Chapter 3. Continuous Distribution

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Random Variables of the
Continuous Type

Continuous Random Variables

Let the random variable X denote the outcome when a point is selected at random from an interval $[0,1]$.

If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from an interval $\left[\frac{1}{3}, \frac{1}{2}\right]$ is

The CDF of X is

$$
\mathbb{P}\left(x \in\left[\frac{1}{3}, \frac{1}{2}\right]\right)=\frac{\text { length of }\left[\frac{1}{3}, \frac{1}{2}\right]}{\text { length of }[0,1]}=\frac{1}{6} \text {. }
$$

$$
F_{x}(x)=\mathbb{P}(x \leqslant x)=\frac{\text { length of }[0, x]}{\text { length of }[0,1]}=x .
$$

Continuous Random Variables

Definition
We say a random variable X on a sample space S is a continuous random variable if there exists a function $f(x)$ such that

- $f(x) \geq 0$ for all x,
- $\int_{S(X)} f(x) d x=1$, and
- For any interval $(a, b) \subset \mathbb{R}$,

$$
\mathbb{P}(a \leqslant x<b)=\mathbb{P}(a<x \leqslant b)
$$

$$
\mathbb{P}(a \leqslant X \leqslant b)=\mathbb{P}(a<X<b)=\int_{a}^{b} f(x) d x .
$$

The function $f(x)$ is called the probability density function (PDF) of X. density

Note For a continuous RV, $\mathbb{P}(X=a)=0$.

$$
\begin{aligned}
P(X=a) & =\lim _{\varepsilon \rightarrow 0} \mathbb{P}(a-\varepsilon\langle x<a+\varepsilon) \\
& =\lim _{\varepsilon \rightarrow \infty} \int_{a-\varepsilon}^{a+\varepsilon} f(x) d x=0 .
\end{aligned}
$$

Note There many $R V_{S}\left\{\begin{array}{l}\text { not discrete and. } \\ \text { not continuous }\end{array}\right.$

Discrete : $\mathbb{E}[x]=\sum_{1} x f(x)$

Continuous Random Variables

The CDF of X is $\quad F(x)=\mathbb{P}(x \leqslant x)=\mathbb{P}(x \in(-\infty, x])=\int_{-\infty}^{x} f(t) d t$
The expectation (mean) of x is $\mu=\mathbb{E}[x]=\int_{-\infty}^{\infty} x f(x) d x$
The variance of X is $\quad \operatorname{Var}(x)=\mathbb{E}\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}$
The standard deviation of X is $S+d(x)=\sqrt{\operatorname{Var}(x)}{ }^{-\infty} \quad=\int_{-\infty}^{\infty} x^{2} f(x) d x-\left(\int_{-\infty}^{\infty} x f(x) d x\right)^{2}$
The moment generating function of X is

$$
M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Practice (or Recall) basic Integration.

$$
\left\{\begin{array}{l}
e^{x}, \sin x, \cos x, \ln x, x^{n}, \frac{1}{x+c}, \cdots \\
\text { Integration by parts } \\
\vdots
\end{array}\right.
$$

$$
P M F=\mathbb{P}(X=x) \leqslant 1
$$

Properties
The PMF of a discrete random variable is bounded by 1 . But for PDF, $f(x)$ can be greater than 1.

For CDF F, we have $F^{\prime}(x)=f(x)$ where F is differentiable at x.
\uparrow
Derivative of CDF.

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{x} f(t) d t \\
& F^{\prime}(x)=\frac{d}{d x} \int_{-\infty}^{x} f(t) d t \bar{\lesseqgtr} f(x)
\end{aligned}
$$

2

Continuous Random Variables

Example
Let X be a continuous random variable with a PDF $f(x)=2 x$ for $0<x<1$.
Find the CDF and the expectation.

$$
F(x)=\mathbb{P}(X \leqslant x)
$$

$$
=\int_{-\infty}^{x} f(t) d t
$$

$$
1=\int_{-\infty}^{\infty} f(x) d x
$$

$$
x>1
$$

$$
0 \leqslant x \leqslant 1
$$

$$
\begin{aligned}
\mathbb{E}[x]=\int_{-\infty}^{\infty} x \cdot \underbrace{f(x) d x} & =\int_{0}^{1} \underbrace{x \cdot(2 x)}_{2 x^{2}} d x=\left[\frac{2}{3} x^{3}\right]_{0}^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

f to be \sim PDF $\left\{\begin{array}{l}\quad \begin{array}{l}f(x) \geqslant 0 \\ \cdot \\ \int_{-\infty}^{\infty} f(x) d x=1\end{array}\end{array}\right.$

Continuous Random Variables

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} x e^{-x} d x= \\
& (u \cdot v)^{\prime}=u^{\prime} \cdot v+\underline{u \cdot v^{\prime}} \\
& \int u^{\prime} v=u \cdot v-\int u \cdot v^{\prime} \\
& v=x \quad v^{\prime}=1 \\
& u^{\prime}=e^{-x} \\
& u=-e^{-x} \\
& \int_{0}^{\infty} x e^{-x} d x=\left[-x e^{-x}\right]_{0}^{\infty}+\int^{\infty} e^{-x} d x \\
& =0+\left[-e^{-x}\right]_{0}^{\infty}=1 \text {. }
\end{aligned}
$$

