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Section 1.1 Systems of Linear Equations

Topics

We will cover these topics in this section.

1. Systems of Linear Equations

2. Matrix Notation

3. Elementary Row Operations

4. Questions of Existence and Uniqueness of Solutions

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a linear system in terms of the number of solutions,
and whether the system is consistent or inconsistent.

2. Apply elementary row operations to solve linear systems of equations.

3. Express a set of linear equations as an augmented matrix.
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A Single Linear Equation

A linear equation has the form

a1x1 + a2x2 + · · ·+ anxn = b

a1, . . . , an and b are the coe�cients, x1, . . . , xn are the variables or
unknowns, and n is the dimension, or number of variables.

For example,

2x1 + 4x2 = 4 is a line in two dimensions

3x1 + 2x2 + x3 = 6 is a plane in three dimensions
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Systems of Linear Equations

When we have more than one linear equation, we have a linear system

of equations. For example, a linear system with two equations is

x1 + 1.5x2 + ⇡x3 = 4

5x1 + 7x3 = 5

The set of all possible values of x1, x2, . . . xn that satisfy all equations
is the solution to the system.

Definition: Solution to a Linear System

A system can have a unique solution, no solution, or an infinite number
of solutions.
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Two Variables

Consider the following systems. How are they di↵erent from each other?

x1 � 2x2 = �1

�x1 + 3x2 = 3

(3, 2)

non-parallel lines

x1 � 2x2 = �1

�x1 + 2x2 = 3

parallel lines

x1 � 2x2 = �1

�x1 + 2x2 = 1

identical lines
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Three-Dimensional Case

An equation a1x1 + a2x2 + a3x3 = b defines a plane in R3. The solution

to a system of three equations is the set of intersections of the planes.

solution set sketch number of solutions

line

point

empty
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Row Reduction by Elementary Row Operations

How can we find the solution set to a set of linear equations?
We can manipulate equations in a linear system using row operations.

1. (Replacement/Addition) Add a multiple of one row to another.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply a row by a non-zero scalar.

Let’s use these operations to solve a system of equations.
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Example 1

Identify the solution to the linear system.

x1 �2x2 +x3 = 0
2x2 �8x3 = 8

5x1 �5x3 = 10
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Augmented Matrices

It is redundant to write x1, x2, x3 again and again, so we rewrite systems
using matrices. For example,

x1 �2x2 +x3 = 0
2x2 �8x3 = 8

5x1 �5x3 = 10

can be written as the augmented matrix,

2

4
1 �2 1 0
0 2 �8 8
5 0 �5 10

3

5

The vertical line reminds us that the first three columns are the
coe�cients to our variables x1, x2, and x3.
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Consistent Systems and Row Equivalence

Definition (Consistent)
A linear system is consistent if it has at least one .

Definition (Row Equivalence)
Two matrices are row equivalent if a sequence of

transforms one matrix into the other.

Note: if the augmented matrices of two linear systems are row
equivalent, then they have the same solution set.
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Fundamental Questions

Two questions that we will revisit many times throughout our course.

1. Does a given linear system have a solution? In other words, is it
consistent?

2. If it is consistent, is the solution unique?
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Section 1.2 : Row Reductions and Echelon Forms

Topics

We will cover these topics in this section.

1. Row reduction algorithm

2. Pivots, and basic and free variables

3. Echelon forms, existence and uniqueness

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a linear system in terms of the number of leading
entries, free variables, pivots, pivot columns, pivot positions.

2. Apply the row reduction algorithm to reduce a linear system to
echelon form, or reduced echelon form.

3. Apply the row reduction algorithm to compute the coe�cients of a
polynomial.
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Definition: Echelon Form and RREF

A rectangular matrix is in echelon form if

1. All zero rows (if any are present) are at the bottom.

2. The first non-zero entry (or leading entry) of a row is to the right
of any leading entries in the row above it (if any).

