Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors
Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^{k}, for large k.

But: multiplying two $n \times n$ matrices requires roughly n^{3} computations. Is there a more efficient way to compute A^{k} ?

Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
2. Apply diagonalization to compute matrix powers.

$$
\begin{array}{r}
\operatorname{det}(C D)=\operatorname{det}(D \cdot C) \Rightarrow \operatorname{det}(\underbrace{P \cdot(B-\lambda I)}_{" \prime \prime} \cdot \underbrace{P-1}) \\
\operatorname{det}(C) \cdot \operatorname{det}(D) \quad \operatorname{det}(D) \cdot \operatorname{det}\left(C_{1}\right)
\end{array}=\operatorname{det}(\underbrace{P-1 \cdot(B-\lambda I)})
$$

Thm If A and B are simitar (i.e. $\left.A=P \cdot B \cdot P^{-1}\right)^{I}=\operatorname{det}(B-\lambda I)$.

$$
\begin{aligned}
\phi_{A}(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)=\phi_{B}(\lambda) \\
& =\operatorname{det}\left(P \cdot B P^{-1}-\lambda I\right)=\operatorname{det}\left(P \cdot(B-\lambda I) P^{-1}\right)
\end{aligned}
$$

Similar Matrices

$$
P \cdot P^{-1}
$$

Definition
Two $n \times n$ matrices A and B are similar if there is a matrix P so that $A=P B P^{-1}$.

Theorem
If A and B similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \& \begin{aligned}
& \text { Not similar } \\
& \text { eigenvalue is } 0 .
\end{aligned}
$$

Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad[2], \quad I_{n}, \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

We'll only be working with diagonal square matrices in this course.

Powers of Diagonal Matrices

If A is diagonal, then A^{k} is easy to compute. For example,

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array}\right)
$$

But what if A is not diagonal?

Diagonalization
Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is diagonalizable if it is similar to a diagonal matrix, D. That is, we can write

$$
A=P D P^{-1} \quad \text { for some }{ }^{\text {invertible }} P \in \mathbb{R}^{n \times n}
$$

(1) Why A and D are similhr? $\left(D^{2}\right.$ is easy)
(3) Need to find \xrightarrow{P} How?

Section 5.3 Slide 27

$$
\begin{aligned}
& A=P \cdot D \cdot P^{-1} \\
& A \cdot P=P \cdot D
\end{aligned}
$$

$$
\begin{gathered}
A \cdot P=P \cdot D \\
A \cdot\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{ccc}
a_{1} & & \\
& a_{2} & \\
0 & \ddots & \\
0 & & a_{n}
\end{array}\right]
\end{gathered}
$$

$$
A \cdot \vec{v}_{1}=a_{1} \vec{v}_{1}, \quad A \vec{v}_{2}=a_{E} \overrightarrow{v_{2}}, \cdots, A \overrightarrow{v_{n}}=a_{n} \vec{v}_{w}
$$

$$
=\left[\begin{array}{llll}
a_{1} \overrightarrow{v_{1}} & a_{2} \vec{v}_{2} & \cdots & a_{n} \overrightarrow{v_{n}}
\end{array}\right]
$$

$$
\begin{aligned}
& A^{k}=? \\
& A^{2}=\left(P \cdot D \cdot P^{-1}\right) \cdot\left(P \cdot D \cdot P^{-1}\right)=P \cdot D \cdot I \cdot D \cdot D^{2}=P \cdot D^{2} \cdot P^{-1} \\
& A^{3}=P \cdot D^{3} \cdot P^{-1} \\
& A^{k}=P \cdot D^{k} \cdot P^{-1} \\
& \text { - coefficient } \\
& A \cdot \vec{x}=l_{\text {in. }} \text { combs. of } \\
& \text { Colcunns in A }
\end{aligned}
$$

Diagonalization

Theorem If A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means " if and only if ".
Also note that $A=P D P^{-1}$ if and only if

$$
A=\left[\begin{array}{cccc}
\left.\stackrel{p}{v_{1}} \vec{v}_{2} \cdots \vec{v}_{n}\right] \\
"
\end{array}\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]^{=P} \begin{array}{lll}
{\left[\vec{v}_{1}\right.} & \vec{v}_{2} \cdots \vec{v}_{n}
\end{array}\right]^{-1}
$$

where $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in order).

Example 1
Diagonalize if possible.

$$
A=\left(\begin{array}{cc}
(2) & 6 \\
0 & -1
\end{array}\right)
$$

(1) Eigencuakes : $\lambda=2,-1$ because A is upper friongenar,
(2) Eigenvectios
(i) $\quad \lambda=2 \quad E_{2}=\operatorname{Null}(A-2 I)$

$$
\begin{aligned}
& A-2 I=\left(\begin{array}{ll}
0 & 6 \\
0 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { Solution: } c \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

(ii) $\lambda=-1 \quad E_{-1}=\operatorname{Null}(A+I)$

Section 5.3 Slide 29

$$
A+I=\left(\begin{array}{ll}
3 & 6 \\
0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \text { Soltion:c }\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

A is
(3)

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \quad \text { inverfible } \rightleftharpoons \\
& D=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \quad \text { Check: } A=P \cdot D \cdot P^{-1}
\end{aligned}
$$

Example 2
Diagonalize if possible.

$$
\left(\begin{array}{ll}
(3) & 1 \\
0 & 3
\end{array}\right)
$$

(1) Eigenvalue $\lambda=3$
(2) $E_{3}=\operatorname{Null}(A-3 I)=\operatorname{Null}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
the only eigonspange

The $\quad \begin{aligned} & \lambda_{1}, \lambda_{2}, \cdots, \frac{\lambda_{n}}{v_{n}} \quad \begin{array}{c}\text { all distinct eigenvalues } \\ \overrightarrow{v_{1}}, \overrightarrow{v_{2}}\end{array} \quad \text { corresponding eigenvectios }\end{aligned}$
$\Rightarrow \quad\left\{\vec{v}_{1}, \cdots \vec{v}_{n}\right\} \quad$ linearly indep.

$$
\begin{aligned}
& \text { } \\
& \because n=2
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\vec{v}_{1}, \vec{v}_{2}\right\} \quad \text { in. index } \\
& \text { If } A \text { is } n \times n \text { and has } n \text { distinct eigenvalues, then } A \text { is } \\
& \text { diagonalizable. }
\end{aligned}
$$

Why does this theorem hold?

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?
$A \in \mathbb{R}^{n \times n}$ is diagomadizable

defintion
\Leftrightarrow There is an invertible matrix P, a diagomal D such that

$$
A=P D P^{-1}
$$

\Leftrightarrow We can find n linearly indep. eigenvectirs.

If n disfinct eTgencuatures $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$
$\left\{v_{1}, \cdots, v_{n}\right\}$: Iinearly indep.

