Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^k , for large k.

But: multiplying two $n \times n$ matrices requires roughly n^3 computations. Is there a more efficient way to compute A^k ?

Topics and Objectives

Topics

- 1. Diagonal, similar, and diagonalizable matrices
- 2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
- 2. Apply diagonalization to compute matrix powers.

Note det
$$(CD) = det (D \cdot C) \Rightarrow det (\underline{P} \cdot (\underline{B} - \lambda \underline{I}) \cdot \underline{P}^{-1})$$

 $det(C) \cdot det(D) \quad det(D) \cdot det(C) = det (\underline{P}^{-1} \cdot \underline{P} \cdot (\underline{B} - \lambda \underline{I}))$
 $\underline{Thm}_{If} \quad A \text{ and } B \text{ are similar } (i.e. \quad A = \underline{P} \cdot \underline{B} \cdot \underline{P}^{-1}) = det (\underline{B} - \lambda \underline{I}) = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I}} = det (\underline{P} \cdot \underline{B} - \lambda \underline{I}) - \frac{det}{\underline{I} + det} = det (\underline{P} \cdot \underline{A} - \lambda \underline{I}) - \frac{det}{\underline{I}$

- Definition -

Two $n \times n$ matrices A and B are **similar** if there is a matrix P so that $A = PBP^{-1}$.

Theorem

If A and B similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

Diagonal Matrices

A matrix is **diagonal** if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 \end{bmatrix}, I_n, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

We'll only be working with diagonal square matrices in this course.

Powers of Diagonal Matrices

If A is diagonal, then A^k is easy to compute. For example,

But what if A is not diagonal?

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is **diagonalizable** if it is similar to a diagonal matrix, D. That is, we can write $A = PDP^{-1} \qquad \text{for some } P \in \mathbb{R}^{n \times n}$ Why A and D are similar? (D^R is easy) $A^{k} = 2$ $A^{2} = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^{2} \cdot P^{-1}$ $A^3 = P \cdot D^3 \cdot P^{-1}$ t coefficient A $\cdot \vec{x} = lin.$ combi. of $A^{\mathbf{k}} = \mathbf{P} \cdot \mathbf{D}^{\mathbf{k}} \cdot \mathbf{P}^{\mathbf{k}}$ Colomns To A (3) Need to find <u>P</u>. How? $A = P \cdot D \cdot P^{-1}$ Section 5.3 Slide 27 $A - P = P \cdot D$ $A \cdot \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} \begin{bmatrix} a_2 & 0 \\ 0 & a_n \end{bmatrix}$ $A \cdot \overline{v_i} = a_1 \cdot \overline{v_1}, \quad A \cdot \overline{v_2} = a_2 \cdot \overline{v_2}, \quad A \cdot \overline{v_n} = a_n \cdot \overline{v_n} \quad a_2 \cdot \overline{v_2}, \quad \dots \quad a_n \cdot \overline{v_n}$

Diagonalization

 $\begin{array}{c|c} \hline \textbf{Theorem} \\ \hline \textbf{If } A \text{ is diagonalizable} \Leftrightarrow A \text{ has } n \text{ linearly independent eigenvectors.} \end{array}$

Note: the symbol \Leftrightarrow means " if and only if ".

Also note that $A = PDP^{-1}$ if and only if

$$A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \cdots \vec{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \cdots \vec{v}_n \end{bmatrix}^{-1}$$

where $\vec{v}_1, \ldots, \vec{v}_n$ are linearly independent eigenvectors, and $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues (in order).

Diagonalize if possible.

$$A = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix}$$

$$(I) \quad \text{Ergenvalues} \quad \lambda = 2 \quad , -1 \qquad \text{because} \qquad A \quad \text{is upper friendular,}$$

$$(B) \quad \text{Eigenvectors}$$

$$(G) \quad \lambda = 2 \qquad E_2 = Mull (A - 2I)$$

$$A - 2I = \begin{pmatrix} 0 & 6 \\ 0 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{solution} : c \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\vec{V}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$(\vec{v}) \quad \lambda = -1 \qquad E_{-1} = Mull (A + I)$$

$$A + I = \begin{pmatrix} 3 & 6 \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \quad \text{solution} : c \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\vec{V}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \qquad A \neq S$$

(3)
$$P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
 invertible \Rightarrow diagonalizable
 $D = \begin{bmatrix} a & 0 \\ 0 & -1 \end{bmatrix}$ Check: $A = P \cdot D \cdot P^{-1}$

Diagonalize if possible.

$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

() Eigenvalue
$$\lambda = 3$$

(2) $E_3 = Null (A - 3I) = Null (0)$
the only eigenspoyce dim = $1 = #$ of free var.
 J
 $P = [V_1 V_2]$ Not
 $T_2 = T_2$
 T_2
 T_2
 T_2
 T_2
 T_2
 T

Why does this theorem hold?

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?

0116/23		pigonualues
	of amilectivis	eigenulues
A E R is diagonalizable	Eigencecturs $[v_1, v_2, \dots, v_n]$	$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$
	$\begin{bmatrix} v_1, v_2, \dots, v_n \end{bmatrix}$	
definition (=) There is an invertible matri	D o dzenord	II D Sud Unit
		r south that
$A = P D P^{-1}$		
⇒ We can find on linearly	Indep. eigenvectors.	
//		
If n distinct eigenvalu	es >1, 72; 7n	
{ JI,, Ung : Theory		

The eigenvalues of A are $\lambda = 3, 1$. If possible, construct P and D such that AP = PD.

$$A = \begin{pmatrix} 7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5 \end{pmatrix} \qquad \qquad D = \begin{bmatrix} 3 & & \\ & 3 & \\ & & | \end{bmatrix}$$

(2) $\lambda = 1$: [$\leq g_{eo}$. multi. $\leq alg$. multi. = 1 \Rightarrow A is diagonalizable Section 5.3 Slide 33

$$E_{1} = Nul (A-I)$$

$$A-I = \begin{bmatrix} 6 & 4 & 16 \\ 2 & 4 & 8 \\ -2 & -2 & -6 \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 3 & 2 & 8 \end{bmatrix}$$

$$\begin{array}{ccc} \mathcal{R} \in \mathcal{C} \\ \overrightarrow{X} \in \mathbb{R}^{n} \\ \end{array}, \\ \begin{array}{cccc} \mathcal{R} \\ (\overrightarrow{X}) \\ \mathcal{R} \\ \end{array} \end{array} = \left\{ \begin{array}{ccccc} \overrightarrow{\mathcal{T}_{1}} \\ (\overrightarrow{\mathcal{T}_{2}}) \\ (\overrightarrow{\mathcal{T}_{2}})) (\overrightarrow{\mathcal{T}_{2}})) (\overrightarrow{\mathcal{T}_{2}}) (\overrightarrow{\mathcal{T}_{2}})) (\overrightarrow{\mathcal{T}_{2}})) (\overrightarrow{\mathcal{T}_{2}})) (\overrightarrow{\mathcal{T}_{2}}$$

Basis of Eigenvectors

Express the vector
$$\vec{x}_0 = \begin{bmatrix} 4\\5 \end{bmatrix}$$
 as a linear combination of the vectors
 $\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$ and find the coordinates of \vec{x}_0 in the basis
 $\mathcal{B} = \{\vec{v}_1, \vec{v}_0\}$.
 $\vec{x}_0 = C_1 \vec{v}_1 + C_2 \vec{v}_2$
 $\vec{v}_1 + C_2 \vec{v}_2$
 $\vec{v}_2 + C_2 \vec{v}_1 - \frac{1}{2} \vec{v}_2$
 $\vec{v}_2 + C_2 \vec{v}_1$
 $\vec{v}_2 + C_2 \vec{v}_2$
 $\vec{v}_2 + C_2 \vec{v}_1$
 $\vec{v}_2 + C_2 \vec{v}_2$

Basis of Eigenvectors - part 2

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$ but this time let $D = \begin{bmatrix} 1 & 0 \\ 0 & -1/2 \end{bmatrix}$, and now find $[A^k \vec{x}_0]_{\mathcal{B}}$ where $A = PDP^{-1}$, for $k = 1, 2, \ldots$.