Continuous Random Variables

Example

Let X have the PDF $f(x)=x e^{-x}$. Find the MGF.

$$
M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} x e^{-x} e^{t x} d x=\int_{0}^{\infty} x e^{-(1-t) x} d x
$$

$$
\begin{aligned}
(u \cdot v)^{\prime} & =u^{\prime} \cdot v+\underline{u \cdot v^{\prime}} \\
\int u^{\prime} v & =u \cdot v-\int u \cdot v^{\prime} \\
v=x & v^{\prime}=1 \\
u_{0}^{\infty} x e^{-(1-t) x} d x & =\left[-x e^{-(1-t) x} \quad u=-\frac{1}{(1-t)} \cdot e^{-(1-t) x}+\int_{0}^{\infty} \frac{1}{(1-t)} e^{-(1-t) x} d x\right. \\
& =0-0+\left[-\frac{1}{(1-t)^{2}} e^{-(1-t) x}\right]_{0}^{\infty} \\
& =\left\{\begin{array}{l}
\frac{1}{(1-t)^{2}},(1-t)>0 \\
D N F
\end{array} \quad t \geqslant 1\right.
\end{aligned}
$$

Uniform Random Variables

Definition

X is a uniform random variable if its PDF is constant on its support.
If its support is $[a, b]$, then the PDF is
We denote by $X \sim U(a, b)$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & a \leqslant x \leqslant b \\
0, & 0 . w
\end{array}\right.
$$

Ex: $X \sim U(1,3)=\operatorname{Unif}(1,3)$.

Uniform Random Variables

Theorem
If $X \sim U(a, b)$, then

$$
\mathbb{E}[X]=\frac{a+b}{2}=\int_{-\infty}^{\infty} x f(x) d x=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\mu
$$

$$
\operatorname{Var}[X]=\frac{(b-a)^{2}}{12}
$$

$$
M(t)=\left\{\begin{array}{cl}
\frac{e^{t b}-e^{t a}}{\frac{t}{t(b-a)}} & \text { if } t \neq 0 \\
1 & \text { if } t=0
\end{array}\right.
$$

$$
\begin{aligned}
& =\int_{a}^{b}(x-\mu)^{2} \frac{1}{(b-a)} d x=\frac{1}{b-a}\left[\frac{1}{3}(x-\mu)^{3}\right]_{a}^{b} \\
& =3\left(\frac{1}{b-a)}\left[(b-\mu)^{3}-(a-\mu)^{3}\right]\right. \\
& =\frac{1}{3(b-a)}\left[\left(\frac{b-a}{2}\right)^{3}-\left(\frac{a-b}{2}\right)^{3}\right]=\frac{2}{3(b-a)} \cdot \frac{(b-a)^{3}}{8}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Uniform Random Variables

Example

If X is uniformly distributed over $(0,10)$, calculate $\mathbb{P}(X<3), \mathbb{P}(X>6)$, and $\mathbb{P}(3<X<8)$.

Recall
is a Contr. RV if there exists a PDF.

- $f(x)$ is a PDF if $\left\{\begin{array}{l}f(x) \geqslant 0 \text { for all } x \\ \int_{R} f(x) d x=1 \\ \mathbb{P}(a<x<b)=\int_{a}^{b} f(x) d x .\end{array}\right.$
- $X \sim$ Unif $(a, b) \quad$ if $\quad f(x)=\left\{\begin{array}{cc}\frac{1}{b-a} & a<x<b \\ 0 & 0 . w .\end{array}\right.$

Uniform Random Variables

Example
A bus travels between the two cities A and B, which are 100 miles apart.
If the bus has a breakdown, the distance from the breakdown to city A has a $U(0,100)$ distribution.
There are bus service stations in city A, in B, and in the center of the route between A and B.

It is suggested that it would be more efficient to have the three stations located 25, 50 , and 75 miles, respectively, from A.
Do you agree? Why?
\times breakdown $\sim v(0,1 \Delta s)$

Idea: Optimize the distance from X to the nearest station.

$$
\begin{aligned}
& u(x)=\left\{\begin{array}{cc}
x, & x \leqslant 25 \\
\mid x-501 & , 25<x<75 \\
100-x & x \geqslant 75
\end{array}\right. \\
& \mathbb{E}[u(x)]=\int u(x) \cdot f(x) d x=\int_{0}^{\infty} u(x) \cdot \frac{1}{100} d x=\frac{1}{100} \cdot \int_{0}^{\infty} u(x) d x .
\end{aligned}
$$

fhow
Plan A.

$$
\begin{aligned}
& \text { Asea }=25^{2}+25 \cdot \frac{25}{2}=25^{2} \cdot\left(1+\frac{1}{2}\right) \\
& \mathbb{E}[u(x)]=\frac{1}{100} \text { Area }=\frac{25 \cdot 25 \cdot \frac{3}{2}}{25 \cdot 4} \\
&=25 \cdot \frac{3}{8}<12.5
\end{aligned}
$$

m is median ($m=\pi_{\frac{1}{2}}$) if $F(m)=\frac{1}{2}$.