Non-Distinct Eigenvalues
Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, k \leq n$
\Rightarrow Char. Poly. $=\phi_{A}(\lambda)$

$$
=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{a_{1}}\left(\lambda-\lambda_{2}\right)^{a_{2}} \cdots\left(\lambda-\lambda_{k}\right)^{a_{k}}
$$

- $a_{i}=$ algebraic multiplicity of λ_{i}
- $d_{i}=$ dimension of λ_{i} eigenspace ("geometric multiplicity")

Then

1. $d_{i} \leq a_{i}$ for all i

$$
E_{\lambda_{i}}=\operatorname{dim}(\underbrace{\uparrow} \underbrace{\operatorname{Nall}\left(A-\lambda_{i} I\right.}))
$$

2. A is diagonalizable $\Leftrightarrow \Sigma d_{i}=n \Leftrightarrow d_{i}=a_{i}$ for all i
3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^{n}.

$$
d_{1}+d_{2}+\cdots+d_{k}=\max \# \text { of lin. indep. }
$$

eigenvectors.
Section 5.3 Slide $32^{\circ} A$ is diagonatizable \Leftrightarrow

$$
\Leftrightarrow \quad a_{1}=d_{1}, a_{2}=d_{2}, \cdots, a_{k}=d_{k}
$$

$\Leftrightarrow \quad n$ lin. indep. eigenvectors.
θ eigenvectors form a basis for \mathbb{R}^{n}

Example 3
The eigenvalues of A are $\lambda=3,1$. If possible, construct P and D such that $A P=P D$.

$$
A=\left(\begin{array}{ccc}
7 & 4 & 16 \\
2 & 5 & 8 \\
-2 & -2 & -5
\end{array}\right) \quad D=\left[\begin{array}{lll}
3 & & \\
& 3 & \\
& & 1
\end{array}\right]
$$

$$
\text { (1) } \lambda=3: \quad E_{3}=\operatorname{Null}(A-3 I)
$$

(2) $\lambda=1: \quad 1 \leqslant$ geo. multi. \leqslant alg. multi. $=1 \Rightarrow A$ is diagomalizable Section 5.3 Slide 33

$$
\begin{aligned}
E_{1} & =\operatorname{Nun}(A-I) \\
A-I & =\left[\begin{array}{ccc}
6 & 4 & 16 \\
2 & 4 & 8 \\
-2 & -2 & -6
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 2 & 4 \\
3 & 2 & 8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow\left[\begin{array}{ccc}
\left.\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right] & \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right. \\
0 & 0 & 0
\end{array}\right] \stackrel{\text { RREF }}{=} \\
& \left\{\quad x_{1}+2 x_{3}=0 \quad x_{1}=-2 x_{3}\right. \\
& x_{2}+x_{3}=0 \quad x_{2}=-x_{3} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right]=x_{3}[\begin{array}{c}
-2 \\
-1 \\
1
\end{array} \underbrace{}_{v_{3}}} \\
& P=\left[\begin{array}{rrr}
-1 & -4 & -2 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right] \quad D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Recall

$$
B=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\} \quad \text { for } \quad \mathbb{R}^{n}
$$

$$
\vec{x} \in \mathbb{R}^{n} \quad, \quad[\vec{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \Leftrightarrow \vec{x}=c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{n} \overrightarrow{v_{n}}
$$

Basis of Eigenvectors
Express the vector $\vec{x}_{0}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ as a linear combination of the vectors

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and find the coordinates of } \vec{x}_{0} \text { in the basis } \\
& \mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{0}\right\} . \\
& {\left[\vec{x}_{0}\right]_{\mathcal{B}}=\left[\begin{array}{c}
9 / 2 \\
-1 / 2
\end{array}\right]} \\
& \begin{array}{l}
\text { find the coordinates of } \vec{x}_{0} \text { in the basis } \\
\left.\begin{array}{l}
\vec{x}_{0}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \\
{\left[\begin{array}{l}
4 \\
5
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}}
\end{array} \begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]\right. \\
\left.\qquad \begin{array}{rr|r}
1 & 1 & 4 \\
1 & -1 & 5
\end{array}\right] \rightarrow-\cdots \\
c_{1}=4.5=\frac{9}{2} c_{2}=0.5=-\frac{1}{2}
\end{array}
\end{aligned}
$$

Let $P=\left[\vec{v}_{1} \vec{v}_{2}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and find $\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}$ where $A=P D P^{-1}$, for $k=1,2$,

$$
\begin{aligned}
& \Rightarrow \quad \text { eigenvalues }=\begin{array}{ll}
v_{1} & v_{2} \\
1 & -1
\end{array} \\
& {\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}=\underset{\uparrow}{?} \text { ? ? }} \\
& A^{k} \vec{x}_{0}=A^{k} \cdot\left(\frac{9}{2} \cdot v_{1}-\frac{1}{2} v_{2}\right)
\end{aligned}
$$

Section $5.3 \quad$ Slide 13

$$
\begin{aligned}
A^{k} \vec{x}_{0} & =A^{k} \cdot\left(\frac{9}{2} \cdot v_{1}-\frac{1}{2} v_{2}\right) \\
& =\frac{9}{2} A^{k} v_{1}-\frac{1}{2} A^{k} v_{2} \\
& =\frac{9}{2} \cdot 1^{k} \cdot v_{1}-\frac{1}{2} \cdot(-1) \cdot v_{2} \\
{\left[A^{k} \vec{x}_{0}\right]_{B} } & =\left[\begin{array}{c}
\frac{9}{2} \cdot(1)^{k} \\
-\frac{1}{2} \cdot(-1)^{k}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{[\vec{x}]_{B} } & =P^{-1} \cdot \vec{x} \\
{\left[A^{k} \vec{x}_{0}\right]_{B} } & =P^{-1} \cdot A^{k} \vec{x}_{0} \\
& =P^{+} \cdot P^{k} \cdot D^{k} \cdot P^{-1} \cdot \vec{x}_{0} \\
& =D^{k} \cdot(\underbrace{P^{-1} \cdot \vec{x}_{0}}) \\
& =D^{k} \cdot[x]_{B}^{B} \cdot\left[\begin{array}{c}
1
\end{array}\right]\left[\begin{array}{c}
\frac{9}{2} \\
-\frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & (-1)^{k}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Basis of Eigenvectors - part 2

Let $\vec{x}_{0}=\left[\begin{array}{l}4 \\ 5\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ as before.
Again define $P=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$ but this time let $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1 / 2\end{array}\right]$, and now find $\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}$ where $A=P D P^{-1}$, for $k=1,2, \ldots$.
$\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}=$

Basis of Eigenvectors - part 3

Let $\vec{x}_{0}=\left[\begin{array}{l}4 \\ 5\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ as before.
Again define $P=\left[\vec{v}_{1} \vec{v}_{2}\right]$ but this time let $D=\left[\begin{array}{cc}2 & 0 \\ 0 & 3 / 2\end{array}\right]$, and now find $\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}$ where $A=P D P^{-1}$, for $k=1,2, \ldots$.
$\left[A^{k} \vec{x}_{0}\right]_{\mathcal{B}}=$

Additional Example (if time permits)

Note that

$$
\vec{x}_{k}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \vec{x}_{k-1}, \quad \vec{x}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the $n^{\text {th }}$ number in this sequence.

