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Section 1.

Random Variables of the

Continuous Type



Continuous Random Variables

Let the random variable X denote the outcome when a point is selected at random

from an interval [0, 1].

If the experiment is performed in a fair manner, it is reasonable to assume that the

probability that the point is selected from an interval [13 ,
1
2 ] is

The CDF of X is
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Continuous Random Variables

Definition

We say a random variable X on a sample space S is a continuous random variable if

there exists a function f (x) such that

• f (x) ≥ 0 for all x ,

•
∫
S(X ) f (x) dx = 1, and

• For any interval (a, b) ⊂ R,

P(a < X < b) =

∫ b

a
f (x) dx .

The function f (x) is called the probability density function (PDF) of X .
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Continuous Random Variables

The CDF of X is

The expectation (mean) of X is

The variance of X is

The standard deviation of X is

The moment generating function of X is
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Continuous Random Variables

Properties

The PMF of a discrete random variable is bounded by 1. But for PDF, f (x) can be

greater than 1.

For CDF F , we have F ′(x) = f (x) where F is differentiable at x .
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Continuous Random Variables

Example

Let X be a continuous random variable with a PDF g(x) = 2x for 0 < x < 1.

Find the CDF and the expectation.
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Continuous Random Variables

Example

Let X have the PDF f (x) = xe−x . Find the MGF.
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Uniform Random Variables

Definition

X is a uniform random variable if its PDF is constant on its support.

If its support is [a, b], then the PDF is

We denote by X ∼ U(a, b).
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Uniform Random Variables

Theorem

If X ∼ U(a, b), then

E[X ] =

Var[X ] =

M(t) =
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Uniform Random Variables

Example

If X is uniformly distributed over (0, 10), calculate P(X < 3), P(X > 6), and

P(3 < X < 8).
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Uniform Random Variables

Example

A bus travels between the two cities A and B, which are 100 miles apart.

If the bus has a breakdown, the distance from the breakdown to city A has a

U(0, 100) distribution.

There are bus service stations in city A, in B, and in the center of the route between

A and B.

It is suggested that it would be more efficient to have the three stations located 25,

50, and 75 miles, respectively, from A.

Do you agree? Why?
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Percentile

The (100p)-th percentile is a number πp such that F (πp) = p.

For example, the 50th percentile is the number π 1
2
= q2 such that F (π 1

2
) = 1

2 and this

is called the median.

The 25th and 75th percentiles are called the first and third quartiles, respectively, and

are denoted by q1 = π0.25 and q3 = π0.75.
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Percentile

Example

Let X be a continuous random variable with PDF f (x) = |x | for −1 < x < 1. Find

q1, q2, q3.
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Exercise

Let f (x) = c
√
x for 0 ≤ x ≤ 4 be the PDF of a random variable X .

Find c , the CDF of X , and E[X ].
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Section 2.

The Exponential, Gamma, and

Chi-Square Distributions



Exponential random variables

Consider a Poisson random variable X with parameter λ.

This represents the number of occurrances in a given interval, say [0, 1].

If λ = 5, that means the expected number of occurrances in [0, 1] is 5.

Let W be the waiting time for the first occurrence. Then,

P(W > t) = P(no occurrences in [0, t]) =

for t > 0.
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Exponential random variables

Definition

We say X is an exponential random variable with parameter λ (or mean θ where

λ = 1
θ ) if its pdf is

f (x) = λe−λx

for x ≥ 0 and otherwise 0. Here, λ is the parameter and θ is the mean.
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Exponential random variables

Theorem

Suppose that X is an exponential random variable with parameter λ = 1
θ .

E[X ] = 1
λ = θ

Var[X ] = 1
λ2 = θ2

M(t) = λ
λ−t = 1

1−θt
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Exponential random variables

Example

Let X have an exponential distribution with a mean θ = 20.

Find P(X < 18).
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Exponential random variables

Example

Customers arrive in a certain shop according to an approximate Poison process at a

mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes

for the arrival of the first customer?
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Gamma random variables

Consider a Poisson random variable X with λ.

Let W be the waiting time until α-th occurrences, then its CDF is

F (t) = P(W ≤ t) = 1− P(W > t) = 1−
α−1∑
k

(λt)ke−λt

k!
.

Thus, the PDF is

f (x) =
λ(λx)α−1

(α− 1)!
e−λx .

This random variable is called a gamma random variable with λ and α where

λ = 1
θ > 0.

This can be extended to non-integer α > 0.
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Gamma functions

The gamma function is defined by

Γ(t) =

∫ ∞

0
y t−1e−y dy

for t > 0.