3. All elements below a leading entry (if any) are zero.

A matrix in echelon form is in reduced row echelon form (RREF) if

1. All leading entries, if any, are equal to 1.

2. Leading entries are the only nonzero entry in their respective column.
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Example of a Matrix in Echelon Form

⌅ = non-zero number, ⇤ = any number

2

66664

0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 ⌅ ⇤ ⇤
0 0 0 0 0 0 0 0 ⌅ ⇤
0 0 0 0 0 0 0 0 0 0

3

77775
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Example 1

Which of the following are in RREF?

a)


1 0
0 2

�
d)

⇥
0 6 3 0

⇤

b)


0 0
0 0

�
e)


1 17 0
0 0 1

�

c)

2

664

0
1
0
0

3

775
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Definition: Pivot Position, Pivot Column

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.

Example 2: Express the matrix in reduced row echelon form and identify
the pivot columns.

2

4
0 �3 �6 4

�1 �2 �1 3
�2 �3 0 3

3

5
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Row Reduction Algorithm

The algorithm we used in the previous example produces a matrix in
RREF. Its steps can be stated as follows.

Step 1a Swap the 1st row with a lower one so the leftmost nonzero entry is
in the 1st row

Step 1b Scale the 1st row so that its leading entry is equal to 1

Step 1c Use row replacement so all entries below this 1 are 0

Step 2a Swap the 2nd row with a lower one so that the leftmost nonzero
entry below 1st row is in the 2nd row

etc. . . .
Now the matrix is in echelon form, with leading entries equal to 1.

Last step Use row replacement so all entries above each leading entry are 0,
starting from the right.
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Basic And Free Variables

Consider the augmented matrix

h
A ~b

i
=

2

4
1 3 0 7 0 4
0 0 1 4 0 5
0 0 0 0 1 6

3

5

The leading one’s are in first, third, and fifth columns. So:

the pivot variables of the system A~x = ~b are x1, x3, and x5.

The free variables are x2 and x4. Any choice of the free variables
leads to a solution of the system.

Note that A does not have basic variables or free variables. Systems have
variables.

Section 1.2 Slide 19



Existence and Uniqueness

A linear system is consistent if and only if (exactly when) the last
column of the augmented matrix does not have a pivot. This is
the same as saying that the RREF of the augmented matrix does
not have a row of the form

�
0 0 0 · · · 0 | 1

�

Moreover, if a linear system is consistent, then it has
1. a unique solution if and only if there are no free variables.

2. infinitely many solutions that are parameterized by free
variables.

Theorem
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1.3: Vector Equations

Topics

We will cover these topics in this section.

1. Vectors in Rn, and their basic properties

2. Linear combinations of vectors

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply geometric and algebraic properties of vectors in Rn to
compute vector additions and scalar multiplications.

2. Characterize a set of vectors in terms of linear combinations, their
span, and how they are related to each other geometrically.
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Motivation

We want to think about the algebra in linear algebra (systems of
equations and their solution sets) in terms of geometry (points, lines,
planes, etc).

x� 3y = �3

2x+ y = 8

This will give us better insight into the properties of systems of
equations and their solution sets.

To do this, we need to introduce n-dimensional space Rn, and
vectors inside it.
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Rn

Recall that R denotes the collection of all real numbers.

Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

When n = 1, we get R back: R1 = R. Geometrically, this is the number

line.

�3 �2 �1 0 1 2 3
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R2

Note that:

when n = 2, we can think of R2 as a plane

every point in this plane can be represented by an ordered pair of
real numbers, its x- and y-coordinates

Example: Sketch the point (3, 2) and the vector

✓
3
2

◆
.
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Vectors

In the previous slides, we were thinking of elements of Rn as points: in
the line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and
direction.

For example, the vector

✓
3
2

◆
points horizontally in the amount of its

x-coordinate, and vertically in the amount of its y-coordinate.
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Vector Algebra

When we think of an element of Rn as a vector, we write it as a matrix
with n rows and one column:

~v =

0

@
1
2
3

1

A

Suppose

~u =

✓
u1

u2

◆
, ~v =

✓
v1
v2

◆
.

Vectors have the following properties.

1. Scalar Multiple:
c~u =

2. Vector Addition:
~u+ ~v =

Note that vectors in higher dimensions have the same properties.
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Parallelogram Rule for Vector Addition

~a

~a+~b

~b
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Linear Combinations and Span

1. Given vectors ~v1,~v2, . . . ,~vp 2 Rn, and scalars
c1, c2, . . . , cp, the vector below

~y = c1~v1 + c2~v2 + · · ·+ cp~vp

is called a linear combination of ~v1,~v2, . . . ,~vp with

weights c1, c2, . . . , cp.