Chapter 5 : Eigenvalues and Eigenvectors
5.5: Complex Eigenvalues

Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate
2. Complex eigenvalues and eigenvectors.
3. Eigenvalue theorems

Learning Objectives

1. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
2. Rotation dilation matrices.
3. Find complex eigenvalues and eigenvectors of a real matrix.
4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$
\begin{array}{ll}
x^{2}+1=0 & x^{2}=-1 \\
& x= \pm \sqrt{-1}
\end{array}
$$

The roots of this equation are:

We usually write $\sqrt{-1}$ as i (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C}, where

$$
\mathbb{C}=\{a+b i \mid a, b \text { in } \mathbb{R}\} \quad i=\sqrt{-1}
$$

We can identify \mathbb{C} with $\mathbb{R}^{2}: \quad a+b i \leftrightarrow(a, b)$

$$
i^{2}=-1
$$

We can add and multiply complex numbers as follows:
same as
$(2)-3 i)+(-1+i)=(2+(-1))+(-3+1) i=1-2 i$
$(2-3 i)(-1+i)=2 \cdot(-1)+2 \cdot i+(-3 i) \cdot(-1)+(-3 i)-i$
$=-2+2 i+3 i+3=1+5 i$
Section 5.5 Slide $4 \xrightarrow{-1+i}$

Complex Conjugate, Absolute Value, Polar Form

We can conjugate complex numbers: $\overline{a+b i}=\underline{a-b i}$

$$
\text { Ex } \quad \overline{(5-2 i)}=5+2 i
$$

The absolute value of a complex number: $|a+b i|=\sqrt{\left(a+b_{i}\right) \cdot(a+b i)}=\sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
(a+b i) \cdot(\overline{a+b i}) & =(a+b i) \cdot(a-b i) \\
& =a^{2}-(b i)^{2}=a^{2}-b^{2} \cdot i^{2}=a^{2}+b^{2}
\end{aligned}
$$

We can write complex numbers in polar form: $a+i b=r(\cos \phi+i \sin \phi)$

$$
z=a+b i \longmapsto
$$

$$
\begin{aligned}
& r^{2}=a^{2}+b^{2} \\
& r=\sqrt{a^{2}+b^{2}}=|a+b i|
\end{aligned}
$$

Note For complex $z, \quad z \cdot \bar{z} \geqslant 0$
Section 5.5 Slide 5

$$
\begin{aligned}
& k\left\{\begin{array}{l}
\frac{r \cdot \cos \phi}{r \cdot \sin \phi}=\mathfrak{a}
\end{array}\right. \\
& z=a+b i=r \cos \phi+r \cdot \sin \phi i \\
& =r \cdot(\cos \phi+i \sin \phi)
\end{aligned}
$$

$$
\overrightarrow{\vec{x}}=\overline{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]}=\left[\begin{array}{c}
\bar{x}_{1} \\
\overline{x_{2}} \\
\vdots \\
\overline{x_{n}}
\end{array}\right]
$$

In geiveral,

$$
\overline{A \cdot \vec{v}}=\bar{A} \cdot \overrightarrow{\vec{v}}=A \cdot \overline{\vec{v}}
$$

Complex Conjugate Properties
If x and y are complex numbers, $\vec{v} \in \mathbb{C}^{n}$, it can be shown that:

- $\overline{(x+y)}=\bar{x}+\bar{y}$
- $\overrightarrow{A \vec{v}}=A \overline{\vec{v}} \quad \&$ suppose A is a real matrix (Every entry is
- $\operatorname{Im}(x \bar{x})=0$.

Example True or false: if x and y are complex numbers, then

$$
\begin{array}{lll}
x=a+b i & \overline{(x y)}=\bar{x} \bar{y} \quad & \underline{\underline{Y e s}} \\
y=c+d i & \overline{x \cdot y}=\overline{(a c-b d)+(a d+b c)^{i}} \\
\bar{x} \cdot \bar{y} & =(a c-b d)-(a d+b c) i
\end{array}
$$

In: Imaginary Part
Re: Real Part

$$
\operatorname{Im}(5+2) i)=2
$$

$$
\operatorname{Re}(3+4 i)=3
$$

$$
x=a+b i \quad \quad \operatorname{Im}(x \cdot \bar{x})=\operatorname{Im}\left(a^{2}+b^{2}\right)=0 .
$$

$$
\begin{aligned}
& z=a+b i \Rightarrow \\
& =r \cdot(\underbrace{\cos \phi+i \sin \phi}_{i \phi}) \\
& =r \cdot e^{i \phi} \text { Euler's }
\end{aligned}
$$

Polar Form and the Complex Conjugate
Conjugation reflects points across the real axis.

Euler's Formula

Suppose z_{1} has angle ϕ_{1}, and z_{2} has angle ϕ_{2}.

The product $z_{1} z_{2}$ has angle $\phi_{1}+\phi_{2}$ and modulus $|z||w|$. Easy to remember using Euler's formula.

$$
z=|z| \mathrm{e}^{i \phi}
$$

The product $z_{1} z_{2}$ is:

$$
z_{3}=z_{1} z_{2}=\left(\left|z_{1}\right| \mathrm{e}^{i \phi_{1}}\right)\left(\left|z_{2}\right| e^{i \phi_{2}}\right)=\left|z_{1}\right|\left|z_{2}\right| \mathrm{e}^{i\left(\phi_{1}+\phi_{2}\right)}
$$

Complex Numbers and Polynomials

Theorem: Fundamental Theorem of Algebra
Every polynomial of degree n has exactly n complex roots, counting multiplicity.

$$
r_{1}, \cdots, r_{r} \in \mathbb{C}
$$

$$
a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)=0
$$

Theorem

1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial $p(x)$, then the conjugate $\bar{\lambda}$ is also a root of $p(x)$.
2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v}, then $\bar{\lambda}$ is an eigenvalue of A with eigenvector \vec{v}.

$$
\text { Ex: real poly. } \quad \rho(x)=0
$$

$$
\text { one root is } 2+i
$$

$$
\Rightarrow \quad \overline{2+i}=2-i \text { is also a root. }
$$

Example

Four of the eigenvalues of a 7×7 matrix are $-2,4+i,-4-i$, and i. What are the other eigenvalues?

A is dragonalizable

Example
The matrix that rotates vectors by $\phi=\pi / 4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2}$, is

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

What are the eigenvalues of A ? Find an eigenvector for each eigenvalue.
Char. Poly. $=\lambda^{2}-(\underset{\lambda}{1+1}) \lambda+(1.1-(-1) \cdot 1)$

$$
=\lambda^{2}-2 \lambda+2=0
$$

$$
(\lambda-1)^{2}=\left(\lambda^{2}-2 \lambda+1\right)=-1
$$

$$
\lambda-1= \pm i
$$

$$
\lambda=1 \pm i
$$

$$
\begin{aligned}
& \text { Section } 5.5 \text { Slide } 11^{2}=1+i: \quad \operatorname{Null}(A-(1+i) I) \\
& A-(1+i) \pm=\left[\begin{array}{cc}
1-(1+i) & -1 \\
1 & 1-(1+i)
\end{array}\right]=\left[\begin{array}{cc}
\frac{-i}{}-1 \\
1 & -i
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
i \\
1
\end{array}\right]=\overrightarrow{v_{1}}
\end{aligned}
$$

(2) $\vec{\lambda}_{2}=1-i \quad \vec{v}_{2}=\overline{\left[\begin{array}{l}i \\ 1\end{array}\right]}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Example

The matrix in the previous example is a special case of this matrix:

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Calculate the eigenvalues of C and express them in polar form.
$A \in \mathbb{R}^{n \times n}$
$\lambda \in \mathbb{C}$ Eigenvalues, $\vec{v} \in \mathbb{C}^{n}$ Eigenvector

$$
\Rightarrow \quad \bar{\lambda} \quad \text { Egenenahu } \quad \overline{\vec{v}} \quad \text { Eigenvator. }
$$

Example
Find the complex eigenvalues and an associated complex eigenvector for each eigenvalue for the matrix.