Percentile
Ex $50^{\text {th }}$ percentile $\frac{\text { median }}{\left(p=\frac{1}{2}\right)}$, $75^{\text {th }}$ percentile $\left(p=\frac{3}{4}\right)$.
The $(100 p)$-th percentile is a number π_{p} such that $F\left(\pi_{p}\right)=p$.
CDR.
For example, the 50 th percentile is the number $\pi_{\frac{1}{2}}=q_{2}$ such that $F\left(\pi_{\frac{1}{2}}\right)=\frac{1}{2}$ and this is called the median.

The 25th and 75th percentiles are called the first and third quartiles, respectively, and are denoted by $q_{1}=\pi_{0.25}$ and $q_{3}=\pi_{0.75}$.

$$
\underset{\substack{\pi_{\frac{1}{2}}}}{(x)}=\frac{1}{2}
$$

Percentile

Example

Let X be a continuous random variable with PDF $f(x)=|x|$ for $-1<x<1$. Find q_{1}, q_{2}, q_{3}.

$q_{1} ?$

$$
\Rightarrow \quad q_{1}=-\frac{1}{\sqrt{2}}
$$

$$
\frac{1}{2}-x^{2}=\frac{1}{4}
$$

$$
x^{2}=\frac{1}{2}
$$

$$
q_{2}=m=0 \quad \text { by sym. }
$$

$$
q_{3}=\frac{1}{\sqrt{2}}
$$

Exercise

Let $f(x)=c \sqrt{x}$ for $0 \leq x \leq 4$ be the PDF of a random variable X.
Find c, the CDF of X, and $\mathbb{E}[X]$.

Section 2.
The Exponential, Gamma, and Chi-Square Distributions

$X=\#$ of customers $\sim \operatorname{Pois}(\lambda)$
$\lambda=$ average $\#$ in 1 hr .
$W=$ waiting time until $f^{\text {st }}$ customer $\quad\left(F^{\prime}(t)=f(t)\right)$ Find $C D F . \mathbb{P}(\omega \leqslant t)=1-\mathbb{P}(W>t)$

Exponential random variables

Consider a Poisson random variable X with parameter λ.
This represents the number of occurrances in a given interval, say $[0,1]$.
If $\lambda=5$, that means the expected number of occurrances in $[0,1]$ is 5 .
Let W be the waiting time for the first occurrence. Then,

$$
\mathbb{P}(W>t)=\mathbb{P}(\text { no occurrences in }[0, t])=e^{-\lambda t} \cdot \frac{(\lambda t)^{0}}{\theta!}
$$

for $t>0$.

$$
\left(\begin{array}{cc}
\# & \text { of customers in }[0, t] \\
& \sim \operatorname{Pois}(\lambda t)
\end{array}\right.
$$

$$
=e^{-\lambda t}
$$

$$
\begin{aligned}
& F(t)=1-e^{-\lambda t} \\
& f(t)=F^{\prime}(t)=\lambda \cdot e^{-\lambda t}
\end{aligned}
$$

Exponential RV.

Exponential random variables

Definition

We say X is an exponential random variable with parameter λ (or mean θ where $\lambda=\frac{1}{\theta}$) if its pdf is

$$
f(x)=\lambda e^{-\lambda x}=\frac{1}{\theta} e^{-\frac{x}{\theta}}
$$

for $x \geq 0$ and otherwise 0 . Here, λ is the parameter and θ is the mean.

$$
\mathbb{E}[x]=\theta=\frac{1}{\lambda} .
$$

Exponential random variables

Theorem
Suppose that X is an exponential random variable with parameter $\lambda=\frac{1}{\theta}$.

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{1}{\lambda}=\theta \\
& \operatorname{Var}[X]=\frac{1}{\lambda^{2}}=\theta^{2} \quad \longleftrightarrow \text { Exercise. } \\
& M(t)=\frac{\lambda}{\lambda-t}=\frac{1}{1-\theta t}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[x]=\int_{\mathbb{R}} x-f(x) d x=\int_{0}^{\infty} \lambda x \cdot e^{-\lambda x} d x \quad \begin{array}{l}
u=\lambda x \\
d u
\end{array} \\
& -e^{-u}=\frac{1}{\lambda} \int_{0}^{\infty} u-e^{-u} d u=\frac{1}{\lambda} \text {. } \\
& \int_{0}^{\infty} u e^{-u} d u \underset{\uparrow}{\underset{\sim}{p}}\left[u \cdot\left(-e^{-u}\right)\right]_{0}^{\infty}-\int_{0}^{\infty} 1 \cdot\left(-e^{-u}\right) d u=1 . \\
& 1 \text { Integration by Parts. }
\end{aligned}
$$