2. The set of all linear combinations of ~v1,~v2, . . . ,~vp is
called the Span of ~v1,~v2, . . . ,~vp.

Definition
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Geometric Interpretation of Linear Combinations

Note that any two vectors in R2 that are not scalar multiples of each
other, span R2. In other words, any vector in R2 can be represented as a
linear combination of two vectors that are not multiples of each other.

~0
~u

2~u

~v
~v + ~u

~v + 2~u

2~v + 2~u
2~v + ~u

2~v
2~v � ~u

~v � ~u

�~u

1.5~v � 0.5~u
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Example

Is ~y in the span of vectors ~v1 and ~v2?

~v1 =

0

@
1
�2
�3

1

A, ~v2 =

0

@
2
5
6

1

A, and ~y =

0

@
7
4
15

1

A.
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The Span of Two Vectors in R3

In the previous example, did we find that ~y is in the span of ~v1 and ~v2?

In general: Any two non-parallel vectors in R3 span a plane that passes
through the origin. Any vector in that plane is also in the span of the two
vectors.

~0
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“Mathematics is the art of giving the same name to di↵erent things.”
- H. Poincaré

In this section we introduce another way of expressing a linear system that

we will use throughout this course.
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1.4 : Matrix Equation A~x = ~b

Topics

We will cover these topics in this section.

1. Matrix notation for systems of equations.

2. The matrix product A~x.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Compute matrix-vector products.

2. Express linear systems as vector equations and matrix equations.

3. Characterize linear systems and sets of vectors using the concepts of
span, linear combinations, and pivots.
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Notation

symbol meaning

2 belongs to

Rn
the set of vectors with n real-valued elements

Rm⇥n
the set of real-valued matrices with m rows and n columns

Example: the notation ~x 2 R5 means that ~x is a vector with five
real-valued elements.
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Linear Combinations

Definition
A is a m⇥ n matrix with columns ~a1, . . . ,~an and x 2 Rn, then the
matrix vector product A~x is a linear combination of the columns of A:

A~x =

2

4
| | · · · |
~a1 ~a2 · · · ~an
| | · · · |

3

5

2

6664

x1

x2
...
xn

3

7775
= x1~a1 + x2~a2 + · · ·+ xn~an

Note that A~x is in the span of the columns of A.

Example

The following product can be written as a linear combination of vectors:


1 0 �1
0 �3 3

�2

4
4
3
7

3

5 =
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Solution Sets

Theorem
If A is a m⇥ n matrix with columns ~a1, . . . ,~an, and x 2 Rn and
~b 2 Rm, then the solutions to

A~x = ~b

has the same set of solutions as the vector equation

x1~a1 + · · ·+ xn~an = ~b

which as the same set of solutions as the set of linear equations with the
augmented matrix h

~a1 ~a2 · · · ~an ~b
i
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Existence of Solutions

Theorem
The equation A~x = ~b has a solution if and only if ~b is a linear
combination of the columns of A.
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Example

For what vectors ~b =

0

@
b1
b2
b3

1

A does the equation have a solution?

0

@
1 3 4
2 8 4
0 1 �2

1

A ~x = ~b
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The Row Vector Rule for Computing A~x


1 0 2 0 3
0 1 0 2 0

�
2

664

x1

x2

x3

x4

3

775 =

 �
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Summary

We now have four equivalent ways of expressing linear systems.

1. A system of equations:

2x1 + 3x2 = 7

x1 � x2 = 5

2. An augmented matrix: 
2 3 7
1 �1 5

�

3. A vector equation:

x1

✓
2
1

◆
+ x2

✓
3
�1

◆
=

✓
7
5

◆

4. As a matrix equation:
✓
2 3
1 �1

◆✓
x1

x2

◆
=

✓
7
5

◆

Each representation gives us a di↵erent way to think about linear systems.
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1.5 : Solution Sets of Linear Systems

Topics

We will cover these topics in this section.

1. Homogeneous systems

2. Parametric vector forms of solutions to linear systems

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Express the solution set of a linear system in parametric vector form.