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
$$

(1) Char. Eqn: $\lambda^{2}-(1+3) \lambda+(1 \cdot 3-(-2) \cdot 1)=0$

$$
\begin{gathered}
\underbrace{\lambda^{2}-4 \lambda+5}=0 \\
(\underbrace{(\lambda-2)^{2}=\underbrace{\lambda^{2}-4 \lambda+4}}_{i}=-1 \\
\therefore \quad \lambda=2+i \\
2-i
\end{gathered}
$$

(2) Eigenvectors: $\quad \lambda_{1}=2+i$

Section $5.5 \quad$ Slide 14

$$
\begin{aligned}
A-(2+i) I & =\left[\begin{array}{cc}
1-(2+i) & -2 \\
1 & 3-(2+i)
\end{array}\right]=\left[\begin{array}{cc}
-1-i & -2 \\
1 & 1-i
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc}
1 & 1-i \\
0 & 0
\end{array}\right] \quad \overrightarrow{v_{1}}=\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]
\end{aligned}
$$

For $\quad \lambda_{2}=2-i=\overline{\lambda_{1}}, \quad \vec{v}_{2}=\overrightarrow{\vec{v}_{1}}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

"Angle".
 11
 Section 6.1 : Inner Product, Length, and Orthogonality

Chapter 6: Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. Dot product of vectors
2. Magnitude of vectors, and distances in \mathbb{R}^{n}
3. Orthogonal vectors and complements
4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude) of a vector, (c) distance between two points in \mathbb{R}^{n}, and (d) angles between vectors.
2. Apply theorems related to orthogonal complements, and their relationships to Row and Null space, to characterize vectors and linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A ? To the columns of A ?

Inner Product.
The Dot Product
(Vector). (Vector) $=$ number

The dot product between two vectors, \vec{u} and \vec{v} in \mathbb{R}^{n}, is defined as

Example 1: For what values of k is $\vec{u} \cdot \vec{v}=0$?

$$
\begin{gathered}
\vec{u}=\left(\begin{array}{c}
-1 \\
3 \\
k \\
2
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right) \\
\vec{u} \cdot \vec{v}=u^{\top} \cdot v=\left[-1 \quad 3+k+\frac{k}{2} \cdot\left[\begin{array}{c}
4 \\
1 \\
-3
\end{array}\right]\right. \\
=(-1) \cdot 4+3 \cdot 2+k \cdot 1+2 \cdot(-3) \\
=-4+6+k-6 \quad \Rightarrow k=4 .
\end{gathered}
$$

Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits linear properties.

Theorem (Basic Identities of Dot Product)
Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors in \mathbb{R}^{n}, and $c \in \mathbb{R}$.

1. (Symmetry) $\vec{u} \cdot \vec{w}=\vec{\omega} \cdot \vec{u}$
2. (Linear in each vector) $(\sqrt[v]{v}+\vec{w}) \cdot \vec{u}=\vec{v} \cdot \vec{u}+\vec{\omega} \cdot \vec{u}$
3. (Scalars) $(c \vec{u}) \cdot \vec{w}=\overrightarrow{\vec{u}} \cdot(c \vec{w})=C \cdot(\vec{u} \cdot \vec{w})$
4. (Positivity) $\vec{u} \cdot \vec{u} \geq 0$, and the dot product equals

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \vec{u} \cdot \vec{u}=\left[u_{1}-\cdots u_{n}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Section 6.1 Slide 4

$$
\begin{aligned}
& =u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2} \geqslant 0 \\
& \text { if } u_{1}, \cdots, u_{n} \geqslant 0
\end{aligned}
$$

Note
For complex vector

$$
\vec{v} \cdot \vec{v} \geqslant 0
$$

The Length of a Vector

Definition
The length of a vector $\vec{u} \in \mathbb{R}^{n}$ is

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Example: the length of the vector $\overrightarrow{O P}$ is

$$
\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14}
$$

Section 6.1 Slide 5

Example

Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^{n} with $\|\vec{u}\|=5,\|\vec{v}\|=\sqrt{3}$, and $\vec{u} \cdot \vec{v}=-1$. Compute the value of $\|\vec{u}+\vec{v}\|$.

$$
\begin{aligned}
& \|\vec{u}+\vec{v}\|^{2}=(\sqrt{(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})})^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\underbrace{\vec{u} \cdot \vec{u}}_{\substack{\| \\
\| \vec{u} \|^{2}}}+\underbrace{\vec{u} \cdot \vec{v}}_{-1}+\underbrace{\vec{v} \cdot \vec{u}}_{\begin{array}{c}
\| \\
-1
\end{array}}+\underbrace{\vec{v} \cdot \vec{v}}_{\begin{array}{c}
\| \|^{2} \\
\| \\
\|
\end{array}} \\
& \begin{array}{ll}
25 & \text { determines } \\
=25-1-1+3=\frac{\text { angle }}{26} & (\sqrt{3})^{2}=3
\end{array} \\
& \|\vec{u}+\vec{v}\|=\sqrt{26}
\end{aligned}
$$

Section $6.1 \quad$ Slide 6

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c \vec{v}$ is

$$
\|c \vec{v}\|=|c|\|\vec{v}\|
$$

Definition
If $\vec{v} \in \mathbb{R}^{n}$ has length one, we say that it is a unit vector.

For example, each of the following vectors are unit vectors.

$$
\underbrace{\vec{e}_{1}=\binom{1}{0}, \quad \vec{y}=\frac{1}{\sqrt{5}}\binom{1}{2}, \quad \vec{v}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)}
$$

$$
\vec{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

$$
\begin{gathered}
\|\vec{v}\|=\sqrt{1^{2}+3^{2}}=\sqrt{10} \\
\left(\frac{1}{\sqrt{10}}\left\|_{1} \vec{v}\right\|=1\right.
\end{gathered}
$$

Section $6.1 \quad$ Slide 7

$$
\frac{1}{\sqrt{10}} \vec{v}=\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right] \quad \begin{aligned}
& \frac{1}{\sqrt{10}} \vec{v} \| \\
& \text { unit vector }
\end{aligned}
$$

Distance in \mathbb{R}^{n}

Definition
For $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is given by the formula

$$
\|\vec{u}-\vec{v}\|
$$

Example: Compute the distance from $\vec{u}=\binom{7}{1}$ and $\vec{v}=\binom{3}{2}$.

