Covariance and Correlation coe�cient

Properties

1. If X and Y are independent, then Cov(X ,Y ) = 0.

2. Cov(X ,Y ) = E[XY ]� E[X ]E[Y ].

3. �1  ⇢  1.

2
- (Y)"-084

2x2

1



Covariance and Correlation coe�cient

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + 2y

18

for x = 1, 2 and y = 1, 2.

Compute Cov(X ,Y ) and ⇢.

-

a fx(x) =f(x,1 +f(x,2) =5 +* =

a
fy(y) =f(1,y) +f(2,y) = +Ey

=Y
& E(x) =1.() +2.() =

#(Y) =1-(4 +2.58) =

③ E(X-Y] =1.1.7(1,1) +1.2.f(1,2) +2.1-f(2-1)

+ 2-2-f(2,2)



-> +2.4 +45=1.+2.
=(3 +10 +8 +24) =5=

CorIx.Y) =E[X.Y] -E[x]. ECY)
=5/2 - (49).(29/8).

COVIX,Y)
1
= (skip...)

VarIx).Var(Y).



The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation

between two random variables X and Y .

One of natural ways is to consider a linear relation between X and Y , that

is, to figure out the best possible slope b such that Y � µY = b(X � µX )

has small errors.

We measure the error by E[((Y � µY )� b(X � µX ))2].

Y p >
0

I
Y=My

+Px-Mx)I 1,e
error crojeion1-conditional** =

expectation

-&
=b

min E((I) ↑
b =a =

e-meY =My t



The Least Squares Regression Line

One can see by some calculus that the error is minimized when

b = ⇢
�Y
�X

and the minimum error is �2
Y (1� ⇢2).

The line Y � µY = ⇢�Y
�X

(X � µX ) is called the line of best fit, or the least

squares regression line.

= asi



The Least Squares Regression Line

Example

Let X equal the number of ones and Y the number of twos and threes

when a pair of fair four-sided dice is rolled.

Then X and Y have a trinomial distribution.

Find the least squares regression line.



Uncorrelated

We say X ,Y are uncorrelated if ⇢ = 0.

If X ,Y are independent then they are uncorrelated.

However, the converse is not true.

#(X-Y) =E(x) - ECY]

SCoV(X,Y) =0

x.Y positively correlated if so
-> negatively if <0



Uncorrelated

Example

Let X and Y have the joint pmf f (x , y) = 1
3 for

(x , y) = (0, 1), (1, 0), (2, 1)._ __D

E(x) =0.5 +1 - 5 +2.5 =1

E(4] =1.2 +0. =3.

E(X.4] =2.1. 5 =3
Cor(X,Y) =ECXY] =ECX3-EC]

=I - 1. 5 =0.

X. Y uncorrelated.

P(X =0) =5 P(Y=1)=

P(X=0,Y=1) =5 notindep



Exercise

The joint pmf of X and Y is f (x , y) = 1
6 , 0 < x + y < 2, where x and y

are nonnegative integers.

Find the covariance and the correlation coe�cient.

(0,0) (1,0) (0,1)

(2,0) (0,2) (1,1)

-

el

-

-
E(x] =0.2 +1.2 +2 - 1 =5 = E(X]

E(XY] =1.1. 5 =5.
cor(X.4) =5 -(2) =1 - 4 =58
-

Y
in

- 8. Var(x)=ECX23- (EXx3)
⑧

E(x2 =0.2 +12] +22ts& ⑧

I

I =1 varly)

~ X varIX)=1-=



Section 3.

Conditional Distributions



Conditional distribution

Definition

The conditional probability mass function of X , given that Y = y , is

defined by

fX |Y (x |y) =
f (x , y)

fY (y)
.&

Il

4(X=x1y)

"4=3)x_e



Conditional distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. We have shown that

fX (x) =
2x + 3

21
, fY (y) =

3y + 6

21
.

Find the conditional PMFs.

C

fx1y(x(y) =P(X =x/Y=y) = f(x,y)
un fy(y)

(x+y)/2) x +y
=

(37+6/2
=

3)y +2).

quixyx =I=



Conditional distribution

Definition

The conditional expectation of Y given X = x is defined by

E[Y |X = x ] =
X

y

yfY |X (y |x).