 $[A^k \vec{x}_0]_{\mathcal{B}} =$

Basis of Eigenvectors - part 3

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$ but this time let $D = \begin{bmatrix} 2 & 0 \\ 0 & 3/2 \end{bmatrix}$, and now find $[A^k \vec{x}_0]_{\mathcal{B}}$ where $A = PDP^{-1}$, for $k = 1, 2, \ldots$

 $[A^k \vec{x}_0]_{\mathcal{B}} =$

Additional Example (if time permits)

Note that

$$\vec{x}_k = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \vec{x}_{k-1}, \quad \vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad k = 1, 2, 3, \dots$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the n^{th} number in this sequence.

Chapter 5 : Eigenvalues and Eigenvectors 5.5 : Complex Eigenvalues

Topics and Objectives

Topics

- 1. Complex numbers: addition, multiplication, complex conjugate
- 2. Complex eigenvalues and eigenvectors.
- 3. Eigenvalue theorems

Learning Objectives

- 1. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
- 2. Rotation dilation matrices.
- 3. Find complex eigenvalues and eigenvectors of a real matrix.
- 4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$x^2 + 1 = 0$$
 $x^2 = -1$
The roots of this equation are: $x = \pm \sqrt{-1}$
We usually write $\sqrt{-1}$ as *i* (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C} , where

Complex Conjugate, Absolute Value, Polar Form

We can **conjugate** complex numbers: $\overline{a+bi} = \underline{a-bi}$ $E_X \quad (\overline{5-2i}) = 5+2i$

The absolute value of a complex number: $a + bi = \sqrt{(\alpha + b_{\alpha}) \cdot (\alpha + b_{i})} = \sqrt{\alpha^{2} + b^{2}}$ $(\alpha + b_{i}) \cdot (\alpha + b_{i}) = (\alpha + b_{i}) \cdot (\alpha - b_{i})$ $= \alpha^{2} - (b_{i})^{2} = \alpha^{2} - b^{2} \cdot b^{2} = \alpha^{2} + b^{2}$ We can write complex numbers in **polar form**: $a + ib = r(\cos \phi + i \sin \phi)$

Mote For Complex Z, Z·Z >0

$$Z = \alpha + bi = r \cos \phi + r \cdot \sin \phi = b$$

$$= r \left(\cos \phi + i \sin \phi \right)$$

$$\overline{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} \overline{X}_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_n \end{bmatrix}$$

$$\overline{A} \cdot \overline{V} = \overline{A} \cdot \overline{V} = A \cdot \overline{V}$$

$$\overline{A} \cdot \overline{V} = A \cdot \overline{V}$$

$$\overline{A} \cdot \overline{V} = A \cdot \overline{V}$$

$$\overline{A} \cdot \overline{V} = A \cdot \overline{V}$$

Complex Conjugate Properties

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^n$, it can be shown that:

• $\overline{(x+y)} = \overline{x} + \overline{y}$ • $\overline{Av} = A\overline{v}$ 4 suppose \overline{A} is a real matrix (Every entry is real) • $\operatorname{Im}(x\overline{x}) = 0.$

Example True or false: if x and y are complex numbers, then

Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Euler's Formula

Suppose z_1 has angle ϕ_1 , and z_2 has angle ϕ_2 .

The product $z_1 z_2$ has angle $\phi_1 + \phi_2$ and modulus |z||w|. Easy to remember using Euler's formula.

$$z = |z| e^{i\phi}$$

The product $z_1 z_2$ is:

$$z_3 = z_1 z_2 = (|z_1| e^{i\phi_1})(|z_2| e^{i\phi_2}) = |z_1| |z_2| e^{i(\phi_1 + \phi_2)}$$

Complex Numbers and Polynomials

 \Rightarrow 2+i = 2-i is also a root.

Slide 9 Section 5.5

Section 5.5

The matrix that rotates vectors by $\phi=\pi/4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2},$ is

$$A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

What are the eigenvalues of A? Find an eigenvector for each eigenvalue.

Chor. Poly. =
$$\gamma^2 - (1+1)\lambda + (1+1-(-1+1))$$

= $\lambda^2 - 2\lambda + \lambda = 0$
 $(\lambda - 1)^2 = (\lambda^2 - 2\lambda + 1) = (-1)$
 $\lambda - 1 = \pm i$
 $\lambda = 1 \pm i$
 $\lambda = 1 \pm i$
 $\beta = 3 \text{ Side } 11^2$
A- $(1+i)I = [1-(1+i)I)$
A- $(1+i)I = [1-(1+i)I] = [-\frac{i}{1-i}]$
 $= [\frac{i}{1-i}]$
 $= [\frac{i}{1} - i]$

 \bigcirc

(2)
$$\lambda_2 = (-\dot{a})$$
 $\vec{v}_2 = [\dot{a}] = [\dot{a}]$
[1]

The matrix in the previous example is a special case of this matrix:

$$C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Calculate the eigenvalues of ${\boldsymbol C}$ and express them in polar form.

Find the complex eigenvalues and an associated complex eigenvector for each eigenvalue for the matrix.

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra

Section 6.1 Slide 1

Topics and Objectives

Topics

- 1. Dot product of vectors
- 2. Magnitude of vectors, and distances in \mathbb{R}^n
- 3. Orthogonal vectors and complements
- 4. Angles between vectors

Learning Objectives

- 1. Compute (a) dot product of two vectors, (b) length (or magnitude) of a vector, (c) distance between two points in \mathbb{R}^n , and (d) angles between vectors.
- 2. Apply theorems related to orthogonal complements, and their relationships to Row and Null space, to characterize vectors and linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A? To the columns of A?

Section 6.1 Slide 2

The dot product between two vectors, \vec{u} and \vec{v} in \mathbb{R}^n , is defined as

$$\begin{array}{c} n \times (& n \times) \\ \downarrow & \downarrow \\ \vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}_{f} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \underbrace{u_1 v_1 + u_2 v_2 + \cdots + u_n v_n}_{(v_1 + v_2 + \cdots + v_n + v_n)} \in \mathbb{R}$$

Example 1: For what values of k is $\vec{u} \cdot \vec{v} = 0$?

$$\vec{u} = \begin{pmatrix} -1 \\ 3 \\ k \\ 2 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 4 \\ 2 \\ 1 \\ -3 \end{pmatrix}$$
$$\vec{u} \cdot \vec{v} = U^{\top} \cdot v = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \vec{v} \cdot \vec{v} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$

 $= (-1) \cdot 4 + 3 \cdot 2 + k \cdot 1 + 2 \cdot (-3)$

= -4 + 6 + k - 6 = k - 4 = 0 $\Rightarrow k = 4.$

Section 6.1 Slide 3

Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits linear properties.