Section $6.1 \quad$ Slide 8

$$
\begin{aligned}
\text { distance } & =\|\vec{u}-\vec{v}\|=\left\|\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{r}
4 \\
-1
\end{array}\right]\right\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{aligned}
$$

$$
\begin{aligned}
& n=2 \\
& \vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad|\vec{u} \cdot \vec{v}|
\end{aligned}=\left|u_{1} v_{1}+u_{2} v_{2}\right|
$$

The Cauchy-Schwarz Inequality

Theorem: Cauchy-Bunyakovsky-Schwarz Inequality
For all \vec{u} and \vec{v} in \mathbb{R}^{n},

$$
|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| .
$$

Equality holds if and only if $\vec{v}=\alpha \vec{u}$ for $\alpha=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$.

Proof: Assume $\vec{u} \neq 0$, otherwise there is nothing to prove. Set $\alpha=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$. Observe that $\vec{u} \cdot(\alpha \vec{u}-\vec{v})=0$. So

$$
\begin{aligned}
0 & \leq\|\alpha \vec{u}-\vec{v}\|^{2}=(\alpha \vec{u}-\vec{v}) \cdot(\alpha \vec{u}-\vec{v}) \\
& =\alpha \vec{u} \cdot(\alpha \vec{u}-\vec{v})-\vec{v} \cdot(\alpha \vec{u}-\vec{v}) \\
& =-\vec{v} \cdot(\alpha \vec{u}-\vec{v}) \\
& =\frac{\|\vec{u}\|^{2}\|\vec{v}\|^{2}-|\vec{u} \cdot \vec{v}|^{2}}{\|\vec{u}\|^{2}}
\end{aligned}
$$

Section $6.1 \quad$ Slide 9

The Triangle Inequality

Theorem: Triangle Inequality
For all \vec{u} and \vec{v} in \mathbb{R}^{n},

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|
$$

Proof:

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \quad \text { Cauchy -Schuartz } \\
& \left.=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v}\right) \\
& \left.\leq\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2\|\vec{u}\|\|\vec{v}\|\right)^{2} \\
& =\left(\|\vec{u}\|+\|\vec{v}\|^{2}\right.
\end{aligned}
$$

Angles

Theorem

$\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$. Thus, if $\vec{a} \cdot \vec{b}=0$, then:

- \vec{a} and/or \vec{b} are zero vectors, or
- \vec{a} and \vec{b} are perpendicular $A \cos \theta=0 \leftrightarrow \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \cdots$

For example, consider the vectors below.

Section 6.1 Slide 11

$$
=\left(\frac{\vec{a}}{\|\vec{a}\|}\right) \cdot\left(\frac{\vec{b}}{\|\vec{b}\|}\right)
$$

Orthogonality

Definition (Orthogonal Vectors)

Two vectors \vec{u} and \vec{w} are orthogonal if $\vec{u} \cdot \vec{w}=0$. This is equivalent to:

$$
\underbrace{\|\vec{u}+\vec{w}\|^{2}}=\|u\|^{2}+\underbrace{2 \cdot \vec{u}}_{0} \cdot \vec{w}+\|\vec{w}\|^{2}=\|u\|^{2}+\|\vec{w}\|^{2}
$$

Note: The zero vector in \mathbb{R}^{n} is orthogonal to every vector in \mathbb{R}^{n}. But we usually only mean non-zero vectors.

$$
10 / 23 / 23
$$

$$
\begin{aligned}
& \vec{u}, \vec{v} \in \mathbb{R}^{n} \\
& \quad \vec{u} \cdot \vec{v}=u^{\top} \cdot v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
\end{aligned}
$$

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}
$$

Distance befwem $\vec{u}, \vec{v}=\|\vec{u}-\vec{v}\|$

$$
\begin{array}{lll}
C-S & : & |\vec{u} \cdot \vec{v}| \leqslant \\
\text { Triangle } & : & \|\vec{u}\| \cdot\|\vec{v}\| \vec{v}\|\leqslant\| \vec{u}\|+\| \vec{v} \|
\end{array}
$$

Angle : $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$

$$
\vec{u}, \vec{v} \xrightarrow{\text { orthogonal }} \quad \text { if } \vec{u} \cdot \vec{v}=0
$$

Example

Sketch the subspace spanned by the set of all vectors \vec{u} that are orthogonal to $\vec{v}=\binom{3}{2}$.

Section $6.1 \quad$ Slide 13

$$
\begin{aligned}
= & \left\{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]: 3 u_{1}+2 u_{2}=0\right\}+? \\
= & \left.\left\{\begin{array}{c}
-2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-3
\end{array}\right], \cdots\right\} \\
= & \left\{c\left[\begin{array}{c}
-2 \\
3
\end{array}\right]: \quad c \in \mathbb{R}\right\}=\operatorname{Nu\| }\left(\left[\begin{array}{ll}
{[3} & 2
\end{array}\right]\right) \\
& {\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Orthogonal Compliments

Definitions
Let W be a subspace of \mathbb{R}^{n}. Vector $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to W if \vec{z} is orthogonal to every vector in W.

The set of all vectors orthogonal to W is a subspace, the orthogonal compliment of W, or W^{\perp} or ' W perp.'

$$
W^{\perp}=\left\{\vec{z} \in \mathbb{R}^{n}: \vec{z} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

Precious Example.

$$
\begin{aligned}
W & =\operatorname{Span}\left\{\left[\begin{array}{c}
3 \\
2
\end{array}\right]\right\} \\
W^{\perp} & =\operatorname{Spar}\left\{\left[\begin{array}{c}
-2 \\
3
\end{array}\right]\right\} \\
& =\operatorname{Null}\left(\left[\begin{array}{ll}
3 & 2
\end{array}\right]\right)=\operatorname{Nall}\left(v^{\top}\right)
\end{aligned}
$$

In general,
Section $6.1 \quad$ Slide 14

$$
W \text { has a basis } B
$$

$$
\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{k}\right\}
$$

$$
\begin{aligned}
w^{+} & =\{\vec{z}: \quad \vec{z} \cdot \vec{w}=0 \quad \text { for all } \vec{w} \in w\} \\
& =\left\{\vec{z}: \vec{z} \cdot \overrightarrow{v_{1}}=0, \vec{z} \cdot \overrightarrow{v_{2}}=0, \cdots, \vec{z} \cdot \overrightarrow{v_{k}}=0\right\} \\
& =N_{\text {ull }}\left(\left[\begin{array}{c}
-v_{2}^{\top}- \\
\vdots \\
v_{k}^{\top}-
\end{array}\right]\right)
\end{aligned}
$$

Example
Example: suppose $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$.

- $\operatorname{Col} A$ is the span of $\vec{a}_{1}=\binom{1}{2}$
- $\operatorname{Col}_{\alpha} A^{\perp}$ is the span of $\vec{z}=\binom{2}{-1} \quad a_{l}^{\top}$

$$
\left\{\vec{z}: \quad \vec{z} \cdot \overrightarrow{a_{r}}=0\right\}=N_{n} \|\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right)
$$

Sketch Null A and Null A^{\perp} on the grid below.

$$
L=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right\}=\left\{c\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]: c \in \mathbb{R}\right\}
$$

Example

Line L is a subspace of \mathbb{R}^{3} spanned by $\vec{v}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$. Then the space L^{\perp} is a plane. Construct an equation of the plane L^{\perp}.