The conditional variance of Y given X = x is defined by

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ]

= E[Y 2|X = x ]� (E[Y |X = x ])2.

fx.y(x,y) +(fx(x)
=5fx,y(x,y)

fx(y) =[fx,y(x,y)
fxxy(x1y) =P(X =x)) =fxy)
ne fx(y)

E(XY=y] = E x. fx1Y (x1y)X



Conditional distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find E[Y |X = 3] and Var(Y |X = 3).

fxx)=
fyx(y(x) = x+y

⑭3,

*(Y(x =

3)
-

exc
#(Y4X =3] =1 +2=

2

-Is

Vr(Y(x =3) =E((Y - E(Y(X=3)) (X=3]
=E(Y(X=3] - (E(Y(X=3))
=I- (*) =5(216 - 196)



Contional expectation as a function and a random variable

One can consider E[Y |X = x ] as a function of x .

Say h(x) = E[Y |X = x ]

We define a random variable E[Y |X ] = h(X ).

ECY(X =x] Enumber

h(x) =ECY/X =x) =function of N

I
↑
a new random variable.

h(X) =E):randorable.



Contional expectation as a function and a random variable

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. One can see that E[Y |X = 1] = 8
5

E[Y |X = 2] = 11
7 E[Y |X = 3] = 14

9

Find the PMF of E[Y |X ] and E[E[Y |X ]].

E(Y] =z!y fy)
=1 + +) +2.(+)
= (9 +24)=

-
&

-
S

z E(Y(X]

fz(8) =P(= =G) =4(X =1) =fx(t)

=+
fz(t) =4(z =+) =P(X =2)

I Es
=fx(2) =2 +2 =

Az(t) =



Contional expectation as a function and a random variable

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. One can see that E[Y |X = 1] = 8
5

E[Y |X = 2] = 11
7 E[Y |X = 3] = 14

9

Find the PMF of E[Y |X ] and E[E[Y |X ]].

E(E[Y(x) =E(z) =2z - fx(z)

=+



Contional expectation as a function and a random variable

Theorem

1. E[E[Y |X ]] = E[Y ]

2. Var(Y ) = E[Var(Y |X )] + Var(E[Y |X ])

"Conditioning"

C

E(ESY1x)] =I!=x7. Axx)
ne

z

=z(2y.fxy,x))fxx)
"

= iy. Y.x
=zyfx,y(x,y)

=E(Y].



E(XESY1x)] =5x
=

= x7. Axx)

ne
z

=z(2xy.fxy,x))fxx)
"

= Zxy. Y.x
=

zxyfx,y(x,y)
=(Y]

-E(E"xY1x3]



Contional expectation as a function and a random variable

Example

Let X have a Poisson distribution with mean 4, and let Y be a random

variable whose conditional distribution, given that X = x , is binomial

with sample size n = x + 1 and probability of success p.

Find E[Y ] and Var(Y ).

x =4
Y(X =4 - Bin (5,p) ↳ X X X X I

0
X A

P rP

↑win
x=4

& -

XPoisson (1)

Y (X =xBin(X+1,p)

* =# of winning

#(y) =E(ECY(X]] =E[(X+ 1) .p]

E[Y(X =x] =(x+1).p
=p.E[X] + P.

E(Y(X] =(X + 1). p
=4p +p =0.



Linear case

Suppose E[Y |X = x ] is linear in x , that is, E[Y |X = x ] = a+ bx .

Then we have µY = a+ bµX and E[XY ] = aµX + bE[X 2].

Solving for a,, we have

a = µY � ⇢
�Y
�X

µX , b = ⇢
�Y
�X

.

Thus,

E[Y |X = x ] = µY + ⇢
�Y
�X

(x � µX ).

E(Y1X =
x5 =p.(x+1) =a +bxa

=b =

p.