2. Provide a geometric interpretation to the solution set of a linear
system.

3. Characterize homogeneous linear systems using the concepts of free
variables, span, pivots, linear combinations, and echelon forms.
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Homogeneous Systems

Definition
Linear systems of the form are homogeneous.

Linear systems of the form are inhomogeneous.

Because homogeneous systems always have the trivial solution, ~x = ~0,
the interesting question is whether they have
solutions.

A~x = ~0 has a nontrivial solution

() there is a free variable

() A has a column with no pivot.

Observation
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Example: a Homogeneous System

Identify the free variables, and the solution set, of the system.

x1 + 3x2 + x3 = 0

2x1 � x2 � 5x3 = 0

x1 � 2x3 = 0
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Parametric Forms, Homogeneous Case

In the example on the previous slide we expressed the solution to a system
using a vector equation. This is a parametric form of the solution.

In general, suppose the free variables for A~x = ~0 are xk, . . . , xn. Then all
solutions to A~x = ~0 can be written as

~x = xk~vk + xk+1~vk+1 + · · ·+ xn~vn

for some ~vk, . . . ,~vn. This is the parametric form of the solution.
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Example 2 (non-homogeneous system)

Write the parametric vector form of the solution, and give a geometric
interpretation of the solution.

x1 + 3x2 + x3 = 9

2x1 � x2 � 5x3 = 11

x1 � 2x3 = 6

(Note that the left-hand side is the same as Example 1).
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1.7 : Linear Independence

Topics

We will cover these topics in this section.

Linear independence

Geometric interpretation of linearly independent vectors

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize a set of vectors and linear systems using the concept of
linear independence.

2. Construct dependence relations between linearly dependent vectors.

Motivating Question

What is the smallest number of vectors needed in a parametric solution
to a linear system?
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Linear Independence

A set of vectors {~v1, . . . ,~vk} in Rn are linearly independent if

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0

has only the trivial solution. It is linearly dependent otherwise.

In other words, {~v1, . . . ,~vk} are linearly dependent if there are real
numbers c1, c2, . . . , ck not all zero so that

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0
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Consider the vectors:
~v1,~v2, . . .~vk

To determine whether the vectors are linearly independent, we can set
the linear combination to the zero vector:

c1~v1 + c2~v2 + · · ·+ ck~vk =
⇥
~v1 ~v2 · · · ~vk

⇤

2

6664

c1
c2
...
cn

3

7775
= V ~c

??
= ~0

Linear independence: There is NO non-zero solution ~c

Linear dependence: There is a non-zero solution ~c.
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Example 1

For what values of h are the vectors linearly independent?
2

4
1
1
h

3

5 ,

2

4
1
h
1

3

5 ,

2

4
h
1
1

3

5
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Example 2 (One Vector)

Suppose ~v 2 Rn. When is the set {~v} linearly dependent?
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Example 3 (Two Vectors)

Suppose ~v1,~v2 2 Rn. When is the set {~v1,~v2} linearly dependent?
Provide a geometric interpretation.
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Two Theorems

Fact 1. Suppose ~v1, . . . ,~vk are vectors in Rn. If k > n, then
{~v1, . . . ,~vk} is linearly dependent.

Fact 2. If any one or more of ~v1, . . . ,~vk is ~0, then {~v1, . . . ,~vk} is linearly
dependent.
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1.8 : An Introduction to Linear Transforms

Topics

We will cover these topics in this section.

1. The definition of a linear transformation.

2. The interpretation of matrix multiplication as a linear
transformation.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Construct and interpret linear transformations in Rn (for example,
interpret a linear transform as a projection, or as a shear).

2. Characterize linear transforms using the concepts of
I existence and uniqueness

I domain, co-domain and range

Section 1.8 Slide 57



From Matrices to Functions

Let A be an m⇥ n matrix. We define a function

T : Rn ! Rm, T (~v) = A~v

This is called a matrix transformation.

The domain of T is Rn.

The co-domain or target of T is Rm.

The vector T (~x) is the image of ~x under T

The set of all possible images T (~x) is the range.

