Practice Problems for Exam 2

MATH 3215, Spring 2024

1. The PDF of Y is given by $f_{Y}(y)=\frac{c}{y^{3}}$ for $1<y<\infty$ and otherwise 0 .
(a) Find the value of c so that f_{Y} is a PDF.
(b) Compute $\mathbb{E}[Y]$.
2. Let X be a continuous random variable with the PDF

$$
f_{X}(x)= \begin{cases}x+1, & -1<x<0 \\ 1-x, & 0 \leq x<1\end{cases}
$$

Find the CDF of X. Draw the graph of the CDF.
3. Let X be the total amount of medical claims (in $\$ 100,000$) of the employees of a company. Assume that the PDF $f(x)=30 x(1-x)^{4}$ for $0<x<1$.
(a) Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.
(b) Find the probability that the total exceeds $\$ 20,000$.
4. Let X be the number of alpha particle emissions of carbon-14 that are counted by a Geiger counter each second. Assume that the distribution of X is Poisson with mean 5. Let W be the time in seconds before the third count is made.
(a) What is the distribution of W ?
(b) Find $\mathbb{P}(W \leq 1)$.
5. A loss (in $\$ 100,000$) due to fire in a building has a PDF $f(x)=\frac{1}{6} e^{-x / 6}, 0<x<\infty$. Find the conditional probability that the loss is greater than 8 given that it is greater than 5 .
6. Let $X \sim N(650,400)$.
(a) Find $\mathbb{P}(600 \leq X<660)$.
(b) Find a constant $c>0$ such that $\mathbb{P}(|X-650| \leq c)=0.95$.
7. Let $X \sim N(0,4)$ and $W=X^{2}$. Find the PDF of W.
8. Let X be a random variable with the CDF

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<1 \\ \frac{x+1}{4}, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

Find $\mathbb{E}[X], \operatorname{Var}(X), \mathbb{P}\left(\frac{1}{4}<X<1\right), \mathbb{P}(X=1), \mathbb{P}\left(X=\frac{1}{2}\right), \mathbb{P}\left(\frac{1}{2} \leq X<2\right)$.
9. A loss X on a car has an exponential distribution with a mean of $\$ 5000$. If the loss X on a car is greater than the deductible of $\$ 500$, the difference $X-500$ is paid to the owner of the car. Considering zero (if $X<500$) as a possible payment, find the expectation of the payment.
10. Let X and Y be discrete random variables with joint PMF

$$
f(x, y)=\frac{x+y}{21}, \quad x=1,2, \quad y=1,2,3
$$

(a) Find the marginal PMFs of X and Y.
(b) Find $\mathbb{P}(X+Y \leq 3)$.
11. Let X and Y be discrete random variables with joint PMF

$$
f(0,0)=f(1,2)=0.2, \quad f(0,1)=f(1,1)=0.3
$$

(a) Find $\operatorname{Cov}(X, Y)$.
(b) Find the least square regression line.
12. Let X and Y be discrete random variables with joint PMF $f(x, y)=\frac{1}{9}$ for $(x, y) \in S$ where

$$
S=\{(x, y): 0 \leq x \leq 2, x \leq y \leq x+2, x, y \text { are integers }\}
$$

Find $f_{X}(x), f_{Y \mid X}(y \mid 1), \mathbb{E}[Y \mid X=1]$, and $f_{Y}(y)$.
13. Suppose that X has a geometric distribution with parameter p. and suppose the conditional distribution of Y, given $X=x$, is Poisson with mean x. Find $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.
14. Let X and Y have the joint PDF

$$
f(x, y)=\frac{4}{3}, \quad 0<x<1, \quad x^{3}<y<1
$$

and 0 otherwise. Find $\mathbb{P}(X>Y)$.
15. Let X be a uniform random variable over $(0,2)$ and Y given $X=x$ be $U\left(0, x^{2}\right)$.
(a) Find the joint $\operatorname{PDF} f(x, y)$ and marginal $f_{Y}(y)$.
(b) Find $\mathbb{E}[Y \mid X]$ and $\mathbb{E}[X \mid Y]$.
16. A certain type of electrical motors is defective with probability $1 / 100$. Pick 1000 motors and let X be the number of defective ones among these 1000 motors. Using a normal approximation, (with/without) mid-point correction, write down an expression for the probability that among the 1000 motors 13 or less are defective.