E(Y(X] =a +bX

↓

menx
=
E(E(Y(x)]

=E(a,bx]! line of best

a+b.E(X]

- fit

regression.
line.

x E(Y(x) =aX+ bx2

#(Y(X]] =E(aX +bx]

⒔(x,y3] **
E[XY]. S

#()
-



Linear case

Example

Let X and Y have the trinomial distribution with parameters n, pX , pY ,

that is, the joint pmf is given by

f (x , y) =

✓
n

x , y

◆
pxXp

y
Y (1� pX � pY )

n�x�y .

Find E[Y |X = x ].



Exercise

A miner is trapped in a mine containing 3 doors.

The first door leads to a tunnel that will take him to safety after 3 hours

of travel.

The second door leads to a tunnel that will return him to the mine after 5

hours of travel.

The third door leads to a tunnel that will return him to the mine after 7

hours.

If we assume that the miner is at all times equally likely to choose any one

of the doors, what is the expected length of time until he reaches safety?

=- x =1 E(Y(X =1) =3

-- X =2 #[Y(X =27 =E(4) +5

1- x =3 [Y(X =31) =((Y) +7

=

Y

E(Y] =E2 E(Y(X]]

= E(Y(x =13.5
#

=25 +(+5 +1 +x's

=(Y) =3 +5 +7 =15.



Section 4.

Bivariate Distributions of the

Continuous Type



Joint PDF

Definition

An integrable function f (x , y) is the joint probability density function of

two random variables X ,Y if

• f (x , y) � 0

•
RR

f (x , y) dxdy = 1

• P((X ,Y ) 2 A) =
RR

A f (x , y) dxdy

The marginal density functions for X ,Y are

fX (x) =

Z
f (x , y) dy , fY (y) =

Z
f (x , y) dx .

"
&

IR R

R =(-x,0)



Joint PDF

Example

Let X and Y have the joint pdf

f (x , y) =
4

3
(1� xy)

for 0 < x , y < 1. Find fX , fY , and P(Y  X
2 ).

02 x c1

0<y >1

constant

+xx = (p f(x,y) dy = S(- y)dy
=B.(y - x.]! =b)1 - x.(-d)

= (1 - )

fy(y) =(, f(x,y)dx =(5x - xy)dx =(17)

N(Y z) =4(X,y) =A) =S),f(x.y)dxdy
ne ??*irequality

region
equality -> boundary



Y
M

&1- -- -

- -I

I

I

---- !
8 11 7 X

4(y) -) =(**- xy) dydx

-.. <skipS



Joint PDF

Example

Let X and Y have the joint pdf

f (x , y) =
3

2
x2(1� |y |)

for �1 < x , y < 1.

Find E[X ] and E[Y ].

E2X2 =(R *. fxx1dx =$x-Ax,(x,y)dxdy.
ECY3 = SyfylyId=SSiRY fx.x(x,y) dxdy.

-

#(x) =1.x (e-ly1) dedy.

-! (1-x.(x)d =

#i
#Ys =1C! =x dy



-(S.t dy)(fie
Cex: x2, x4, coscl, IX...- ) 1

fix) is even iff(x) =f( - x)

f(x) is odd if f(x) = - f1-x)
3

(ex:X,X, Sink), tawlx),--->

(fxdx =2). f(xdx
:I I is

#
even

Sofaxidx=o if Iis odd.



Independent random variables

Definition

Two random variables X ,Y with joint pdf are independent if and only if

f (x , y) = fX (x)fY (y).

Ex f(x,y) =(xy Not inhep.X.Y

0 < X sy < 4

fxx =(f(x,ydy =(Xcx2dy
= (.x. (42- x)

A

#x3
Note indep. At9x)(hy))

fx(x) =g(x))(h(y)dy)
=c.g(X)



Independent random variables

Example

Let X and Y have the joint pdf f (x , y) = 2 for 0 < x < y < 1.

Compute P(0 < X ,Y < 1
2).

Are they independent?