Exponential random variables

$$
\begin{aligned}
& f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}=\lambda e^{-\lambda x} \\
& F(x)=1-e^{-\frac{x}{\theta}}=1-e^{-\lambda t}
\end{aligned}
$$

Example
Let X have an exponential distribution with a mean $\theta=20$.
Find $\mathbb{P}(X<18)$.

$$
\begin{aligned}
F(18)=\mathbb{P}(x<18) & =\int_{0}^{18} \frac{1}{20} e^{-\frac{x}{20}} d x=\left[\frac{1}{20}\left(-20 e^{-\frac{x}{20}}\right)\right]_{0}^{18} \\
& =-e^{-\frac{18}{20}}+1=1-e^{-\frac{18}{20}}
\end{aligned}
$$

Note : $\mathbb{P}(x>t)=e^{-\lambda t}=e^{-\frac{t}{\theta}}$

Exponential random variables

Example

Customers arrive in a certain shop according to an approximate Poison process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes for the arrival of the first customer?

$$
\begin{aligned}
X & =\# \text { of customers } \sim P_{\text {oils }}(20) \\
W & =\text { waiting time for } 1^{8 t} \text { customer in hr } \\
& \sim \operatorname{Exp} \text { with } \lambda=20 \quad \theta=\frac{1}{20} \\
\mathbb{P}(w & \left.>\frac{5}{60}\right)=e^{-\lambda \cdot \frac{5}{60}}=e^{-\frac{5}{3}} .
\end{aligned}
$$

Exp. Random Variable. $=$ the waiting time for $1^{\text {St }}$ occurance for Poisson.

(1) $f_{w}(t)=\lambda e^{-\lambda t}=\frac{1}{\theta} e^{-\frac{t}{\theta}}, t \geqslant 0$
(2) $\mathbb{E}[W]=\frac{1}{\lambda}=\theta$
(3) $\quad \operatorname{Var}(w)=\frac{1}{\lambda^{2}}=\theta^{2}$
(4) $\mathbb{P}(W>t)=e^{-\lambda t}$
[Bin : \# of success in n trials Geom: \# of trials until $1^{\text {st }}$ success
$\mathrm{Neg}_{\mathrm{eg}}^{\mathrm{B}} \mathrm{m}$
A of trade
cutis

\rightarrow Poison
\# of curtiveer
$\rightarrow \operatorname{Exp}_{2 ?}$ Wait Time for $1^{\text {st }}$ customer.

Gamma random variables

Consider a Poisson random variable X with λ.

Let W be the waiting time until α-th occurrences, then its CDF is

$$
F(t)=\mathbb{P}(W \leq t)=1-\mathbb{P}(W>t)=1-\sum_{k}^{\alpha-1} \frac{(\lambda t)^{k} e^{-\lambda t}}{k!} .
$$

Thus, the PDF is

$$
f(x)=\frac{\lambda(\lambda x)^{\alpha-1}}{(\alpha-1)!} e^{-\lambda x} .
$$

This random variable is called a gamma random variable with λ and α where $\lambda=\frac{1}{\theta}>0$.

This can be extended to non-integer $\alpha>0$.

Gamma functions

The gamma function is defined by

$$
\begin{aligned}
& \Gamma(t)= \int_{0}^{\infty} \underbrace{y^{t-1}}_{\downarrow} \underbrace{e^{-y}} d y \\
&(t-1) \cdot y^{t-2}
\end{aligned}
$$

for $t>0$.

$$
\begin{aligned}
& \text { By integration by parts, we have } \\
& \Gamma(t)=\left[y^{t-1} \cdot\left(-e^{-y}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}(t-1) y^{t-2} \cdot\left(-e^{-y}\right) d y \\
&=\lim _{N \rightarrow \infty}\left(N^{t-1} \cdot\left(-e^{-N}\right)-0\right)+(t-1) \int_{0}^{\infty} y^{t-2} e^{-y} d y \\
&=(t-1) \cdot \int_{0}^{\infty} y^{(t-1)-1} \cdot e^{-y} d y \\
& \Gamma(t)=(t-1) \Gamma(t-1)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(t)=\int_{0}^{\infty} y^{t-1} e^{-y} d y \\
& \Gamma(t)=(t-1) \Gamma(t-1)
\end{aligned}
$$

Gamma functions

In particular, $\Gamma(1)=\int_{0}^{\infty} y^{1-1} e^{-y} d y=\int_{0}^{\infty} e^{-y} d y=\left[-e^{-y}\right]_{0}^{\infty}=1$.

$$
\begin{aligned}
& \Gamma(2)=1 \cdot \Gamma(1)=1 . \\
& \Gamma(3)=2 \cdot \Gamma(2)=2 \cdot 1=2 \quad \Gamma(4)=3 \cdot \Gamma(3)=3 \cdot 2 \cdot 1=3! \\
& \Gamma(n)=(n-1) \Gamma \underbrace{\Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=\cdots=(n-1)(n-2) \cdots 2 \cdot 1} \\
& \\
& \\
& \text { for integers } n .
\end{aligned}
$$

Gamma Function $=$ Generalized Factorial.