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

$$
\begin{aligned}
& \operatorname{Col}(A)=\operatorname{Row}\left(A^{\top}\right) \\
& \operatorname{Row}(A)=\operatorname{Col}\left(A^{\top}\right)
\end{aligned}
$$

Definition
Row A is the space spanned by the rows of matrix A.

We can show that

- $\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A))$
- a basis for Row A is the pivot rows of A

Note that $\operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)$, but in general $\operatorname{Row} A$ and $\operatorname{Col} A$ are not related to each other

$$
\begin{gathered}
A=\left[\begin{array}{c}
-\vec{v}_{1}- \\
\vdots \\
-\vec{v}_{m}-
\end{array}\right] \xrightarrow{\operatorname{Row} \text { operations }} A^{\prime} \\
\operatorname{Row}(A)=\operatorname{Row}\left(A^{\prime}\right)
\end{gathered}
$$

for Row $^{\text {(}}$)

$$
\begin{aligned}
\Rightarrow \operatorname{dim}(\operatorname{Row}(A)) & =\# \text { of pivot } \\
& =\operatorname{dim}(\operatorname{Ca} \mid(A \mid)
\end{aligned}
$$

Example 3

Describe the $\operatorname{Null}(A)$ in terms of an orthogonal subspace.

$$
\text { orthogonal subspace. } \underset{\vec{v}}{ }=\left[{\overrightarrow{v_{n}}}^{!} \cdot \vec{x}^{\downarrow}\right.
$$

A vector \vec{x} is in Null A if and only if

1. $A \vec{x}=0$

$$
A \vec{x}=\left[\begin{array}{l}
\overrightarrow{v_{1}} \\
\vec{v}_{n}
\end{array}\right] \cdot \vec{x}=\overrightarrow{0}
$$

2. This means that \vec{x} is orthogonal to each row of A.
3. Row A is \qquad to Null A.

$$
(\text { pen }(A))^{2}=N(A)
$$

(4.) The dimension of Row A plus the dimension of $\operatorname{Null} A$ equals
\square

$$
A \in \mathbb{R}^{m \times n}
$$

Fact: w, w^{\perp} subspaces in \mathbb{R}^{n}

Section $6.1 \quad$ Slide 18

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{1}\right)=n
$$

$$
\begin{aligned}
\left.\cdot \operatorname{Row}(A)^{\perp}\right)=\operatorname{Nan}\left(A^{\kappa}\right)=\operatorname{col}\left(A^{\top}\right)^{\perp} \\
\therefore\left(\operatorname{Row}\left(A^{\top}\right)\right)^{\perp}=\operatorname{col}(A)^{)^{\perp}}=\operatorname{Nal}\left(A^{\top}\right)
\end{aligned}
$$

Theorem (The Four Subspaces)

For any $A \in \mathbb{R}^{m \times n}$, the orthogonal complement of $\operatorname{Row} A$ is Null A, and the orthogonal complement of $\operatorname{Col} A$ is $\operatorname{Null} A^{T}$.

The idea behind this theorem is described in the diagram below.

Looking Ahead - Projections

Suppose we want to find the closed vector in $\operatorname{Span}\{\vec{b}\}$ to \vec{a}.

- Later in this Chapter, we will make connections between dot products and projections.
- Projections are also used throughout multivariable calculus courses.

Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. Orthogonal Sets of Vectors
2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of \mathbb{R}^{n}, and
d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for \mathbb{R}^{3} ?

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] / \sqrt{11}, \quad\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] / \sqrt{6}, \quad\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right] / \sqrt{66}
$$

Orthogonal Vector Sets

Definition

A set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are an orthogonal set of vectors if for each $j \neq k, \vec{u}_{j} \perp \vec{u}_{k}$.

$$
\vec{u}_{j} \cdot \vec{u}_{k}=0 .
$$

Example: Fill in the missing entries to make $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ an orthogonal set of vectors.

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
a=8
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{l}
0 \\
b \\
c \\
c=0
\end{array}\right] \\
& 0=\vec{u}_{1} \cdot \vec{u}_{2}=4 \cdot(-2)+0 \cdot 0+1-a, \quad a=8 \\
& 0=\vec{u}_{2} \cdot \vec{u}_{3}=(-2) \cdot 0+0 \cdot b+8 \cdot c, \quad c=0 \\
& 0=\vec{u}_{1} \cdot \vec{u}_{3} \quad \text { for any } b .
\end{aligned}
$$

$\left\{\overrightarrow{u_{1}}, \cdots, \overrightarrow{u_{p}}\right\}$ in. Trdep $\Leftrightarrow c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}=0$ implies $\quad C_{1}=c_{2}=\cdots=c_{p=0}$
Suppose $\quad C_{1} \vec{u}_{l}+\cdots+c_{p} \vec{u}_{p}=\overrightarrow{0}$

$$
\begin{aligned}
& \text { Linear Independence }
\end{aligned}
$$

Theorem (Linear Independence for Orthogonal Sets)
Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal set of vectors. Then, for scalars c_{1}, \ldots, c_{p},

$$
\left\|c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}\right\|^{2}=c_{1}^{2}\left\|\vec{u}_{1}\right\|^{2}+\cdots+c_{p}^{2}\left\|\vec{u}_{p}\right\|^{2} .
$$

In particular, if all the vectors \vec{u}_{r} are non-zero, the set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are linearly independent.

$$
\begin{aligned}
& \left\|c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \vec{u}_{p}\right\|^{2}=\left(c_{1} \cdot \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}\right) \cdot\left(c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}\right) \\
& =\underline{c}_{1} \cdot \overrightarrow{u_{1}} \cdot \underline{c}_{1} \vec{u}_{1}+c_{1} \vec{u}_{1} c_{2} \vec{u}_{2}=0+\cdots+c_{1} \overrightarrow{u_{1}} \cdot c_{p} \cdot \vec{u}_{p}=0 \\
& +c_{2} \overrightarrow{u_{2}} \cdot c_{1} \vec{u}_{1}=0+c_{2} \overrightarrow{u_{2}} \cdot c_{2} \overrightarrow{u_{2}}+\cdots+c_{2} \overrightarrow{u_{2}} \cdot c_{p} \overrightarrow{u_{p}}=0 \\
& \text { Section 6.2 Slide 24 }+c_{p} \overrightarrow{u_{p}} \cdot c_{p} \vec{u}_{j}^{0}+c_{p} \vec{u}_{p} \cdot c_{2} \overrightarrow{u_{2}}+\cdots+c_{p} \overrightarrow{u_{p}} \cdot c_{p} \cdot \overrightarrow{u_{p}} \\
& =c_{1}^{2} \cdot \overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}+c_{2}^{2} \overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}+\cdots+c_{p}^{2} \cdot \overrightarrow{u_{p}} \cdot \overrightarrow{u_{p}} \\
& =c_{1}^{2}\left\|\vec{u}_{1}\right\|^{2}+\cdots+c_{p}^{2} \cdot\left\|\vec{u}_{p}\right\|^{2}
\end{aligned}
$$

Recall $w: a$ subspace
$B=\left\{\vec{u}_{1}, \cdots, \vec{u}_{p}\right\} \quad$ is a basis for W if $\begin{cases}B & \text { din. irdep } \\ W= & \operatorname{span} B\end{cases}$
Orthogonal Bases

Theorem (Expansion in Orthogonal Basis)
Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then, for any vector $\vec{w} \in W$,

$$
\vec{w}=c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p} .
$$

Above, the scalars are $c_{q}=\frac{\vec{w} \cdot \vec{u}_{q}}{\vec{u}_{q} \cdot \vec{u}_{q}}$.

