Math 3215: Intro to Probability and Statistics

Final Exam Solution, Summer 2023

1. Suppose A, B, and C are events with

$$
\begin{aligned}
\mathbb{P}(A)=0.58, & \mathbb{P}(B)=0.55, \quad \mathbb{P}(C)=0.4, \\
\mathbb{P}(A \cap B)=0.28, & \mathbb{P}(A \cap C)=0.23, \quad \mathbb{P}(B \cap C)=0.23, \\
& \mathbb{P}(A \cap B \cap C)=0.13
\end{aligned}
$$

(a) (4 points) Find $\mathbb{P}(C \mid A \cap B)$.
(b) (4 points) Find $\mathbb{P}\left(A^{c} \cap B^{c} \cap C^{c}\right)$.

Solution:

(a) $\mathbb{P}(C \mid A \cap B)=\mathbb{P}(A \cap B \cap C) / \mathbb{P}(A \cap B)=0.13 / 0.28=13 / 28$.
(b) Since

$$
\begin{aligned}
\mathbb{P}(A \cup B \cup C) & =\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A \cap B)-\mathbb{P}(B \cap C)-\mathbb{P}(C \cap A)+\mathbb{P}(A \cap B \cap C) \\
& =0.58+0.55+0.4-0.28-0.23-0.23+0.13 \\
& =0.92,
\end{aligned}
$$

Thus, $\mathbb{P}\left(A^{c} \cap B^{c} \cap C^{c}\right)=1-\mathbb{P}(A \cup B \cup C)=0.08$.
2. Suppose you roll two 4 faced dice, with faces labeled $1,2,3,4$, and each equally likely to appear on top. Let X_{1} be the number from the first die and X_{2} the number from the second die. Let $Y_{1}=\min \left\{X_{1}, X_{2}\right\}$ and $Y_{2}=\max \left\{X_{1}, X_{2}\right\}$.
(a) (4 points) Find the PMF of Y_{2}.
(b) (4 points) Find $\mathbb{E}\left[Y_{1}+Y_{2}\right]$.

Solution:

(a) $f_{Y_{2}}(1)=1 / 16, f_{Y_{2}}(2)=3 / 16, f_{Y_{2}}(3)=5 / 16, f_{Y_{2}}(4)=7 / 16$, otherwise 0 .
(b) $\mathbb{E}\left[Y_{1}+Y_{2}\right]=\mathbb{E}\left[X_{1}+X_{2}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]=5$.
3. Suppose X is a random variable taking values in $S=\{0,1,2,3, \ldots\}$ with PMF $f_{X}(k)=\frac{C \cdot 2^{k}}{k!}$.
(a) (4 points) Find the constant C.
(b) (4 points) Find $\mathbb{E}\left[e^{3 X}\right]$.

Solution:

(a) Since $\sum_{k=0}^{\infty} f_{X}(k)=C \sum_{k=0}^{\infty} 2^{k} / k!=C e^{2}=1, C=e^{-2}$. That is, X is a Poisson random variable with $\lambda=2$.
(b) $\mathbb{E}\left[e^{3 X}\right]=\sum_{k=0}^{\infty} e^{3 k} e^{-2} 2^{k} / k!=e^{-2} e^{2 e^{3}}=\exp \left(2\left(e^{3}-1\right)\right)$.
4. Consider an urn containing 10 balls, of which 5 are black and 5 are white. Suppose two balls are drawn at random without replacement. Let A be the event that the first ball is black, and B the event that the second ball is white.
(a) (4 points) Find $\mathbb{P}(B)$.
(b) (4 points) Find $\mathbb{P}(A \mid B)$.

Solution:

(a) $\mathbb{P}(B)=\mathbb{P}(A \cap B)+\mathbb{P}\left(A^{c} \cap B\right)=\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}\left(B \mid A^{c}\right) \mathbb{P}\left(A^{c}\right)=5 / 9 \cdot 1 / 2+4 / 9 \cdot 1 / 2=1 / 2$.
(b) $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)=5 / 9$.
5. Let X and Y be two random variables with joint pdf $f_{X, Y}(x, y)=2 e^{-x-y}$ for $0 \leq x \leq y<\infty$ and otherwise 0 .
(a) (4 points) Find the marginal PDF of X.
(b) (4 points) Find the conditional expectation $\mathbb{E}[Y \mid X=x]$ for $x>0$.

Solution:

(a) $f_{X}(x)=\int_{x}^{\infty} 2 e^{-x-y} d y=2 e^{-2 x}$ for $x \geq 0$.
(b) Since $f_{Y \mid X}(y \mid x)=e^{-(y-x)}$ for $y \geq x, \mathbb{E}[Y \mid X=x]=\int_{x}^{\infty} y e^{-(y-x)} d y=x+1$.
6. Let X and Y be two random variables with joint pdf $f_{X, Y}(x, y)=2$ for $0<x+y<1, x>0, y>0$, and otherwise 0 .
(a) (5 points) Find the covariance $\operatorname{Cov}(X, Y)$.
(b) (5 points) Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right), \mathbb{P}\left(Y \leq \frac{1}{2}\right)$, and $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$.