This gives us another interpretation of A~x = ~b:

set of equations

augmented matrix

matrix equation

vector equation

linear transformation equation

Section 1.8 Slide 58



Functions from Calculus

Many of the functions we know have domain and codomain R.We can
express the rule that defines the function sin this way:

f : R ! R f(x) = sin(x)

In calculus we often think of a function in terms of its graph, whose
horizontal axis is the domain, and the vertical axis is the codomain.

�⇡ 0 ⇡ 2⇡

1
sin(x)

x

y

This is ok when the domain and codomain are R. It’s hard to do when
the domain is R2 and the codomain is R3. We would need five
dimensions to draw that graph.
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Example 1

Let A =

2

4
1 1
0 1
1 1

3

5, ~u =


3
4

�
, ~b =

2

4
7
5
7

3

5.

a) Compute T (~u).

b) Calculate ~v 2 R2 so that T (~v) = ~b

c) Give a ~c 2 R3 so there is no ~v with T (~v) = ~c

or: Give a ~c that is not in the range of T .

or: Give a ~c that is not in the span of the columns of A.
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Linear Transformations

A function T : Rn ! Rm is linear if

T (~u+ ~v) = T (~u) + T (~v) for all ~u,~v in Rn.

T (c~v) = cT (~v) for all ~v 2 Rn, and c in R.
So if T is linear, then

T (c1~v1 + · · ·+ ck~vk) = c1T (~v1) + · · ·+ ckT (~vk)

This is called the principle of superposition. The idea is that if we
know T (~e1), . . . , T (~en), then we know every T (~v).

Fact: Every matrix transformation TA is linear.
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Example 2

Suppose T is the linear transformation T (~x) = A~x. Give a short
geometric interpretation of what T (~x) does to vectors in R2.

1) A =


0 1
1 0

�

2) A =


1 0
0 0

�

3) A =


k 0
0 k

�
for k 2 R
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Example 3

What does TA do to vectors in R3?

a) A =

2

4
1 0 0
0 1 0
0 0 0

3

5

b) A =

2

4
1 0 0
0 �1 0
0 0 1

3

5
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Example 4

A linear transformation T : R2 7! R3 satisfies

T

✓
1
0

�◆
=

2

4
5
�7
2

3

5 , T

✓
0
1

�◆
=

2

4
�3
8
0

3

5

What is the matrix that represents T?
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1.9 : Matrix of a Linear Transformation

Topics

We will cover these topics in this section.

1. The standard vectors and the standard matrix.

2. Two and three dimensional transformations in more detail.

3. Onto and one-to-one transformations.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Identify and construct linear transformations of a matrix.

2. Characterize linear transformations as onto and/or one-to-one.

3. Solve linear systems represented as linear transforms.

4. Express linear transforms in other forms, such as as matrix equations
or as vector equations.
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Definition: The Standard Vectors

The standard vectors in Rn are the vectors ~e1,~e2, . . . ,~en, where:

~e1 = ~e2 = ~en =

For example, in R3,

~e1 = ~e2 = ~e3 =
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A Property of the Standard Vectors

Note: if A is an m⇥ n matrix with columns ~v1,~v2, . . . ,~vn, then

A~ei = ~vi, for i = 1, 2, . . . , n

So multiplying a matrix by ~ei gives column i of A.

Example

0

@
1 2 3
4 5 6
7 8 9

1

A~e2 =
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The Standard Matrix

Let T : Rn 7! Rm be a linear transformation. Then there
is a unique matrix A such that

T (~x) = A~x, ~x 2 Rn.

In fact, A is a m⇥n, and its jth column is the vector T (~ej).

A =
⇥
T (~e1) T (~e2) · · · T (~en)

⇤

Theorem

The matrix A is the standard matrix for a linear transformation.
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Rotations

Example 1

What is the linear transform T : R2 ! R2 defined by

T (~x) = ~x rotated counterclockwise by angle ✓?
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Standard Matrices in R2

There is a long list of geometric transformations of R2 in our
textbook, as well as on the next few slides (reflections, rotations,
contractions and expansions, shears, projections, . . . )