$$
\begin{gathered}
\Gamma\left(\frac{1}{2}\right)=\cdots \text { or } \Gamma\left(\frac{3}{2}\right)=\cdots \\
\int y^{\frac{1}{2}-1} e^{-y} d y
\end{gathered}
$$

Def $X \sim$ Gamma (λ, α)

$$
f_{x}(x)=\frac{\lambda^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x}
$$

Ex - $X \sim$ Normal x^{2}

Theorem

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{\alpha}{\lambda}=\alpha \cdot(\text { Expectation of Exp.) } \\
& \operatorname{Var}[X]=\frac{\alpha}{\lambda^{2}}=\alpha \cdot(\text { Variance of Exp }) \\
& M(t)=\frac{1}{(1-\theta t)^{\alpha}} \text { for } t \leq \frac{1}{\theta} . \\
& \\
& =(M G F \text { of Exp })^{\alpha}
\end{aligned}
$$

Heuristic Reason

$$
\alpha=3
$$

$$
x=x_{1}+x_{2}+x_{3}
$$

Gamone $=$ Indep sum of Exp.
$W \sim \operatorname{Gamma}(\lambda, n)$

$$
\begin{aligned}
& x_{t} \sim \operatorname{Pois}(\lambda t) \\
\Rightarrow \quad & \mathbb{P}(\underline{w>t}) \quad=\mathbb{P}\left(x_{t}<n\right)
\end{aligned}
$$

wait note than t of customers for $n^{\text {th }}$ customer in $[0, t]$

Gamma random variables

Example
Suppose the number of customers per hour arriving at a shop follows a Poisson random variable with mean 20 .

That is, if a minute is our unit, then $\lambda=\frac{1}{3}$.
What is the probability that the second customer arrives more than five minutes after the shop opens for the day?

$$
\begin{aligned}
& \text { means } \\
& f_{\omega}(t)=\frac{\lambda^{\alpha} t^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda t} \\
& P(\omega>5)=\int_{5}^{\infty}\left(\frac{1}{3}\right)^{2} \frac{t^{2-1}}{-3 e^{-\frac{t}{3}} 1!} e^{-\frac{t}{3}} d t \\
& =\frac{1}{9} \int_{5}^{\infty} \underset{\downarrow}{t} e^{\tau-\frac{t}{3}} d t=\frac{1}{9}\left[\left[t\left(-3 e^{-\frac{t}{3}}\right)\right]_{5}^{\infty}\right. \\
& \left.+3 \int_{5}^{\infty} e^{-\frac{t}{3}} d t\right] \\
& =\frac{1}{9}\left[5 \cdot 3 \cdot e^{-\frac{5}{3}}+3 \cdot\left[-3 e^{-\frac{t}{3}}\right]_{5}^{\infty}\right] \\
& =\frac{1}{9}\left[15 e^{-\frac{5}{3}}+q e^{-\frac{5}{3}}\right]=\frac{24}{9} e^{-\frac{5}{3}}
\end{aligned}
$$

$中(w>5)=p(x=0,1)$

$$
\begin{aligned}
& =\mathbb{P}(x=0)+\mathbb{P}(x=1) \\
& =e^{-\frac{5}{3}}+\frac{\left(\frac{5}{3}\right)^{1}}{1!} \cdot e^{-\frac{5}{3}}=\frac{8}{3} e^{-\frac{5}{3}}
\end{aligned}
$$

Chi-square distribution

$$
\lambda=\frac{1}{2}
$$

Let X have a gamma distribution with $\theta=2$ and $\alpha=r / 2$, where r is a positive integer.

The pdf of X is

$$
f(x)=\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}
$$

for $x>0$.
We say that X has a chi-square distribution with r degrees of freedom and we use the notation $X \sim \chi^{2}(r)$.

$$
x \sim E_{x p}(\lambda) \quad \Rightarrow \quad \mathbb{P}(x>t)=e^{-\lambda t}=e^{-\frac{t}{Q}}
$$

Exercise

$$
f_{x}(t)=\frac{1}{\theta} e^{-\frac{t}{\theta}}, \quad t \geqslant 0 .
$$

Let X have an exponential distribution with mean θ.

$$
\begin{aligned}
& \text { Compute } \mathbb{P}(X>15 \mid X>10) \text { and } \mathbb{P}(X>5) \\
& =\frac{\mathbb{P}(x>15)}{\mathbb{P}(x>10)}=\frac{e^{-\frac{15}{9}}}{e^{-\frac{5}{9}}}=e^{-\frac{5}{\theta}}
\end{aligned}
$$

$$
\begin{aligned}
C D F=F(t) & =\mathbb{P}(x \leqslant t)=1-\mathbb{P}(x>t)^{25} \\
& =1-e^{-\frac{t}{\theta}}
\end{aligned}
$$

Memoryless ness Property
If $x \sim E_{x p}(\lambda)$ then

$$
\mathbb{P}(x>t+s \mid x>s)=\mathbb{P}(x>t)
$$

$Y \sim \operatorname{Geom}(P)$

$$
\mathbb{P}(Y>t+s \mid Y>s)=\mathbb{P}(Y>t)
$$

Section 3.