Theorem (Basic Identities of Dot Product)
Let
$$\vec{u}, \vec{v}, \vec{w}$$
 be three vectors in \mathbb{R}^{n} , and $c \in \mathbb{R}$.
1. (Symmetry) $\vec{u} \cdot \vec{w} = \underline{\overrightarrow{u} \cdot \overrightarrow{u}}$
2. (Linear in each vector) $(\vec{v} + \vec{w}) \cdot \vec{u} = \underline{\overrightarrow{v}, \vec{u} + \vec{\omega}} \cdot \vec{u}$
3. (Scalars) $(c\vec{u}) \cdot \vec{w} = \underline{\overrightarrow{u} \cdot (c\vec{\omega})} = c \cdot (\vec{u} \cdot \vec{\omega})$
4. (Positivity) $\vec{u} \cdot \vec{u} \ge 0$, and the dot product equals
 $\vec{v}_{i} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix} \qquad \vec{v}_{i} \cdot \vec{v} = \begin{bmatrix} u_{1} - \cdots & u_{n} \end{bmatrix} \begin{bmatrix} u_{1} \\ \vdots \\ u_{n} \end{bmatrix}$
Section 6.1 Side 4
 $= u_{1}^{2} + u_{2}^{2} + \cdots + u_{n}^{2} \neq 0$
 $\hat{v}_{i} \cdot \vec{v} \neq 0$
 $\hat{v}_{i} \cdot \vec{v} \neq 0$

The Length of a Vector

The **length** of a vector
$$\vec{u} \in \mathbb{R}^n$$
 is
 $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$

Example: the length of the vector \overrightarrow{OP} is

 $\sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}$

Section 6.1

Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^n with $\|\vec{u}\| = 5$, $\|\vec{v}\| = \sqrt{3}$, and $\vec{u} \cdot \vec{v} = -1$. Compute the value of $\|\vec{u} + \vec{v}\|$.

$$\|\vec{u} + \vec{v} \|^{2} = \left(\sqrt{(\vec{u} + \vec{v})}, (\vec{u} + \vec{v}) \right)^{2} = (\vec{u} + \vec{v}), (\vec{u} + \vec{v})$$

$$= \left(\vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \vec{v}$$

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c\vec{v}$ is

$$\left\| c\vec{v} \right\| = |c| \left\| \vec{v} \right\|$$

Definition If $\vec{v} \in \mathbb{R}^n$ has length one, we say that it is a **unit vector**.

For example, each of the following vectors are unit vectors.

$$\vec{e}_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{y} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \vec{v} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad ||\vec{v}|| = \sqrt{1 + 3^{2}} = \sqrt{10}$$
Slide 7
$$\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad ||\vec{v}|| = 1$$

$$(\vec{v} = 1) \qquad ||\vec{v}|| = 1$$

$$||\vec{v} = 1 \qquad ||\vec{v} = 1$$

$$||\vec{v} = 1 \qquad ||\vec{v} = 1$$

Distance in \mathbb{R}^n

Example: Compute the distance from $\vec{u} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Section 6.1 Slide 8 distance = $\|\vec{u} - \vec{v}\| = \|\begin{bmatrix} 7\\ 7 \end{bmatrix} - \begin{bmatrix} 3\\ 2 \end{bmatrix} \|$ = $\|\begin{bmatrix} 4\\ -1 \end{bmatrix}\| = \begin{bmatrix} 4^2 + (-1)^2 = \end{bmatrix} \begin{bmatrix} 7\\ 7 \end{bmatrix}$

$$\begin{split} m &= \aleph \\ \vec{u} &= \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \vec{v} &= \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \quad |\vec{u} \cdot \vec{v}| &= \begin{pmatrix} u_1 v_1 + u_2 v_2 \\ v_2 \end{pmatrix} \\ & \leq \begin{pmatrix} u_1 + u_2 \\ v_1 + u_2 \end{pmatrix} \quad (\vec{v}_1^2 + v_2^2) \\ & = \| \vec{u}_1 \| \cdot \| \vec{v} \| \end{split}$$

The Cauchy-Schwarz Inequality

Theorem: Cauchy-Bunyakovsky–Schwarz Inequality For all \vec{u} and \vec{v} in \mathbb{R}^n , $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||.$ Equality holds *if and only if* $\vec{v} = \alpha \vec{u}$ for $\alpha = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}.$

Proof: Assume $\vec{u} \neq 0$, otherwise there is nothing to prove. Set $\alpha = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$. Observe that $\vec{u} \cdot (\alpha \vec{u} - \vec{v}) = 0$. So $0 \le ||\alpha \vec{u} - \vec{v}||^2 = (\alpha \vec{u} - \vec{v}) \cdot (\alpha \vec{u} - \vec{v})$ $= \alpha \vec{u} \cdot (\alpha \vec{u} - \vec{v}) - \vec{v} \cdot (\alpha \vec{u} - \vec{v})$ $= -\vec{v} \cdot (\alpha \vec{u} - \vec{v})$ $= \frac{||\vec{u}||^2 ||\vec{v}||^2 - |\vec{u} \cdot \vec{v}|^2}{||\vec{u}||^2}$

The Triangle Inequality

Proof:

$$\begin{aligned} \|\vec{u} + \vec{v}\|^{2} &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \\ &= \|\vec{u}\|^{2} + \|\vec{v}\|^{2} + 2\vec{u} \cdot \vec{v} \\ &\leq \|\vec{u}\|^{2} + \|\vec{v}\|^{2} + 2\|\vec{u}\|\|\vec{v}\| \\ &= (\|\vec{u}\| + \|\vec{v}\|)^{2} \end{aligned}$$

Angles

Theorem

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$
. Thus, if $\vec{a} \cdot \vec{b} = 0$, then:
• \vec{a} and/or \vec{b} are zero vectors, or
• \vec{a} and \vec{b} are perpendicular $\vec{a}_{-} \quad Cos \theta = 0$ $\vec{\Phi} = \frac{\pi}{2} \int_{1}^{2} \frac{3\pi}{2} \int_{1}^{2} \frac{3\pi}{$

For example, consider the vectors below.

Orthogonality

Note: The zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n . But we usually only mean non-zero vectors.

10/23/23

Ũ, V e R^r $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{v} = \vec{u}_1 \vec{v}_1 + \vec{v}_2 \vec{v}_2 + \cdots + \vec{v}_n \vec{v}_n$ Distance between U. J = 112-VI $C-\frac{1}{2}$ $\left| \vec{u} \cdot \vec{r} \right| \leq \|\vec{u}\| \cdot \|\vec{r}\|$ Triangle: $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$ Angle: $Cos \Theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ U. V orth-gonal if U. V =0

Sketch the subspace spanned by the set of all vectors \vec{u} that are orthogonal to $\vec{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Orthogonal Compliments

Definitions Let W be a subspace of \mathbb{R}^n . Vector $\vec{z} \in \mathbb{R}^n$ is orthogonal to W if \vec{z} is orthogonal to every vector in W. The set of all vectors orthogonal to W is a subspace, the **orthogonal compliment** of W, or W^{\perp} or 'W perp.' $W^{\perp} = \{ \vec{z} \in \mathbb{R}^n : \vec{z} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}$ $W = Span \left[\begin{bmatrix} 3 \\ 2 \end{bmatrix} \right]$ Precious Example $W^{\perp} = \text{Span} \left\{ \begin{bmatrix} -2 \\ 3 \end{bmatrix} \right\}$ $= \text{Null} \left(\begin{bmatrix} 3 & 2 \end{bmatrix} \right) = \text{Null} \left(\begin{array}{c} r^{T} \end{array} \right)$ W has a basis In general, Section 6.1 $B = \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \}$ W= { Z : Z· w =0 for all wew { $= \{ \vec{z} : \vec{z} \cdot \vec{v}_{1} = 0, \vec{z} \cdot \vec{v}_{2} = 0, - - \cdot \cdot \vec{z} \cdot \vec{v}_{k} = 0 \}$ $= N_{u} \left(\begin{bmatrix} v_{1}^{T} \\ -v_{2}^{T} \\ \vdots \end{bmatrix} \right)$

$$L = Span \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} = \left\{ c \begin{bmatrix} 1 \\ -1 \end{bmatrix} : c \in \mathbb{R} \right\}$$