Please familiarize yourself with them: you are expected to memorize
them (or be able to derive them)
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Two Dimensional Examples: Reflections

transformation image of unit square standard matrix

reflection through x1�axis

x1

x2

~e2

~e1

✓
1 0
0 �1

◆

reflection through x2�axis

x1

x2

~e2

~e1

✓
�1 0
0 1

◆
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Two Dimensional Examples: Reflections

transformation image of unit square standard matrix

reflection through x2 = x1

x1

x2
x2 = x1

~e2

~e1

✓
0 1
1 0

◆

reflection through x2 = �x1

x1

x2

x2 = �x1

~e2

~e1

✓
0 �1
�1 0

◆
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Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix

Horizontal Contraction

x1

x2

~e2

~e1

✓
k 0
0 1

◆
. |k| < 1

Horizontal Expansion

x1

x2

~e2

~e1

✓
k 0
0 1

◆
, k > 1
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Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix

Vertical Contraction

x1

x2

~e2

~e1

✓
1 0
0 k

◆
, |k| < 1

Vertical Expansion

x1

x2

~e2

~e1

✓
1 0
0 k

◆
, k > 1
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Two Dimensional Examples: Shears

transformation image of unit square standard matrix

Horizontal Shear(left)

x1
k < 0

x2
✓
1 k
0 1

◆
, k < 0

Horizontal Shear(right)

x1
k > 0

x2
✓
1 k
0 1

◆
, k > 0

Section 1.9 Slide 76



Two Dimensional Examples: Shears

transformation image of unit square standard matrix

Vertical Shear(down)

x1

x2

~e2

~e1

✓
1 0
k 1

◆
, k < 0

Vertical Shear(up)

x1

x2

~e2

~e1

✓
1 0
k 1

◆
, k > 0

Section 1.9 Slide 77



Two Dimensional Examples: Projections

transformation image of unit square standard matrix

Projection onto the x1-axis

x1

x2

~e2

~e1

✓
1 0
0 0

◆

Projection onto the x2-axis

x1

x2

~e2

~e1

✓
0 0
0 1

◆
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Onto

A linear transformation T : Rn ! Rm is onto if for all
~b 2 Rm there is a ~x 2 Rn so that T (~x) = ~b.

Definition

Onto is an existence property: for any ~b 2 Rm, A~x = ~b has a solution.

Examples

A rotation on the plane is an onto linear transformation.

A projection in the plane is not onto.

Useful Fact

T is onto if and only if its standard matrix has a pivot in every row.
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One-to-One

A linear transformation T : Rn ! Rm is one-to-one if
for all ~b 2 Rm there is at most one (possibly no) ~x 2 Rn so
that T (~x) = ~b.

Definition

One-to-one is a uniqueness property, it does not assert existence for all ~b.

Examples

A rotation on the plane is a one-to-one linear transformation.

A projection in the plane is not one-to-one.

Useful Facts

T is one-to-one if and only if the only solution to T (~x) = 0 is the
zero vector, ~x = ~0.

T is one-to-one if and only if the standard matrix A of T has no free
variables.
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Example

Complete the matrices below by entering numbers into the missing
entries so that the properties are satisfied. If it isn’t possible to do so,

state why.
a) A is a 2⇥ 3 standard matrix for a one-to-one linear transform.

A =

✓
1 0
0 1

◆

b) B is a 3⇥ 2 standard matrix for an onto linear transform.

B =

0

@
1

1

A

c) C is a 3⇥ 3 standard matrix of a linear transform that is one-to-one
and onto.

C =

0

BB@

1 1 1
1

CCA
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For a linear transformation T : Rn ! Rm with standard
matrix A these are equivalent statements.
1. T is onto.

2. The matrix A has columns which span Rm.

3. The matrix A has m pivotal columns.

Theorem

For a linear transformation T : Rn ! Rm with standard
matrix A these are equivalent statements.
1. T is one-to-one.

2. The unique solution to T (~x) = ~0 is the trivial one.

3. The matrix A linearly independent columns.

4. Each column of A is pivotal.

Theorem
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Additional Examples

1. Construct a matrix A 2 R2⇥2, such that T (~x) = A~x, where T is a
linear transformation that rotates vectors in R2 counterclockwise by
⇡/2 radians about the origin, then reflects them through the line
x1 = x2.

2. Define a linear transformation by

T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2)

Is T one-to-one? Is T onto?
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