The Normal Distribution

Gaussian random variables

Definition

We say X is a Gaussian random variable or has a normal distribution if its PDF is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Here μ is the mean and σ is the standard deviation. We use the notation $X \sim N\left(\mu, \sigma^{2}\right)$.
mem
exp.

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad f(x)=\frac{1}{\sqrt{2 \pi \cdot \sigma^{2}}} \cdot e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad x \in \mathbb{R}
$$

Gaussian random variables

Theorem

$$
\begin{aligned}
& \int_{\mathbb{R}} f(x) d x=1 \\
& \mathbb{E}[X]=\mu \\
& \operatorname{Var}[X]=\sigma^{2} \\
& M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right) \\
& 1=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\bar{\uparrow} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& \xrightarrow{\text { repent }} \rightarrow z=\frac{x-\mu}{\sigma} \quad, d z=\frac{d x}{\sigma} \\
& =2 \cdot \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& A^{2}=\int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z-\int_{0}^{\infty} e^{-\frac{\omega^{2}}{2}} d \omega \\
& \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z=\sqrt{\frac{\pi}{2}} \\
& \frac{z^{2}}{2}=y \quad z=\sqrt{2 y} \\
& d z=\sqrt{2} \cdot \frac{1}{2 \sqrt{y}} d y=\frac{1}{\sqrt{2}} \cdot y^{-\frac{1}{2}} d y \\
& =\iint_{\mathbb{R}^{2}} e^{-\frac{1}{2}\left(z^{2}+\omega^{2}\right)} d z d \omega \\
& \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z=\int_{0}^{\infty} \frac{1}{\sqrt{2}} \underbrace{\frac{1}{2}-1} e^{-y} d y=\frac{1}{\sqrt{2}} \cdot \Gamma\left(\frac{1}{2}\right)
\end{aligned}
$$

X is a norrual (Gaussim) random variable
$X \sim N\left(\mu, \sigma^{2}\right) \quad \mu$: mean, σ^{2} : variance

$$
\begin{aligned}
& f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty . \\
& \mathbb{E}[x]=\mu, \quad \operatorname{Var}(x)=\sigma^{2} .
\end{aligned}
$$

If $\mu=0, \sigma^{2}=1, \quad X$ is the standard normal.
fact

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad \Rightarrow \quad Z=\frac{x-\mu}{\sigma} \sim N(0,1)
$$

Standard normal distribution
Notation: The CDF of Standard Normal $\Phi(z)=\mathbb{P}(Z \leqslant Z)$

In particular, if $\mu=0$ and $\sigma=1$, then $Z \sim N(0,1)$ is called the standard normal random variable.
Example
Let $Z \underset{b e}{ } N(0,1)$.
Find $\mathbb{P}(Z \leq 1.24), \mathbb{P}(1.24 \leq Z \leq 2.37)$, and $\mathbb{P}(-2.37 \leq Z \leq-1.24)$.

$$
\begin{aligned}
\mathbb{P}(z \leqslant 1.24) & =\Phi(1.24) \\
\mathbb{P}(1.24 \leqslant z \leqslant 2.37) & =\mathbb{P}(z \leqslant 2.37)-\mathbb{P}(z<1.24) \\
& =\Phi(2.37)-\Phi(1.24) \\
\mathbb{P}(-2.37 \leqslant z \leqslant-1.24) & =
\end{aligned}
$$

$$
x \sim \operatorname{Bin}(n, p)
$$

$$
f_{z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

If n large, p small, $\lambda=n p$, then $X \approx \operatorname{Pois}(\lambda)$
If n large,

$$
\begin{aligned}
& \underbrace{\frac{x-n p}{\sqrt{n p(1-p)}}} \Rightarrow N(0,1) \\
& \text { Random variable } \quad \text { "Central limit thm" " }
\end{aligned}
$$

Standard normal distribution

$$
\begin{aligned}
\operatorname{Var}(x+c) & =\mathbb{E}\left[((x+\phi)-\mathbb{E}[x+y])^{2}\right] \\
& =\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]=\operatorname{Var}(x)
\end{aligned}
$$

Theorem
If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$ is the standard normal.
(1) X is normal $\Rightarrow a x+b$ is normal
(2)

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma}=\left(\frac{1}{\sigma}\right) \cdot x-\frac{\mu}{\sigma} \\
& \mathbb{E}[z]=\mathbb{E}\left[\frac{x-\mu}{\sigma}\right]=\frac{1}{\sigma} \mathbb{E}[x-\mu]=\frac{1}{\sigma}(\mathbb{E}[x]-\mu)=0 \\
& \operatorname{Var}(z)=\operatorname{Var}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \cdot \operatorname{Var}(x-\mu)=\frac{1}{\sigma^{2}} \cdot \operatorname{Var}(x)=1 .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(2 x)=4 \operatorname{Var}(x) \\
& \operatorname{Std}(2 x)=2 \operatorname{Std}(x)
\end{aligned}
$$