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

We can show that

- $\dim(\operatorname{Row}(A)) = \dim(\operatorname{Col}(A))$
- a basis for RowA is the pivot rows of A

Note that $Row(A) = Col(A^T)$, but in general RowA and ColA are not related to each other

Dimension Thm: dim(Null(A)) + dim(Col(A)) = 91 11 dim(Row(A))

The idea behind this theorem is described in the diagram below.

Looking Ahead - Projections

Suppose we want to find the closed vector in Span $\{\vec{b}\}$ to \vec{a} .

- Later in this Chapter, we will make connections between dot products and **projections**.
- Projections are also used throughout multivariable calculus courses.

Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

- 1. Orthogonal Sets of Vectors
- 2. Orthogonal Bases and Projections.

Learning Objectives

- 1. Apply the concepts of orthogonality to
 - a) compute orthogonal projections and distances,
 - b) express a vector as a linear combination of orthogonal vectors,
 - c) characterize bases for subspaces of \mathbb{R}^n , and
 - d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for \mathbb{R}^3 ?

$$\begin{bmatrix} 3\\1\\1 \end{bmatrix} / \sqrt{11}, \quad \begin{bmatrix} -1\\2\\1 \end{bmatrix} / \sqrt{6}, \quad \begin{bmatrix} -1\\-4\\7 \end{bmatrix} / \sqrt{66}$$

Orthogonal Vector Sets

Definition A set of vectors $\{\vec{u}_1, \dots, \vec{u}_p\}$ are an **orthogonal set** of vectors if for each $j \neq k$, $\vec{u}_j \perp \vec{u}_k$. $\vec{u}_j \cdot \vec{u}_k = \circ$.

¢

Example: Fill in the missing entries to make $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ an orthogonal set of vectors.

$$\vec{u}_{1} = \begin{bmatrix} 4\\0\\1 \end{bmatrix}, \quad \vec{u}_{2} = \begin{bmatrix} -2\\0\\0=\vec{u}_{3}\end{bmatrix}, \quad \vec{u}_{3} = \begin{bmatrix} 0\\b\\c=0\\c=0 \end{bmatrix}$$

$$o = \vec{u}_{4} \cdot \vec{u}_{3} = 4 \cdot (-2) + 0 \cdot 0 + 1 \cdot \alpha, \quad \alpha = 8.$$

$$c = \vec{u}_{1} \cdot \vec{u}_{3} = (-2) \cdot 0 + 0 \cdot b + 8 \cdot c, \quad c = 0$$

$$o = \vec{u}_{1} \cdot \vec{u}_{3} = 6 \cdot (-2) \cdot 0 + 0 \cdot b + 8 \cdot c, \quad c = 0$$

$$\begin{cases} \vec{u}_{1}^{2}, \dots, \vec{u}_{p}^{k} \\ | \vec{r}_{n}, \vec{r}_{n} \det q \\ \end{cases} C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{k} = \vec{c} \\ \Rightarrow \|C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{k}\|^{2} = 0 = (\vec{c}_{1}^{2})\|U_{1}\|^{2} + (\vec{c}_{1}^{2})\|\vec{u}_{2}^{k}\|^{2} + \dots + (\vec{c}_{p})\|\vec{u}_{p}^{k}\|^{2} \\ \hline \text{Linear Independence} \\ \Rightarrow (1 - 1) + C_{p}\vec{u}_{p}^{k}\|^{2} = 0 = (\vec{c}_{1}^{2})\|U_{1}\|^{2} + (\vec{c}_{1}^{2})\|\vec{u}_{2}^{k}\|^{2} + \dots + (\vec{c}_{p})\|\vec{u}_{p}^{k}\|^{2} \\ \hline \text{Linear Independence} \\ \Rightarrow (1 - 1) + C_{p}\vec{u}_{p}^{k}\|^{2} = c_{1}^{2}\|\vec{u}_{1}\|^{2} + \dots + c_{p}^{2}\|\vec{u}_{p}\|^{2}. \\ \hline \text{In particular, if all the vectors } \vec{u}_{p} \text{ are non-zero, the set of vectors} \\ \{\vec{u}_{1}, \dots, \vec{u}_{p}\} \text{ are linearly independent.} \\ \end{cases} (1 - C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2})\|^{2} = (C_{1}^{2})|\vec{u}_{1}\|^{2} + \dots + C_{p}\vec{u}_{p})\cdot(C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \\ = (C_{1}^{2})|\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \cdot (C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \\ = (C_{1}^{2})|\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \cdot (C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \\ = (C_{1}^{2})|\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2}) \\ = (C_{1}^{2})|\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + C_{1}\vec{u}_{1}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + C_{1}\vec{u}_{p}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + C_{1}\vec{u}_{p}^{2} + \dots + C_{p}\vec{u}_{p}^{2} + \dots + C_{p}\vec{u$$

$$\frac{\text{Recall}}{B} = \{ \overline{u_i}, \overline{\ldots}, \overline{u_p} \} \text{ is a basis for W}$$

$$if \qquad B = \{ \overline{u_i}, \overline{\ldots}, \overline{u_p} \} \text{ is a basis for W}$$

$$if \qquad W = \text{Span B}$$

Orthogonal Bases

Theorem (Expansion in Orthogonal Basis) Let $\{\vec{u}_1, \ldots, \vec{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then, for any vector $\vec{w} \in W$, $\vec{w} = c_1 \vec{u}_1 + \cdots + c_p \vec{u}_p$. Above, the scalars are $c_q = \frac{\vec{w} \cdot \vec{u}_q}{\vec{u}_c \cdot \vec{u}_c}$.

For example, any vector $\vec{w} \in \mathbb{R}^3$ can be written as a linear combination of $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$, or some other orthogonal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

$$\vec{u}_{1} \cdot \vec{\omega} = (c_{1} \cdot \vec{u}_{1} + \cdots + c_{p} \cdot \vec{u}_{p}) \cdot \vec{u}_{1}$$

$$\vec{\omega} \cdot \vec{u}_{1} = c_{1} \cdot \vec{u}_{1} \cdot \vec{u}_{1}$$

$$c_{1} = \frac{\vec{\omega} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}$$

$$\vec{x} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \vec{u} = \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \quad \vec{s} = \begin{pmatrix} 3\\-4\\1 \end{pmatrix}$$

Let W be the subspace of \mathbb{R}^3 that is orthogonal to \vec{x} . (a) Check that an orthogonal basis for W is given by \vec{u} and \vec{v} . b) Compute the expansion of \vec{s} in basis W.