By integration by parts, we have
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Gamma functions

In particular, Γ(1) =

Γ(2) =

Γ(3) =

Γ(n) =

for integers n.
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Gamma random variables

Theorem

E[X ] = α
λ

Var[X ] = α
λ2

M(t) = 1
(1−θt)α for t ≤ 1

θ .

22



Gamma random variables

Example

Suppose the number of customers per hour arriving at a shop follows a Poisson

random variable with mean 20.

That is, if a minute is our unit, then λ = 1
3 .

What is the probability that the second customer arrives more than five minutes after

the shop opens for the day?
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Chi-square distribution

Let X have a gamma distribution with θ = 2 and α = r/2, where r is a positive

integer.

The pdf of X is

f (x) =
1

Γ( r2)2
r
2

x
r
2
−1e−

x
2

for x > 0.

We say that X has a chi-square distribution with r degrees of freedom and we use

the notation X ∼ χ2(r).
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Exercise

Let X have an exponential distribution with mean θ.

Compute P(X > 15|X > 10) and P(X > 5).
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Section 3.

The Normal Distribution



Gaussian random variables

Definition

We say X is a Gaussian random variable or has a normal distribution if its PDF

is given by

f (x) =
1

σ
√
2π

exp

(
−(x − µ)2

2σ2

)
.

Here µ is the mean and σ is the standard deviation. We use the notation

X ∼ N(µ, σ2).
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Gaussian random variables

Theorem∫
R f (x) dx = 1

E[X ] = µ

Var[X ] = σ2

M(t) = exp
(
µt + σ2t2

2

)
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Standard normal distribution

In particular, if µ = 0 and σ = 1, then Z ∼ N(0, 1) is called the standard normal

random variable.

Example

Let Z is N(0, 1).

Find P(Z ≤ 1.24), P(1.24 ≤ Z ≤ 2.37), and P(−2.37 ≤ Z ≤ −1.24).
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Standard normal distribution

Theorem

If X ∼ N(µ, σ2), then Z = X−µ
σ is the standard normal.

29



Standard normal distribution

Example

Let X ∼ N(3, 16).

Find P(4 ≤ X ≤ 8), P(0 ≤ X ≤ 5), and P(−2 ≤ X ≤ 1).
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Standard normal distribution

Example

Let X ∼ N(25, 36).

Find a constant c such that P(|X − 25| ≤ c) = 0.9544.
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Standard normal distribution

Theorem

If Z is the standard normal, then Z 2 is χ2(1).
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Section 4.

Additional Models



Weibull distribution

Recall the postulates of an approximate Poisson:

• The numbers of occurrences in nonoverlapping subintervals are independent.

• The probability of two or more occurrences in a sufficiently short subinterval is

essentially zero.

• The probability of exactly one occurrence in a sufficiently short subinterval of

length h is approximately λh.
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Weibull distribution

One can think the event occurrence as a failure and so λ can be understood as the

failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant

failure rate.

Sometimes, it is more natural to choose λ as a function of t in the last assumption.

Then the waiting time W for the first occurrence satisfies

P(W > t) = exp

(
−
∫ t

0
λ(w) dw

)
.
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Weibull distribution

Definition

If λ(t) = α tα−1

βα , then the waiting time W for the first occurrence has the density

g(t) = λ(t) exp

(
−
∫ t

0
λ(w) dw

)
= α

tα−1

βα
exp

(
−(

t

β
)α
)
.

W is called the Weibull random variable.
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Weibull distribution

Example

If λ(t) = 2t, then the waiting time W has the density

and it is a Weibull random variable with α = and β = .

If W1,W2 are independent Weibull with α and β above, is the minimum of W1,W2

Weibull?
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Weibull distribution

Theorem

The mean of W is µ = βΓ(1 + 1
α).

The variance is σ2 = β2
(
Γ(1 + 2

α)− Γ(1 + 1
α)

2
)
.
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Mixed type random variables

Example

Suppose X has a CDF

F (x) =



0, x < 0

x2

4 , 0 ≤ x < 1

1
2 , 1 ≤ x < 2

x
3 , 2 ≤ x < 3

1, x ≥ 3.

Find P(0 < X < 1), P(0 < X ≤ 1), and P(X = 1).
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Mixed type random variables

Example

Consider the following game: A fair coin is tossed.

If the outcome is heads, the player receives $2.

If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to

1.

The player then receives that fraction of a dollar associated with the point selected

by the spinner.

Let X be the amount received. Draw the graph of the cdf F (x).
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Exercise

The cdf of X is given by

F (x) =


0, x < −1

x
4 + 1

2 , −1 ≤ x < 1

1, x ≥ 1.

Find P(X < 0), P(X < −1), and P(−1 ≤ X < 1
2).
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