For example, any vector $\vec{w} \in \mathbb{R}^{3}$ can be written as a linear combination of $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$, or some other orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.

Section 6.2 Slide 25
If B is ar basis
For any $\vec{\omega} \in W$,

$$
c_{1}=\frac{\vec{\omega} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}}, \overrightarrow{c_{1}} \overrightarrow{u_{1}}+\cdots+\bar{c}_{p} \vec{u}_{p}, \quad c_{p}=\frac{\vec{\omega} \cdot \overrightarrow{u_{p}}}{\overrightarrow{u_{p}} \cdot \overrightarrow{u_{p}}}
$$

uniquely

$$
\begin{aligned}
\overrightarrow{u_{1}} \cdot \vec{w} & =\left(c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}\right) \cdot \overrightarrow{u_{1}} \\
\overrightarrow{u_{0}} \cdot \overrightarrow{u_{1}} & =c_{1} \cdot \overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}} \\
c_{1} & =\frac{\vec{w} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}}
\end{aligned}
$$

Example

$$
\vec{x}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \quad \vec{s}=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)
$$

Let W be the subspace of \mathbb{R}^{3} that is orthogonal to \vec{x}.
a) Check that an orthogonal basis for W is given by \vec{u} and \vec{v}.
b) Compute the expansion of \vec{s} in basis W.
a) $\left.\omega=\left(S_{\operatorname{pon}} 2 \vec{x}\right\}\right)^{\perp} \leftarrow 2-\operatorname{dim}$.
(1) $\vec{u}, \vec{v} \in W(\because \vec{u} \cdot \vec{x}=0 \quad \vec{v} \cdot \vec{x}=0)$
(2) $\left\{\overrightarrow{u_{1}} \vec{v}\right\}$ lin. indef. $\left(\because \overrightarrow{u_{p}} \cdot \vec{v}=\theta\right)$
b) $\vec{s} \in W$ because $\vec{x} \cdot \vec{s}=3-4+1=0$.

Section 0.2 Slide $26 \quad \vec{s}=c_{1} \cdot \vec{u}+c_{2} \vec{v}$
$\{\vec{u}, \vec{v}\}$ orthogonal basis

$$
\begin{gathered}
c_{1}=\frac{\vec{s} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}=\frac{1-3+(-2) \cdot(-4)+1 \cdot 1}{1^{2}+2^{2}+1^{2}}=\frac{12}{6}=2 \\
c_{2}=\frac{\vec{s} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}=\frac{(-1) \cdot 3+0 \cdot(-4)+1-1}{(-1)^{2}+0^{2}+1^{2}}=\frac{-2}{2}=-1 .
\end{gathered}
$$

Projections

Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The orthogonal projection of \vec{v} onto the direction of \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v}.

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

The vector $\vec{w}=\vec{v}-\operatorname{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u}, so that

$$
\begin{gathered}
\vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\vec{w} \\
\|\vec{v}\|^{2}=\left\|\operatorname{proj}_{\vec{u}} \vec{v}\right\|^{2}+\|\vec{w}\|^{2}
\end{gathered}
$$

Section 6.2 Slide 27

$$
\begin{aligned}
\vec{v} & =\operatorname{proj}_{\|}(\vec{v})+\overrightarrow{y^{\prime}} \\
& c \cdot \vec{u} \\
\vec{u} \cdot \vec{v} & =c \cdot \vec{u} \cdot \vec{u}+\vec{y} \cdot \vec{u} \rightarrow 0 \\
c & =\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}
\end{aligned}
$$

Example
Let L be spanned by $\vec{u}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.

$$
\begin{aligned}
L & =S_{\text {pan }}\{\vec{u}\} \\
& \left.=S_{\text {pan }} \alpha \cdot 2 \cdot \vec{u}\right\}
\end{aligned}
$$

1. Calculate the projection of $\vec{y}=(-3,5,6,-4)$ onto line L.
2. How close is \vec{y} to the line L ? distance better $\vec{\varphi}, L$
(1)

$$
\begin{aligned}
\operatorname{proj}_{L}(\vec{y}) & =\operatorname{proj}_{\vec{u}}(\vec{y})=\left(\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}}\right) \cdot \vec{u} \\
\operatorname{pro}_{2 \vec{u}}(\vec{y}) & =\frac{-3+5+6-4}{1^{2}+1^{2}+1^{2}+1^{2}}-\vec{u}=\vec{u}
\end{aligned}
$$

Section 6.2

Definition

Definition (Orthonormal Basis)

An orthonormal basis for a subspace W is an orthogonal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ in which every vector \vec{u}_{q} has unit length. In this case, for each $\vec{w} \in W$,

$$
\begin{aligned}
\vec{w} & =\left(\vec{w} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\cdots+\left(\vec{w} \cdot \vec{u}_{p}\right) \vec{u}_{p} \\
\|\vec{w}\| & =\sqrt{\left(\vec{w} \cdot \vec{u}_{1}\right)^{2}+\cdots+\left(\vec{w} \cdot \vec{u}_{p}\right)^{2}}
\end{aligned}
$$

$$
C_{1}=\frac{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u_{1}}}{\vec{u}_{\vec{u}_{1}} \cdot \vec{u}_{1}}=\vec{w} \cdot \overrightarrow{u_{1}}
$$

Example

The subspace W is a subspace of \mathbb{R}^{3} perpendicular to $x=(1,1,1)$. Calculate the missing coefficients in the orthonormal basis for W.

$$
\begin{aligned}
& u=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad v=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
a^{=1} \\
b=-2 \\
c_{1}
\end{array}\right]_{1}^{(2)} \overbrace{a+b+c=0}^{a-c=0} \\
& u, v \in W \quad \vec{u}=\vec{x}=\vec{v} \cdot \vec{x}=0 \\
& \vec{u}-\vec{v}=0 \\
& \|\vec{u}\|=\|\vec{v}\|=1
\end{aligned}
$$

$10 / 27 / 23$

Recall

$$
\operatorname{proj}_{\vec{u}}(\vec{v})=\left(\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \cdot \vec{u}
$$

(B) orthogonal basis $\left\{\overrightarrow{u_{1}}, \cdots, \overrightarrow{u_{p}}\right\}$ for ω

$$
\begin{aligned}
\vec{\omega} \in \vec{W} \quad \Rightarrow \quad \vec{\omega} & =c_{1} \overrightarrow{u_{r}}+\cdots+c_{p} \overrightarrow{u_{p}} \\
& =\frac{\overrightarrow{\omega_{0}} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} \overrightarrow{u_{1}}+\cdots+\frac{\vec{\omega} \cdot \overrightarrow{u_{p}}}{\overrightarrow{\vec{u}_{p}} \cdot \overrightarrow{u_{p}}} \cdot \overrightarrow{u_{p}}
\end{aligned}
$$

orthonormal basis
-f

$$
\left\|\overrightarrow{u_{\|}}\right\|=\cdots=\left\|\vec{a}_{p}\right\|=1
$$

Orthogonal Matrices

$$
n \times n
$$

An orthogonal matrix is a square matrix whose columns are orthonormal.