Standard normal distribution

$$
\Phi(z)=\mathbb{P}(Z \leqslant z)
$$

Example
Let $X \sim N(3,16)$.
Find $\mathbb{P}(4 \leq X \leq 8), \mathbb{P}(0 \leq X \leq 5)$, and $\mathbb{P}(-2 \leq X \leq 1)$.

$$
\begin{aligned}
\mu=3, \quad \sigma^{2}=16, & \sigma=4 \quad z=\frac{x-\mu}{\sigma}=\frac{x-3}{4} \sim N(0,1) \\
\mathbb{P}(4 \leqslant x \leqslant 8) & =\mathbb{P}\left(\frac{4-3}{4} \leqslant \frac{x-3}{4} \leqslant \frac{8-3}{4}\right) \\
& =\mathbb{P}\left(\frac{1}{4} \leqslant z \leqslant \frac{5}{4}\right) \\
& =\Phi(1.25)-\Phi(0.25) . \\
& \approx 0.8944-0.5987
\end{aligned}
$$

$$
\mathbb{P}(0 \leqslant x \leqslant 5)=\mathbb{P}\left(\frac{0-3}{4} \leqslant z \leqslant \frac{5-3}{4}\right)
$$

$$
\text { Note : } \Phi(-z)=1-\bar{\Phi}(z) \text {. }
$$

Table Va The Standard Normal Distribution Function

Standard normal distribution

Example
Let $X \sim N(25,36)$.
Find a constant c such that $\mathbb{P}(|X-25| \leq c)=0.9544$.

$$
\begin{aligned}
& \mu=25, \sigma^{2}=36 \sigma=6 \\
& z= \frac{x-\mu}{\sigma}=\frac{x-25}{6} \sim N(0,1) \\
& \mathbb{P}\left(\frac{x-25 \mid}{6} \leqslant \frac{c}{6}\right)=0.9544 \\
&= \mathbb{P}\left(|z| \leqslant \frac{c}{6}\right) \\
&= \Phi\left(-\frac{c}{6} \leqslant z \leqslant \frac{c}{6}\right) \\
& 2 \cdot \Phi\left(\frac{c}{6}\right)=\Phi\left(-\frac{c}{6}\right)=\Phi\left(\frac{c}{6}\right)-\left(1-\Phi\left(\frac{c}{6}\right)\right) \\
& \Phi\left(\frac{c}{6}\right)=0.9772=\Phi\left(\frac{c}{6}\right)=1 \\
& \hline
\end{aligned}
$$

$$
x=z^{2}
$$

Theorem
If Z is the standard normal, then Z^{2} is $\chi^{2}(1)=\operatorname{Gamma}\left(\frac{7^{\prime \prime}}{2}, \frac{1^{\prime \prime}}{2}\right)$
How to find the distribution of z^{2} ?

$$
\begin{aligned}
& \underline{C D F}^{\prime} \\
& F_{x}(x)=\mathbb{P}\left(z^{2} \leqslant \underset{\uparrow}{x}\right)^{x}=\mathbb{C D F}(-\sqrt{x} \leqslant z \leqslant \sqrt{x}) \\
& x \geqslant 0=\Phi(\sqrt{x})-\Phi(-\sqrt{x}) \\
&=\Phi(\sqrt{x})-(1-\Phi(\sqrt{x})) \\
&=2 \Phi(\sqrt{x})-1 \\
& f_{x}(x)=\frac{d}{d x} F_{x}(x)=\frac{d}{d x}(2 \Phi(\sqrt{x})-1) \\
&=2 \cdot \Phi^{\prime}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{\sqrt{x}}-\Phi^{\prime}(\sqrt{x}) \\
&=\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{(\sqrt{x})^{2}}{2}}=\frac{1}{\sqrt{2 \pi x}} e^{-\frac{x}{2}} \sim \operatorname{Gamma}\left(\frac{1}{2} \frac{1}{c^{2}}\right)
\end{aligned}
$$

Section 4.
Additional Models

Weibull distribution

Recall the postulates of an approximate Poisson:

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.

rote of incoming customers

Poisson
constant

Weibull distribution

One can think the event occurrence as a failure and so λ can be understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant failure rate.

Sometimes, it is more natural to choose λ as a function of t in the last assumption.

Then the waiting time W for the first occurrence satisfies
Poisson Case

$$
(E x p,)
$$

$$
\begin{aligned}
& \mathbb{P}(W>t)=\exp \left(-\int_{0}^{t} \lambda(w) d w\right) \\
& \mathbb{P}(W>t)=\exp \left(-\int_{0}^{t} \frac{\lambda}{\bar{c}} d w\right)=e^{-\lambda t}-
\end{aligned}
$$

Weibull distribution

$$
\lambda(t)=c \cdot t^{\alpha-1}
$$

Definition

If $\lambda(t)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}}$, then the waiting time W for the first occurrence has the density

$$
g(t)=\lambda(t) \exp \left(-\int_{0}^{t} \lambda(w) d w\right)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}} \exp \left(-\left(\frac{t}{\beta}\right)^{\alpha}\right)
$$

W is called the Weibull random variable.

