
Supplementary Problems - Ch. 7 and Google PageRank

The following problems are sample problems meant to show the type of problems that might

appear on the final exam for the sections after Exam 3, namely Google PageRank and the con-

tent of Chapter 7 (symmetric matrices, spectral theorem, quadratic forms, constrained opti-

mization, and Singular Value Decomposition).

WARNING: The problems are not meant to be an exhaustive list. Please be aware that these are

not necessarily the same problems that will appear on the final exam, and these problems may

not cover every aspect of what may be asked. These are meant only to be a sample of problems

that could appear.

1. (a) Suppose A is an m ⇥ n matrix and ~b 2 Rm
unless otherwise stated. Select true if the

statement is true for all choices of A and~b. Otherwise, select false.

true false

� � If A is a singular symmetric matrix then the minimum value of the

quadratic form Q(~x) = ~xTA~x subject to the constraint k~xk = 1 is zero.

� � Suppose the least of the singular values of A is 2. Then, the quadratic

form Q(~x) = kA~xk2 � k~xk2 is indefinite.

� � If Q : R3 ! R is a quadratic form having only cross terms, then

it is indefinite.

� � If the singular values of a square n⇥ n matrix A are �1, �2, . . . , �n,

then det(A) = �1�2 · · · �n.

(b) Indicate whether the following situations are possible or impossible.

possible impossible

� � A symmetric matrix A which is not diagonalizable.

� � An m⇥ n matrix A that does not have a singular value decomposition.

� � An indefinite quadratic form Q(~x) = ~xTA~x such that Q(~x) � 0 for all inputs ~x.

� � An invertible n⇥n matrix A such that the minimum value of Q(~x) = ~xTATA~x
subject to the constraint ||~x|| = 1 is less than 0.
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You do not need to justify your reasoning for questions on this page.

2. Give an example of a symmetric 3⇥ 3 matrix A such that:

• the corresponding quadratic form Q(~x) = ~xTA~x is negative semi-definite and has no

cross product terms;

• the range of the corresponding linear transformation T (~x) = A~x is 2-dimensional; and

• one of the eigenvalues of A has algebraic multiplicity equal to 2.

A =

3. Find the minimum value of Q(~x) = 4x2x3 on the unit sphere in R3
.
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4. Let A = U⌃V T
, where
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1p
2

2

664

1 0 �1 0
0 1 0 �1
1 0 1 0
0 1 0 1

3

775 ,

⌃ =

2

664

p
6 0 0
0 2 0
0 0 0
0 0 0

3

775 , V =

2

4
1/
p
3 1/

p
2 1/

p
6

�1/
p
3 0 2/

p
6

1/
p
3 �1/

p
2 1/

p
6

3

5 .

(a) What is the rank of A?

(b) maxk~xk=1 kA~xk =

(c) det(ATA) =

(d) What are the eigenvalues of ATA?

(e) Find an orthonormal basis for Row(A).

(f) Find an orthonormal basis for Nul(AT ).
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5. Show work on this page with work under the problem, and your answer in the box.
Consider the quadratic form Q(x1, x2, x3) = 3x2

1 + x2
2 + x2

3 � 6x2x3.

(a) There is a change of variables ~x = P~y, where P is an orthogonal matrix, such

that the resulting quadratic form Q(y1, y2, y3) has no cross product terms. What is

Q(y1, y2, y3) where ~x = P~y?

Q(y1, y2, y3) =

(b) Is Q positive-definite, negative-definite, or indefinite? Explain in a few words.

� positive-definite � negative-definite � indefinite

34+4Y22 - 2y3
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Extra problem: in case you want to practice doing least-squares with non-linear models.

6. Show work on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values ↵ and � which

best fit the curve

y = ↵x3 + �x2

to the data points (�1, 2), (0, 1), (1, 4) using the parameters ↵ and �.

(i) What is the augmented matrix for the linear system of equations associated to this least

squares problem?

(ii) What is the augmented matrix for the normal equations for this system.

(iii) Find a least-squares solution to the linear system from (i) to determine the parameters

↵ and � of the best fitting curve.
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