$$\begin{array}{l} \sqrt[4]{a} & W = \left(\begin{array}{ccc} S_{pon} \sqrt{2\pi} \right)^{\perp} & 4 & 2 - dim \\ \end{array} \\ \begin{array}{c} 0 & \overline{u}, \overline{v} \in W \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \end{array} \end{array}$$
 \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline u, \overline{v} \in W \\ \end{array} \end{array} \\ \begin{array}{c} \hline u, \overline{v} \end{array} \end{array} \\ \bigg \\ \end{array} \\ \bigg) \\ \bigg \\ \bigg \\ \bigg \\ \bigg) \\ \bigg \\ \bigg \\ \bigg \\ \bigg) \\ \bigg \\ \bigg \\ \bigg \\ \bigg) \end{array} \\ \bigg \\ \bigg

Section 6.2 Slide 26

 $\vec{S} = C_1 \cdot \vec{u} + C_2 \vec{v}$

$$\int \vec{U}_{1}, \vec{v}_{1} \int \frac{v + h_{of} end}{\vec{U}_{1}, \vec{v}_{2}} = \frac{basts}{1 \cdot 3 + (-2) \cdot (-4) + |\cdot|} = \frac{12}{6} = 8$$

$$C_{1} = \frac{\vec{S} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} = \frac{(-1) \cdot 3 + 0 \cdot (-4) + |\cdot|}{(-1) \cdot 3 + 0 \cdot (-4) + |\cdot|} = \frac{-2}{2} = -\frac{1}{2},$$

Projections

Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The **orthogonal projection of** \vec{v} **onto the direction of** \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v} .

$$\operatorname{proj}_{\vec{u}} \vec{v} = rac{ec{v} \cdot ec{u}}{ec{u} \cdot ec{u}} ec{u}.$$

Let *L* be spanned by
$$\vec{u} = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$$
.
1. Calculate the projection of $\vec{y} = (-3, 5, 6, -4)$ onto line *L*.
2. How close is \vec{y} to the line *L*?
 $d\vec{y} = (-3, 5, 6, -4)$ onto line *L*.
3. How close is \vec{y} to the line *L*?
 $d\vec{y} = (-3, 5, 6, -4)$ onto line *L*.
4. $(\vec{y} + \vec{y}) = (\vec{y} + \vec{y}) = (\vec{y} + \vec{y}) + \vec{y}$
 $\vec{y} = (\vec{y}) = (\vec{y} + \vec{y}) = (\vec{y} + \vec{y}) + \vec{y}$
 $\vec{y} = (\vec{y}) = (\vec{y} + \vec{y}) + (\vec{y} + \vec{y}) + \vec{y} + (\vec{y} + \vec{y}) + (\vec{y}) + (\vec{y}) + (\vec{y}) + (\vec{y}) + (\vec{y} + \vec{y}) + (\vec{$

Definition

Definition (Orthonormal Basis) An orthonormal basis for a subspace W is an orthogonal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$ in which every vector \vec{u}_q has unit length. In this case, for each $\vec{w} \in W$, $\vec{w} = (\vec{w} \cdot \vec{u}_1)\vec{u}_1 + \cdots + (\vec{w} \cdot \vec{u}_p)\vec{u}_p$ $\|\vec{w}\| = \sqrt{(\vec{w} \cdot \vec{u}_1)^2 + \cdots + (\vec{w} \cdot \vec{u}_p)^2}$

$$C_{1} = \frac{\overrightarrow{u} \cdot \overrightarrow{u}_{1}}{\overrightarrow{u}_{1} \cdot \overrightarrow{u}_{1}} = \overrightarrow{u} \cdot \overrightarrow{u}_{1}$$

The subspace W is a subspace of \mathbb{R}^3 perpendicular to x = (1, 1, 1). Calculate the missing coefficients in the orthonormal basis for W.

NXN

An **orthogonal matrix** is a square matrix whose columns are orthonormal.

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I_n$.

Can U have orthonormal columns if n > m?

n Km Mrn
$$\mathcal{E}$$
 $\mathbb{R}^{n \times n}$
 \mathcal{T} $\mathcal{T$

Ξ

In

Theorem

Section 6.2

Theorem (Mapping Properties of Orthogonal Matrices) Assume $m \times m$ matrix U has orthonormal columns. Then 1. (Preserves length) $||U\vec{x}|| = ||\vec{x}||$ 2. (Preserves angles) $(U\vec{x}) \cdot (U\vec{y}) = \left| \overrightarrow{\chi} \cdot \overrightarrow{q} \right|$ 3. (Preserves orthogonality) $\vec{X} \cdot \vec{y} = 0 \iff (\vec{V} \cdot \vec{X}) \cdot (\vec{V} \cdot \vec{y}) = 0$ U = [UI -- Um] q UI -- Um (orthonormal || てア 元 || $\| \nabla \vec{x} \|^{2} = \left\| \nabla \left[\frac{x_{1}}{x_{2}} \right] \right\|^{2} = \| x_{1} \cdot \vec{u}_{1} + x_{2} \cdot \vec{u}_{2} + \dots + x_{m} \cdot \vec{u}_{m} \|^{2} \text{ orthogand}$ $= x_{1}^{2} \| \vec{u}_{1} \|^{2} + x_{2}^{2} \| u_{2} \|^{2} + \dots + x_{m}^{2} \| \vec{u}_{m} \|^{2}$ $= \chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{m}^{2} = \|\vec{x}\|^{2}$ Slide 32 $\| U \vec{x} \|^{2} = (U \vec{x}) \cdot (U \vec{x}) = (V \cdot \vec{x})^{T} \cdot (U \cdot \vec{x})$

Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

$$\hat{\vec{e}_2} \quad \hat{\vec{y}} \in \operatorname{Span}\{\vec{e}_1, \vec{e}_2\} = W$$

Vectors $\vec{e_1}$ and $\vec{e_2}$ form an orthonormal basis for subspace W. Vector \vec{y} is not in W. The orthogonal projection of \vec{y} onto $W = \text{Span}\{\vec{e_1}, \vec{e_2}\}$ is \hat{y} .

Topics and Objectives

Topics

- 1. Orthogonal projections and their basic properties
- 2. Best approximations

Learning Objectives

- 1. Apply concepts of orthogonality and projections to
 - a) compute orthogonal projections and distances,
 - b) express a vector as a linear combination of orthogonal vectors,
 - c) construct vector approximations using projections,
 - d) characterize bases for subspaces of \mathbb{R}^n , and
 - e) construct orthonormal bases.

Motivating Question For the matrix A and vector \vec{b} , which vector \hat{b} in column space of A, is closest to \vec{b} ?

$$A = \begin{bmatrix} 1 & 2\\ 3 & 0\\ -4 & -2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then, each vector $\vec{y} \in \mathbb{R}^n$ has the **unique** decomposition

$$\vec{y} = \hat{y} + w^{\perp}, \quad \hat{y} \in W, \quad w^{\perp} \in W^{\perp}.$$

And, if $\vec{u}_1, \ldots, \vec{u}_p$ is any orthogonal basis for W,

$$\hat{y} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \vec{u}_p.$$

We say that \hat{y} is the **orthogonal projection of** \vec{y} **onto** W.

If time permits, we will explain some of this theorem on the next slide.