Weibull distribution

$$
\lambda(t)=\frac{\alpha t^{\alpha-1}}{\beta^{\alpha}}
$$

Example
If $\lambda(t)=2 t$, then the waiting time W has the density
and it is a Weibull random variable with $\alpha=2$ and $\beta=1$.
(Exp.) (maximum?
If W_{1}, W_{2} are independent Welbull with α and β above, is the minimum of W_{1}, W_{2} Weibull?

$$
\mathbb{P}(w>t)=e^{-\int_{0}^{t} 2 \omega d \omega}=e^{-t^{2}}
$$

$$
\begin{aligned}
& x=\min \left\{w_{1}, w_{2}\right\} \quad \& \quad \text { dist.? } \\
& \mathbb{P}(x \leqslant t)=1-\mathbb{P}(x>t)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}(x>t) & =\mathbb{P}\left(\min \left\{w_{1}, w_{2}\right\}>t\right) \\
& =\mathbb{P}\left(\underline{\left\{w_{1}>t\right\}} \cap \underline{\left\{w_{2}>t\right\}}\right) \\
& =\mathbb{P}\left(w_{1}>t\right) \cdot \mathbb{P}\left(w_{2}>t\right) \\
& =e^{-t^{2}} \cdot e^{-t^{2}}=e^{-2 \cdot t^{2}} . \quad w_{\text {eiball }}
\end{aligned}
$$

$$
\Rightarrow \quad x=\min \left\{w_{1}, w_{2}\right\} \quad W_{\text {eibull }}
$$

Poiss (λ) : \# if customers
constr λ

λ : function of time
$\underline{W}=$ the waiting time

$$
\mathbb{P}(W>t)=e^{-\int_{0}^{t} \lambda(\omega) d \omega}
$$

Special Case: $\quad \lambda^{(t)}=\frac{\alpha t^{\alpha-1}}{\beta^{\alpha}}=\frac{d}{d \omega}\left(\frac{t}{\beta}\right)^{\alpha}$ \& Weibull distribution.

Weibull distribution
Note

Theorem
The mean of W is $\mu=\beta \Gamma\left(1+\frac{1}{\alpha}\right)$.
The variance is $\sigma^{2}=\beta^{2}\left(\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}\right)$.

Discrete RV $\&$ when S^{\prime} is countable \sum coots. RV A RV having PDF There ore many others Looking at CDF

$$
F(x)=\mathbb{P}(X \in)
$$

Mixed type random variables

Example
Suppose X has a CDF

$$
\begin{gathered}
\mathbb{P}(0<x<1) \\
F(x)=\left\{\begin{array}{ll}
0, & x<0 \quad-\mathbb{P}(x \leqslant 1)-\mathbb{P}(x \leqslant 0) \\
\frac{x^{2}}{4}, & 0 \leq x<1 \\
\frac{1}{2}, & 1 \leq x<2 \\
\frac{x}{3}, & 2 \leq x<3 \\
1, & x \geq 3 .
\end{array} \quad F(x=1)-F(0)\right. \\
-\mathbb{P}(x=1)
\end{gathered}
$$

Find $\mathbb{P}(0<X<1), \mathbb{P}(0<X \leq 1)$, and $\mathbb{P}(X=1)$. $=\frac{1}{2}-0-\underbrace{\mathbb{P}(x=1)}_{\left(\frac{1}{2}-\frac{1}{4}\right)}$

Conti. RV: $\quad \mathbb{P}(x=1)=\lim _{\varepsilon \omega_{0}} \mathbb{P}(1-\varepsilon \leqslant x \leqslant 1+\varepsilon)$

$$
=\lim _{\varepsilon d_{0}} \int_{1-\varepsilon}^{1+\varepsilon} f(x) d x=0
$$

$C D F$

Mixed type random variables
Example
Consider the following game: A fair coin is tossed.
If the outcome is heads, the player receives $\$ 2$.
If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to 1.

The player then receives that fraction of a dollar associated with the point selected by the spinner.

Let X be the amount received. Draw the graph of the $\operatorname{cdf} F(x)$.

$$
\begin{aligned}
& x=\left\{\begin{array}{lll}
2 & \text { if } H \\
U & \text {, if } T & , \quad U \sim U_{\text {nim }}(0,1)
\end{array}\right. \\
& F(x)=\mathbb{P}(x \leqslant x)= \begin{cases}0, & x<0 \\
\frac{1}{2} \cdot x, & 0 \leqslant x<1 \\
\frac{1}{2}, & 1 \leqslant x<2 \\
1, & x \geqslant 2\end{cases} \\
& x=\frac{1}{2} \\
& x=\frac{3}{2}
\end{aligned}
$$

Exercise

The pdf of X is given by

$$
F(x)= \begin{cases}0, & x<-1 \\ \frac{x}{4}+\frac{1}{2}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Find $\mathbb{P}(X<0), \mathbb{P}(X<-1)$, and $\mathbb{P}\left(-1 \leq X<\frac{1}{2}\right)$.