Solution:

(a) $\mathbb{E}[X Y]=\int_{0}^{1} \int_{0}^{1-y} 2 x y d x d y=\int_{0}^{1} y(1-y)^{2} d y=1 / 3-1 / 4=1 / 12$ and $\mathbb{E}[X]=\int_{0}^{1} \int_{0}^{1-y} 2 x d x d y=\int_{0}^{1}(1-$ $y)^{2} d y=1 / 3=\mathbb{E}[Y]$. Thus $\operatorname{Cov}(X, Y)=1 / 12-1 / 3^{2}=-1 / 36$.
(b) $\mathbb{P}\left(X \leq \frac{1}{2}\right)=\mathbb{P}\left(Y \leq \frac{1}{2}\right)=3 / 4$ and $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)=1 / 2$.
7. Let (X, Y) be a bivariate normal random vector.
(a) (5 points) Suppose that both X and Y have mean 2 and variance 3, while the correlation coefficient of X and Y is $\rho=-\frac{1}{6}$. Find $\operatorname{Var}(X-Y)$.
(b) (5 points) Assume now that X and Y have mean 7 and variance 4, but that the correlation coefficient has changed and is now given by $\rho=0$. Write $\mathbb{P}(4 \leq X \leq 9, Y \leq 8)$ in terms of $\Phi(z)=\mathbb{P}(Z \leq z)$ for $z \geq 0$ where Z is the standard normal random variable.

Solution:

(a) $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \rho \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=3+3-2 \cdot(-1 / 6)$. $3=7$.
(b) Since $\rho=0, X$ and Y are independent. Thus

$$
\begin{aligned}
\mathbb{P}(4 \leq X \leq 9, Y \leq 8) & =\mathbb{P}(4 \leq X \leq 9) \mathbb{P}(Y \leq 8) \\
& =\mathbb{P}((4-7) / 2 \leq(X-7) / 2 \leq(9-7) / 2) \mathbb{P}((Y-7) / 2 \leq(8-7) / 2) \\
& =\mathbb{P}(-1.5 \leq Z \leq 1) \mathbb{P}(Z \leq 0.5) \\
& =(\Phi(1)-\Phi(-1.5)) \Phi(0.5)=(\Phi(1)+\Phi(1.5)-1) \Phi(0.5)
\end{aligned}
$$

8. Let X be a uniform random variable on $(-1,1)$ and $Y=X^{3}$.
(a) (4 points) Find the pdf of Y.
(b) (4 points) Compute $\operatorname{Cov}(X, Y)$.

Solution:

(a) $f_{Y}(y)=\frac{1}{6} y^{-\frac{2}{3}}$ for $y \in(-1,1)$ and otherwise 0 .
(b) $\mathbb{E}[X Y]=\mathbb{E}\left[X^{4}\right]=\int_{-1}^{1} \frac{1}{2} x^{4} d x=1 / 5$ and $\mathbb{E}[X]=\mathbb{E}\left[X^{3}\right]=0$ by symmetry. Thus, $\operatorname{Cov}(X, Y)=1 / 5$.
9. A fair die will be rolled 720 times independently.
(a) (5 points) What is the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively? That is, what is $\mathbb{P}(27 \leq X \leq 32)$? Write down the probability without using the tables and approximations.
(b) (5 points) Using a normal approximation, with half-unit correction, write down an expression for the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively. Use the corresponding tables to find an approximate value for this probability.

Solution:

(a) $\mathbb{P}(27 \leq X \leq 32)=\sum_{k=27}^{32}\binom{180}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{180-k}$.
(b)

$$
\begin{aligned}
\mathbb{P}(27 \leq X \leq 32) & =\mathbb{P}(26.5<X<32.5) \\
& =\mathbb{P}\left(\frac{26.5-n p}{\sqrt{n p(1-p)}}<\frac{X-n p}{\sqrt{n p(1-p)}}<\frac{32.5-n p}{\sqrt{n p(1-p)}}\right) \\
& =\mathbb{P}\left(\frac{26.5-30}{5}<\frac{X-30}{5}<\frac{32.5-30}{5}\right) \\
& \approx \mathbb{P}(-0.7<Z<0.5) \\
& \approx 0.6915+0.7580-1=0.4495 .
\end{aligned}
$$

10. (6 points) Let \bar{X} be the mean of a random sample of size $n=25$ from a distribution with mean $\mu=16$ and variance $\sigma^{2}=63$. Use Chebvshev's inequality to find a lower bound for $\mathbb{P}(14<\bar{X}<18)$.

Solution: $\mathbb{P}(14<\bar{X}<18)=1-\mathbb{P}(|\bar{X}-16| \geq 2) \geq 1-\frac{\sigma^{2} / n}{2^{2}}=1-0.63=0.37$.
11. Let $W_{1}<W_{2}<\cdots<W_{6}$ be the order statistics of n independent observations from a $U(0,1)$ distribution.
(a) (5 points) Find the pdfs of W_{1} and W_{6}.
(b) (5 points) Find $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{6}\right]$.

Solution:

(a) Let $F(t)$ be the cdf of the uniform random varialbe on $(0,1)$. Then, $F(t)=t$ for $t \in(0,1), F(t)=0$ for $t \leq 0$ and $F(t)=1$ for $t \geq 1$. Let $f(t)$ be the pdf of the unifrom RV.
Since $f_{W_{1}}(t)=6(1-F(t))^{5} f(t), f_{W_{1}}(t)=6(1-t)^{5}$ for $t \in(0,1)$ and otherwise 0 .
Since $f_{W_{6}}(t)=6 F(t)^{5} f(t), f_{W_{1}}(t)=6 t^{5}$ for $t \in(0,1)$ and otherwise 0 .
(b) $\mathbb{E}\left[W_{1}\right]=1-6 / 7=1 / 7$ and $\mathbb{E}\left[W_{6}\right]=6 / 7$.
12. (6 points) A random sample of size 100 from the normal distribution $N(\mu, 25)$ yielded $\bar{X}=35.6$. Find a two-sided 95\% confidence interval for μ.

Solution: Since $z_{\alpha / 2}=1.96$, the confidence interval is $\left[35.6-z_{\alpha / 2} \cdot 5 / \sqrt{100}, 35.6+z_{\alpha / 2} \cdot 5 / \sqrt{100}\right]=[35.6-$ $0.98,35.6+0.98]=[34.62,36.58]$.