Explanation (if time permits)

We can write

$$\widehat{y} =$$

Then, $w^\perp = \vec{y} - \widehat{y}$ is in W^\perp because

Example 2a

$$\vec{y} = \begin{pmatrix} 4\\0\\3 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad \overrightarrow{\mathcal{O}}_{\mathfrak{l}} \cdot \overrightarrow{\mathcal{O}}_{\mathfrak{L}} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\rightarrow} \stackrel{\frown}{$$

Construct the decomposition $\vec{y} = \hat{y} + w^{\perp}$, where \hat{y} is the orthogonal projection of \vec{y} onto the subspace $W = \text{Span}\{\vec{u}_1, \vec{u}_2\}$.

$$\hat{Y} = P^{nj} \underbrace{(\hat{Y})}_{W} \underbrace{(\hat{Y})}_{J} \qquad \text{orthogonal } (Yes)$$

$$= \frac{\hat{Y} \cdot \hat{U_{1}}}{\hat{U_{1}} \cdot \hat{U_{1}}} \underbrace{U_{4}}_{H} + \frac{\hat{Y} \cdot \hat{U_{2}}}{\hat{U_{2}} \cdot \hat{U_{2}}} \underbrace{U_{2}}_{J} \qquad \text{d} \underbrace{U_{1} \cdot U_{2}}_{J} \qquad \text{orthogonal bosis}$$

$$= \frac{4 \cdot 2 + 0 \cdot 2 + 3 \cdot 0}{2^{2} + 2^{2}} \underbrace{U_{1}}_{I} + \frac{3 \cdot 1}{1^{2}} \underbrace{U_{2}}_{J} \qquad \text{for } W$$

$$= \overline{U_{1}}_{I} + 3 \cdot \overline{U_{2}} = \begin{bmatrix}2\\2\\3\end{bmatrix}$$

Best Approximation Theorem

Proof (if time permits)

Example 2b

$$\vec{y} = \begin{pmatrix} 4\\0\\3 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

What is the distance between \vec{y} and subspace $W = \text{Span}\{\vec{u}_1, \vec{u}_2\}$? Note that these vectors are the same vectors that we used in Example 2a.

$$\begin{aligned} \hat{y} &= \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \leftarrow \text{ minimizes } \| \hat{y} - \hat{\zeta} \hat{u}_{1} - \hat{\zeta} \hat{u}_{2} \| \\ \text{distance } (\hat{y}, w) &= \| [\hat{y} - \hat{y} \| \\ &= \| [\hat{y} - \hat{y} \| \\ \frac{2}{3} - [\hat{z}] \| - \| [\hat{z}] \| \\ &= \int g. \end{aligned}$$

Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

Vectors $\vec{x}_1, \vec{x}_2, \vec{x}_3$ are given linearly independent vectors. We wish to construct an orthonormal basis $\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}$ for the space that they span.

Topics and Objectives

Topics

- 1. Gram Schmidt Process
- 2. The QR decomposition of matrices and its properties

Learning Objectives

- 1. Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis.
- 2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of \mathbb{R}^4 . Identify an orthogonal basis for W.

$$\vec{x}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Example

The vectors below span a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

$$\vec{\nabla}_{1} = \vec{x}_{1} = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad \vec{x}_{2} = \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}, \quad \vec{x}_{3} = \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix}.$$

$$W = S_{pow}(\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\}) \quad \text{Orthogond backing }}$$

$$\vec{\nabla}_{1} = \vec{x}_{1}$$

$$\vec{\nabla}_{1} = \vec{x}_{1}$$

$$\vec{\nabla}_{2} \quad \vec{x}_{1}. \quad \vec{D} \quad \vec{\nabla}_{2} \perp \vec{U}_{1} \quad i.e. \quad \vec{\nabla}_{1} \cdot \vec{\nabla}_{2} = 0$$

$$(in. \text{ Cambi}).$$

$$\vec{O} = \vec{\nabla}_{1}, \quad \vec{\nabla}_{2} = (\vec{X}_{2} - c \cdot (\vec{x}_{1})) \cdot \vec{\nabla}_{1}$$

$$\vec{O} = \vec{x}_{1}^{2} \cdot \vec{\nabla}_{1} - c \cdot (\vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{2} - c \cdot (\vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{2} - c \cdot (\vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{2} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{2} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} - \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} - \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} \cdot \vec{\nabla}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} \cdot \vec{\nabla}_{2} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{x}_{1} \cdot \vec{\nabla}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{\nabla}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{\nabla}_{2} - c \cdot \vec{\nabla}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_{1}) = (\vec{\nabla}_{1} - c \cdot \vec{\nabla}_{1} \cdot \vec{\nabla}_$$

The Gram-Schmidt Process

Given a basis
$$\{\vec{x}_1, \dots, \vec{x}_p\}$$
 for a subspace W of \mathbb{R}^n , iteratively define
 $\vec{v}_1 = \vec{x}_1$
 $\vec{v}_2 = \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{p \cdot \vec{v}_1}{\vec{v}_1} (\vec{x}_2)$
 $\vec{v}_3 = \vec{x}_3 - \left(\frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 + \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2\right)$
 $\vec{v}_p = \vec{x}_p - \frac{\vec{x}_p \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \dots - \frac{\vec{x}_p \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$

Then, $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is an orthogonal basis for W.

Proof

Geometric Interpretation

Suppose $\vec{x}_1, \vec{x}_2, \vec{x}_3$ are linearly independent vectors in \mathbb{R}^3 . We wish to construct an orthogonal basis for the space that they span.

We construct vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$, which form our **orthogonal** basis. $W_1 = \text{Span}\{\vec{v}_1\}, W_2 = \text{Span}\{\vec{v}_1, \vec{v}_2\}.$

Example

The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for W.

In the interest of time:

- we will not consider the case where ${\cal A}$ has linearly dependent columns
- students are not expected to know the conditions for which A has a QR factorization

Proof

$$\vec{x}_2 = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_p \end{bmatrix} \begin{bmatrix} \vec{x}_2 \cdot \vec{u}_1 \\ n \cdot \vec{v}_2 \end{bmatrix}$$

Example

Construct the QR decomposition for $A = \begin{bmatrix} 3 & -2 \\ 2 & 3 \\ 0 & 1 \end{bmatrix}$.

Midterm 3. Your initials:

7. (4 points) Show all work for problems on this page.

Let $\mathcal{B} = {\vec{x_1}, \vec{x_2}, \vec{x_3}}$ be a basis for a subspace *W* of \mathbb{R}^4 , where

$$\vec{x}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}.$$

(a) Apply the Gram-Schmidt process to the set of vectors $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ to find an orthogonal basis $\mathcal{H} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ for *W*. *Clearly show all steps of the Gram-Schmidt process.*

$$\begin{split} \nabla_{4} &= \mathcal{K}_{1} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \\ \mathcal{V}_{2} &= \mathcal{K}_{2} - \begin{pmatrix} \frac{\mathcal{K}_{2} \cdot \mathcal{V}_{1}}{\mathcal{V}_{1} \cdot \mathcal{V}_{1}} \end{pmatrix} \cdot \mathcal{V}_{4} = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 2 \\ 1 \end{bmatrix} - \frac{(-4)}{4} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} & \mathcal{H}_{4} \\ \end{split}$$

$$\begin{aligned} &= \begin{bmatrix} -1 \\ 0 \\ 2 \\ -1 \\ -1 \end{bmatrix} - \frac{(-2)}{4} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} - \frac{(-3)}{6} \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \\ \mathcal{V}_{3} &= \mathcal{K}_{3} - \begin{pmatrix} \frac{\mathcal{K}_{3} \cdot \mathcal{V}_{1}}{\mathcal{V}_{1} \cdot \mathcal{V}_{1}} \end{pmatrix} \mathcal{V}_{1} - \begin{pmatrix} \frac{\mathcal{K}_{3} \cdot \mathcal{V}_{2}}{\mathcal{V}_{2} \cdot \mathcal{V}_{2}} \end{pmatrix} \mathcal{V}_{2} = \begin{bmatrix} 2 \\ -1 \\ -1 \\ -1 \end{bmatrix} - \frac{(-2)}{4} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} - \frac{(-3)}{6} \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 0 \\ 3 \\ -2 \\ -2 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \end{pmatrix} \end{aligned}$$