Ingeneral x.Y are indep if

4) x = A, Y =B) =iPSY*B--

I ⑭x =1x(x).fisly). I
)x,y) dxdy

-

me,0(Y(t)
Y X =Y

IP((x,y)t A) =4.
11

" SysandiseI
=>P(0xx1,09Y(1) =4

3

A P(0(Xct). 4(0<yct)
=

is

Not index-



*A,B

P(X =A, Y +BL =P(X +A). IP(Y =B)

Es fx.y(x,y) =fx(x) - fy(y)

If

(E) Let A =9 -x,t),B =(-x,s),
-
-

+P(X =A,4) +2)

)y de dx

-

=>PIXENisandsiteslydy
2527 4(Y (B)

=fx()
E IP(X-A, Y =B)

- SASB fx, xydydx
=(A Sp fx(x) fyly) dydx
-((axdx)2S



Conditional densities and Conditional Expectation

Definition

The conditional density of Y given X = x is defined by

fY |X (y |x) =
f (x , y)

fX (x)
.

As in the discrete case, the conditional expectation and the conditional

variance are defined by

E[Y |X = x ] =

Z
yfY |X (y |x) dy ,

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ].



Conditional densities and Conditional Expectation

Example

Let X and Y have the joint pdf f (x , y) = 2 for 0 < x < y < 1.

Then, fX (x) = 2(1� x) for 0 < x < 1 and fY (y) = 2y for 0 < y < 1.

Find E[X |Y = y ] and E[Y |X = x ].

x=y

e H

yx f(x,y) =2 -> density is mom.

ri 2x=(f(xysdy
=(I2dy =2(1- x)

↳

fixed

of i I " -X

E(X 14=y] = (x.2xxxy)dx =x
↑
fixed

=I)xdx =y(x? =4..y*=

E(Y1X =x) =(g7 xx(y1xdy =(xy =xy!
↑
fixed.

=..(1x =x.(x).( +x) =I(1 +x).

E(Y1X] ==(1 +X), E/X1Y3= *"linear"



Conditional densities and Conditional Expectation

Example

Let X be U(0, 1), and let the conditional distribution of Y , given X = x

be U(x , 2x).

Find E[Y ] and Var(Y ).

Var= 3b- al2

*
f(x) =ba

Exp = overit-at?
=astas satb)

y
=2x

-

y=1

~***tE I 7 X

⑥ 1

-

VorIYIX)=is (2x- xR
-

y(x= x - Unit (.2
e

ESYT =E(XT] Exp =a
E(Y(X=x) ==(x +2x) =3
--

-

=E(=.X] == I =. -
#(Y/AI =2,

fixed
so, 13

x =[0,17

↓t

E#*1Unit (*y, y = (x,2x)fyx(y)x)

- E
0 otherwise

meaningful for all yz IR X E
it2

VarIY) = E[VarlY1x)] + War (E3) V(x) +
E(x])

-

=E(Ex+ Var(X)= +( - iz=
-



Exercise

Let f (x , y) = 2e�x�y , 0 < x  y < 0 , be the joint pdf of X and Y .

Find fX (x) and fY (y). Are X and Y independent?

D

⑧

Ex-
11

X N fxlx= (f(x,y)dy =12eydy

---ji fixed

=2.exeddysee
the

-------

-2X

!! -e
7

B By -
fyly)=(fx,y)dx =Stdx=2et. (-ex].

↑

fixed =204. 11-52) = NotExp.

x- Exp(2)



4.3.8 X =# of 1's trinomial RVs.

Y = I 2's ↓

jointprrf =PIX =x.Y=z) =()Y*-*
DD I ... .

I

1- 1

y +2

13) () -!!
=(i)

↳10 fx(x)= x =0,---,

h(y1x) =8xx/y1x) =x,y =x,r -,9

f(x,y > = fyxx(y(x). fx 12) =i-x)

fy(y) =
- x)



Section 5.

The Bivariate Normal Distribution



Motivation

Let X be a random variable.

We construct a random variable Y in the following way:

The conditional distribution of Y given X = x satisfies

1. it is normal for each x

2. E[Y |X = x ] is linear in x

3. Var(Y |X = x) is constant in x

Y

si
Si i i

>X
P

5 From last time

x (E (Y(x2) =(=bx)x
=> My

=E(E(Y(x)] =E(a +bX) =a+bMx

E
*[XY] =E(XE(Y(X]] =E((a+bx) - x)

t

-

SEaux,are



Motivation

Then, Y |X = x is normal with mean µY + ⇢�Y
�X

(x � µX ) and variance

�2
Y (1� ⇢2).