(b) In the space below, **check** that the vectors in the basis \mathcal{H} form an orthogonal set.

$$\begin{aligned}
\mathcal{V}_{3} &= \chi_{3} - C_{1} \chi_{1} - C_{2} \chi_{2} \\
\mathcal{V}_{3} &= \chi_{3} - C_{1} \mathcal{V}_{1} - C_{2} \mathcal{V}_{2} \\
\mathcal{O} &= \mathcal{V}_{1} \cdot \mathcal{V}_{3} = \mathcal{V}_{1} \cdot \left(\chi_{3} - C_{1} \mathcal{V}_{1} - C_{2} \mathcal{V}_{2}\right) \\
\mathcal{O} &= \chi_{3} \cdot \mathcal{V}_{1} - C_{1} \cdot \mathcal{V}_{1} \cdot \mathcal{V}_{1} \Rightarrow C_{1} = \frac{\chi_{3} \cdot \mathcal{V}_{1}}{\chi_{1} \cdot \mathcal{V}_{1}}
\end{aligned}$$

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

- (c) (2 points) The standard matrix of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ has orthonormal columns. Which one of the following statements is false? Choose only one.
 - $\bigcirc ||T(\vec{x})|| = ||\vec{x}||$ for all \vec{x} in \mathbb{R}^3 .
 - \bigcirc If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^3 are scalar multiples of each other, then $||T(\vec{x} + \vec{y})||^2 = ||T(\vec{x})||^2 + ||T(\vec{y})||^2.$
 - \bigcirc If \mathcal{P} is a parallelpiped in \mathbb{R}^3 , then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P} .
 - \bigcirc *T* is one-to-one.

2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 \\ 1 \\ 2 \\ -3 \\ 1 \\ 1 \\ 1 \\ \sqrt{3} \end{bmatrix} \qquad U_{2} = \begin{bmatrix} 1 \\ 2 \\ -3 \\ -3 \\ 1 \\ \sqrt{3} \end{bmatrix} \qquad U_{2} = \begin{bmatrix} 1 \\ 2 \\ \sqrt{3} \\ -3 \\ -3 \\ 1 \\ \sqrt{3} \end{bmatrix}$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$X_1 \cdot U_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda \\ 1 \\ 1 \end{bmatrix}$$

$$X_2 \cdot U_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\ -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{\lambda}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 \\$$

Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

https://xkcd.com/1725

Topics and Objectives

Topics

- 1. Least Squares Problems
- 2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by random errors. How can the dominant trend be extracted from the measurements with random error?

Inconsistent Systems

Suppose we want to construct a line of the form

The Least Squares Solution to a Linear System

A Geometric Interpretation

The vector \vec{b} is closer to $A\hat{x}$ than to $A\vec{x}$ for all other $\vec{x} \in ColA$.

- 1. If $\vec{b} \in \operatorname{Col} A$, then \hat{x} is . . .
- 2. Seek \hat{x} so that $A\hat{x}$ is as close to \vec{b} as possible. That is, \hat{x} should solve $A\hat{x} = \hat{b}$ where \hat{b} is . . .

The Normal Equations

Theorem (Normal Equations for Least Squares) The least squares solutions to $A\vec{x} = \vec{b}$ coincide with the solutions to $\underbrace{A^T A \vec{x} = A^T \vec{b}}_{\text{Normal Equations}}$

$$A \overrightarrow{x}^{2} = \overrightarrow{b}$$

$$\widehat{x} \quad 75 \quad \alpha \quad |east - squares \quad selution \quad if$$

$$\|\overrightarrow{b} - A \widehat{x}\| = \min_{\overrightarrow{x}} \|\overrightarrow{b} - A \overrightarrow{x}\|$$

$$\overrightarrow{b} \quad \|\overrightarrow{b} - A \widehat{x}\|$$

$$\overrightarrow{b} \quad \|\overrightarrow{b} - A \overrightarrow{x}\|$$

$$\overrightarrow{b} \quad \|\overrightarrow{b} - A \overrightarrow{x}\|$$

$$\overrightarrow{b} \quad (\overrightarrow{b}) \quad (\overrightarrow$$

Derivation

The least-squares solution \hat{x} is in \mathbb{R}^n .

- 1. \hat{x} is the least squares solution, is equivalent to $\vec{b} A\hat{x}$ is orthogonal to A.
- 2. A vector \vec{v} is in Null A^T if and only if $\vec{v} = \vec{0}$.
- 3. So we obtain the Normal Equations:

Example

Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} \qquad \vec{A^{T}} \cdot \vec{A} \propto = \vec{A^{T}} \vec{b}$$
Solution:

$$A^{T} \cdot \vec{A} \neq \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 7 & 1 \\ 1 & 5 \end{bmatrix} \qquad \text{Symmetric}$$

$$A^{T} \cdot \vec{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 1 & 4 \end{bmatrix}$$

$$\begin{pmatrix} 1 & 7 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 1 & 4 \end{bmatrix}$$

$$\begin{pmatrix} 1 & 7 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 7 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 1 & 7 \end{bmatrix}$$
Section 6.5 Slide 60
$$= \frac{1}{84} \begin{bmatrix} 84 \\ 2 \cdot 84 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The normal equations $A^T A \vec{x} = A^T \vec{b}$ become:

 $\frac{A(R)}{I(r)} = \frac{D}{D} \quad C_{n} \frac{S(1)}{S(1)} \quad (A)$

Note Why
$$A^{T}A x = A^{T}b$$
 is consistent?
 $A^{T}b \in Gl(A^{T}A) \Leftrightarrow A^{T}A x = A^{T}b$ is consistent?
 $N_{ull}(A^{T}A)$ $n \times n$
 $\Leftrightarrow \vec{x} \cdot (A^{T} \cdot b) = 0$ $\vec{x} \in N_{ull}(A^{T}A) = N_{ull}(A)$
 $\Leftrightarrow (x^{T} \cdot A^{T}b) = (A \cdot x) \cdot b = 0$ if $\vec{x} \in N_{ull}(A)$
Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any $m \times n$ matrix. These statements are equivalent.

- 1. The equation $A\vec{x} = \vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^m$.
- 2. The columns of A are linearly independent. \Leftrightarrow \neg τ
- 3. The matrix $A^T A$ is invertible.

And, if these statements hold, the least square solution is

$$\widehat{x} = (A^T A)^{-1} A^T \vec{b}.$$

Mull (AT.A

Useful heuristic: $A^T A$ plays the role of 'length-squared' of the matrix A. (See the sections on symmetric matrices and singular value decomposition.)

 $(A^TA) \propto = A^T.b$

Example

Section 6.5

Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & -6\\ 1 & -2\\ 1 & 1\\ 1 & 7 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} -1\\ 2\\ 1\\ 6 \end{bmatrix}$$

Hint: the columns of \underline{A} are orthogonal.

$$A^{T} \cdot A \times = A^{T} \cdot b$$

$$\begin{bmatrix} 1 & 1 & 1 \\ -6 & -2 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 90 \end{bmatrix}$$

$$A^{T} \cdot b = \begin{bmatrix} 1 & 1 & 1 \\ -6 & -2 & 1 & 7 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 45 \end{bmatrix}$$
Side 63
$$\begin{bmatrix} 4 & 0 \\ 0 & 70 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 8 \\ 45 \end{bmatrix}$$

$$Y = \begin{bmatrix} 4 \\ -5 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 8 \\ 45 \end{bmatrix}$$

Theorem (Least Squares and QR)

Let $m \times n$ matrix \underline{A} have a QR decomposition. Then for each $\vec{b} \in \mathbb{R}^m$ the equation $A\vec{x} = \vec{b}$ has the unique least squares solution

$$R x = Q^T \vec{b}.$$

(Remember, R is upper triangular, so the equation above is solved by back-substitution.)

Example 3. Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$$

Solution. The QR decomposition of A is

$$A = QR = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\underbrace{A^{\top}A \overrightarrow{x}}_{X} = A^{\top} \underbrace{b}_{X}.$$
$$R \cdot \widehat{x} = Q^{\top} \cdot \underbrace{b}_{X}.$$

$$Q^{T}\vec{b} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}$$

And then we solve by backwards substitution $R\vec{x} = Q^T\vec{b}$

Chapter 6 : Orthogonality and Least Squares 6.6 : Applications to Linear Models

Topics and Objectives

Topics

- 1. Least Squares Lines
- 2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Apply least-squares and multiple regression to construct a linear model from a set of data points.
- 2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line $y = \beta_0 + \beta_1 x$ that best fits the data

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

- 1. Black circles are data.
- 2. Blue line is the **least squares** line.
- 3. Lengths of red lines are the _____

The least squares line minimizes the sum of squares of the _____

Example 1 Compute the least squares line $y = \beta_0 + \beta_1 x$ that best fits the data x = qy = ?- DATA . 8 1 3 yMarown We want to solve 257 $\begin{bmatrix} 1\\1\\4\\3\end{bmatrix}$ υ +β1-2 $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} =$ 1 1 $\begin{array}{c}
1 = 1 \beta_{0} + \beta_{1} - 2 \\
1 = 1 \beta_{0} + \beta_{1} - 5 \\
4 = 1 \beta_{0} + \beta_{1} - 5 \\
3 = 1 \beta_{0} + \beta_{1} \cdot 7 \\
3 = 1 \beta_{0} + \beta_{1} \cdot 8
\end{array}$ This is a least-squares problem : $X\vec{\beta} = \vec{y}$. $\chi \vec{\beta} = \vec{\gamma}$ is consistent (riven Чų y2- (Bo+B195) Section 6.6 Slide 71 91 - (BotBIXI) y ı l X3 Xy N1 χ_{ν} $(y_1 - (\beta_0 + \beta_1 x_1))^2 + (y_2 - (\beta_0 + \beta_1 x_2))^2 + \cdots$ = []

[Model

$$X\vec{\beta} = \vec{y}$$

Normal Equi : $X \cdot \vec{B} = X \cdot \vec{p}$

The normal equations are

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$
$$X^{T}\vec{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 9 \\ 59 \end{bmatrix}$$

So the least-squares solution is given by

$$\begin{bmatrix} 4 & 22\\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_0\\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9\\ 59 \end{bmatrix}$$
$$y = \beta_0 + \beta_1 x = \frac{-5}{21} + \frac{19}{42} x$$

As we may have guessed, β_0 is negative, and β_1 is positive.

Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \dots + c_k f_k(x).$$

If functions f_i are known, this is a linear problem in the c_i variables.

Example

Consider the data in the table below.

x	<mark>-1</mark>	0	0	1	
y	2	1	0	6	

Determine the coefficients c_1 and c_2 for the curve $y = c_1x + c_2x^2$ that best fits the data.

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha, Mathematica, and many other software.

WolframAlpha

linear fit
$$\{\{x_1, y_1\}, \{x_2, y_2\}, \dots, \{x_n, y_n\}\}$$

Mathematica

LeastSquares[{ $\{x_1, x_1, y_1\}, \{x_2, x_2, y_2\}, \dots, \{x_n, x_n, y_n\}$ }]

Almost any spreadsheet program does this as a function as well.

Section 6.6 Slide 74
A has ITA. TOLOP (al.

$$A\overline{X} = 2 \Rightarrow A^TAX = 0$$

 $A\overline{X} = 2 \Rightarrow A^TAX = 0$
 $A^TAX = 0$
 $A^$

A has lin. Indep. I ATA invertible 2 Your initials:

- Midterm 3. Your initials:
- 8. (8 points) *Show work* on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values α and β which best fit the curve

$$y = \alpha \cdot \frac{1}{1 + x^2} + \beta$$

to the data points (-1, 1), (0, -1), (1, 0) using the parameters α and β .

(i) What is the augmented matrix for the linear system of equations associated to this least squares problem?

$$I = \alpha \cdot \frac{1}{1+(-1)^{2}} + \beta = \frac{1}{2}\alpha + \beta$$

$$-1 = \alpha \cdot \frac{1}{1+(-1)^{2}} + \beta = \alpha + \beta = \beta$$

$$\left[\begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ \frac{1}{2} \end{array}\right] \left[\begin{array}{c} \alpha \\ \beta \\ \beta \\ \frac{1}{2} \end{array}\right] = \left[\begin{array}{c} 1 \\ -1 \\ 0 \\ \frac{1}{2} \end{array}\right] \left[\begin{array}{c} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right] \left[\begin{array}{c} \alpha \\ \beta \\ \frac{1}{2} \\ \frac{1}{2$$

(ii) What is the augmented matrix for the normal equations for this system.

$$x^{T}x \hat{\beta} = x^{T}\cdot \hat{y}$$

$$x^{T}.x = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} \frac{3}{2} & 2 \\ 2$$

(iii) Find a least-squares solution to the linear system from (i) to determine the parameters α and β of the best fitting curve.

Midterm 3 Make-up. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (a) (6 points) Suppose *A* is a real $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

true	false			
0	0	For any line $L \in \mathbb{R}^2$ passing through the origin, the matrix corresponding to the transformation that reflects across the line L must always be diagonalizable.		
0	\bigcirc	If <i>A</i> and <i>B</i> are $n \times n$ orthogonal matrices, then <i>AB</i> is also $n \times n$ and orthogonal.		
0	0	If A is the reduced row echelon form (RREF) of B and A is diagonalizable, then B is diagonalizable.		
0	0	If $\vec{b} \in \text{Col}(A)$, then the least squares solution to the linear system $A\vec{x} = \vec{b}$ is unique.		
Ø\$	\bigcirc	For any rectangular $m \times n$ matrix A , $(NulA)^{\perp} = Row(A^{T}A.)$		
		$\mathcal{N}_{ull}(A) = \mathcal{N}_{ull}(A^{T}A)$		
\bigcirc	0	If the distance of \vec{w} from \vec{v} is equal to the distance of \vec{w} from $-\vec{v}$, then $\vec{w} \cdot \vec{v} = 0$.		
(b) (2 points) Indicate whether the following situations are possible or impossible.				
possible impossible				
0	P	A diagonal matrix <i>A</i> that is similar to $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.		
\bigcirc	\bigcirc	An orthogonal matrix A such that $ \det A \neq 1$.		

Math 1554 Linear Algebra, Midterm 3. Your initials: _____

8. (4 points) Show all work for problems on this page. If $A = QR = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$, determine the least-squares solution to $A\hat{x} = \begin{pmatrix} \sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$. You do not need to determine *A*.