The conditional density is

fY |X (y |x) =
1

�Y
p
2⇡
p

1� ⇢2
exp

 
�
(y � (µY + ⇢�Y

�X
(x � µX )))2

2�2
Y (1� ⇢2)

!

=>Axxx =py explain -M



Bivariate normal distribution

If X itself has normal distribution, (X ,Y ) is called a bivariate normal

random variables.

Definition

We say (X ,Y ) has a bivariate normal distribution with mean vector 
µX

µY

!
and covariance matrix

 
�2
X ⇢�X�Y

⇢�X�Y �2
Y

!
if its joint pdf is

given by

f (x , y) =
1

2⇡�X�Y
p

1� ⇢2
exp

✓
� 1

2(1� ⇢2)

✓
x̄2

�2
X

� 2
⇢x̄ ȳ

�X�Y
+

ȳ2

�2
Y

◆◆

where x̄ = x � µX and ȳ = y � µY .

(X.Y): Bivariate with Si JR2 Exs L
2

&x5 s

D X eNCMX, 5x, Y-N(My, ds)

⒗ Y(X =x wN(My +1(x -Mx),4)
-

X 1Y =x - N(Mx +Py -My),2(1-p3)

If p = 1,+, Y(X=x - N) -
,
0) & ceterministic

0
=

0

& =correlation coefficient

=XY = e
Var(x)

11

CoVx.x) CowIX, Y)
Covariance matrix = I

-YrY)I Cor(Y,X) Cor(Y,Y) S



Bivariate normal distribution

Example

Let us assume that in a certain population of college students, the

respective grade point averages, say X and Y , in high school and the

first year of college have a bivariate normal distribution with parameters

µX = 2.9, µY = 2.4, �X = 0.4, �Y = 0.5, and ⇢ = 0.6.

Find P(2.1 < Y < 3.3|X = 3.2).
*

IX =3.2
nee

~N(My + 9.13.2 -Mx),(1)

~N)2.4 +06. B2.9), 10.65))
=2.4 +3x.50.3 .

0.16
=

2.4 +0.75.0.3 -) xvar.
11-p IS

0.225 ↑ 10.4.3
=

2.625

*5.9:&table!

Str My +p(X -x)

-X



Bivariate normal distribution

Theorem

If X and Y have a bivariate normal distribution with correlation

coe�cient ⇢, then X and Y are independent if and onlv if ⇢ = 0.

In general, uncorrelated (CorX.Y 1 =0) #X.Y indep
0 =0 -

uncorrelate& bir. Nor t x.Y indep.

Y



Exercise

For a female freshman in a health fitness program, let X equal her

percentage of body fat at the beginning of the program and Y equal the

change in her percentage of body fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with

µX = 24.5, µY = �0.2, �X = 4.8, �Y = 3, and ⇢ = �0.32.

Find P(1.3 < Y < 5.8), E[Y |X = x ], and Var(Y |X = x).

-

-0.2,3 Y = &E +My, z N10,K

=37 - 0.2

· P(1.3<37 -0.2(5.8)

=4(1.5(37(6)
=P(0.5cz (2)

=4-2) - 1.5) -...

· E(Y(X=x) =My
+

p((x -Mx) =

-0.2 +(-0.32)(x -2.5)
· V(Y(X =x) =2112 =32(1 - (-0.325).

↑
Const. in X



0

· Var(X +4) =Var(X) +Yr(Y) +2 Cor(X,Y(

2

· Var(a +bx) =bVar(X), VarIbX)=
bVarIX)

Recall X u N(Mx, W)
-

Y(X =x vN(m, mm(

D E[Y1X =x] is linear in X
- b

-> E[Y1X =
x3 =

M +(x -mx)

& Var (Y(X= x) is constant in

=>Var(Y (X = x) =E [VarIYIX)]
-

-W) - var(E)Y/X])
(ECVar(YIx)] +Var(E(YIx3)(

=

-+bX)
= - EX)-
- -p =.