Theorem

An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I_{n}$.

Can U have orthonormal columns if $n>m$?

$$
\begin{aligned}
& \begin{array}{l}
n \times m \\
U^{\top} \cdot m^{\prime}
\end{array} \in \mathbb{R}^{n \times n} \\
& {\left[\begin{array}{c}
v_{1}^{\top} \\
\vdots \\
u_{n}^{\top}
\end{array}\right]\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}}
\end{array}\right] }=\left[\begin{array}{ccc}
u_{1}^{\prime} \cdot u_{1}^{\prime} & u_{1} \cdot u_{2} & \cdots \\
u_{2} \cdot u_{1} \vec{u}_{1} & u_{2}-u_{2}^{\prime}=1 \\
& \ddots
\end{array}\right]_{u_{n} \cdot u_{n-1}}^{0} \\
&=I_{n}
\end{aligned}
$$

Theorem

Theorem (Mapping Properties of Orthogonal Matrices)

Assume $m \times m$ matrix U has orthonormal columns. Then

1. (Preserves length) $\|U \vec{x}\|=\|\vec{x}\|$
2. (Preserves angles) $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$
3. (Preserves orthogonality) $\quad \vec{x} \cdot \vec{y}=0 \Leftrightarrow(U \vec{x}) \cdot(v \vec{y})=0$

$$
U=\left[\overrightarrow{u_{1}} \cdots \overrightarrow{u_{m}}\right] \quad\left\{\overrightarrow{u_{1}},-, \overrightarrow{u_{m}}\right\} \text { orthonormal }
$$

$$
\|\mho \vec{x}\|
$$

$$
\begin{aligned}
\|V \vec{x}\|^{2}=\left\|U\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\dot{x}_{m}
\end{array}\right]\right\|^{2} & =\left\|x_{1} \cdot \vec{u}_{1}+x_{2} \cdot \vec{u}_{2}+\cdots+x_{m} \vec{u}_{m}\right\|^{2} \text { orthogonal } \\
& =x_{1}^{2}\left\|\vec{u}_{1}\right\|^{\prime}+\vec{x}_{2}\left\|u_{2}\right\|^{2^{2}}+\cdots+x_{m}^{2}\left\|\vec{u}_{m}\right\|^{2}=1 \\
& =x_{1}^{2}+x_{2}^{2}+\cdots+x_{m n}^{2}=\|\vec{x}\|^{2}
\end{aligned}
$$

$$
\|U \vec{x}\|^{2}=(U \vec{x}) \cdot(U \vec{x})=(U \cdot \vec{x})^{\top} \cdot(U \cdot \vec{x})
$$

Example

$$
\|U x\|=\|x\|
$$

Compute the length of the vector below. π

$$
\|\underbrace{\left[\begin{array}{cc}
1 / 2 & 2 / \sqrt{14} \\
1 / 2 & 1 / \sqrt{14} \\
1 / 2 & -3 / \sqrt{14} \\
1 / 2 & 0
\end{array}\right]}_{4 \times 2} \underbrace{\left[\begin{array}{c}
\sqrt{x} \\
-3
\end{array}\right] \|}_{2 \times 1}=\|\left[\begin{array}{c}
\sqrt{2} \\
-3
\end{array}\right] \|=\sqrt{11}
$$

has orthonormal columns

$$
\begin{aligned}
& \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \cdot \frac{1}{\sqrt{14}}\left[\begin{array}{c}
2 \\
1 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left\|\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\|^{2}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1
\end{aligned}
$$

Section $6.2 \quad$ Slide 33

$$
\left\|\frac{1}{\sqrt{14}}\left[\begin{array}{c}
2 \\
1 \\
-3 \\
0
\end{array}\right]\right\|^{2}=\frac{1}{14}\left(2^{2}+1^{2}+(-3)^{2}\right)=1
$$

Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

Vectors \vec{e}_{1} and \vec{e}_{2} form an orthonormal basis for subspace W.
Vector \vec{y} is not in W.
The orthogonal projection of \vec{y} onto $W=\operatorname{Span}\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is \hat{y}.

Topics and Objectives

Topics

1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) construct vector approximations using projections,
d) characterize bases for subspaces of \mathbb{R}^{n}, and
e) construct orthonormal bases.

Motivating Question For the matrix A and vector \vec{b}, which vector \widehat{b} in column space of A, is closest to \vec{b} ?

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 0 \\
-4 & -2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Example 1
Let $\vec{u}_{1}, \ldots, \vec{u}_{5}$ be an orthonormal basis for \mathbb{R}^{5}. Let $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.
For a vector $\vec{y} \in \mathbb{R}^{5}$, write $\vec{y}=\widehat{y}+w^{\perp}$, where $\widehat{y} \in W$ and $w^{\perp} \in W^{\perp}$.
\sim

$$
\begin{aligned}
& \vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}+c_{4} \vec{u}_{4}+c_{5} \vec{u}_{5} \\
& =\left(\vec{y} \cdot \overrightarrow{u_{1}}\right) \cdot \overrightarrow{u_{1}}+\left(\vec{y} \cdot \overrightarrow{u_{2}}\right) \cdot \overrightarrow{u_{2}}+W
\end{aligned}
$$

$$
\begin{aligned}
& u_{5} \\
& \begin{array}{l}
u_{4} \\
u_{3} \in W^{\perp} \text { because }
\end{array} \\
& \Leftrightarrow \quad u_{3} \cdot \vec{\omega}=0 \quad \vec{\omega} \in W
\end{aligned}
$$

Section 6.3 Slide 36
Section 6.3 Side 36 $\quad \Leftrightarrow \quad u_{3}-\vec{u}_{1}=0 \quad \vec{u}_{3} \cdot \overrightarrow{u_{2}}=0$

Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then, each vector $\vec{y} \in \mathbb{R}^{n}$ has the unique decomposition

$$
\vec{y}=\widehat{y}+w^{\perp}, \quad \widehat{y} \in W, \quad w^{\perp} \in W^{\perp}
$$

And, if $\vec{u}_{1}, \ldots, \vec{u}_{p}$ is any orthogonal basis for W,

$$
\hat{y}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\cdots+\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p} .
$$

We say that \widehat{y} is the orthogonal projection of \vec{y} onto W.

If time permits, we will explain some of this theorem on the next slide.

Explanation (if time permits)

We can write

$$
\widehat{y}=
$$

Then, $w^{\perp}=\vec{y}-\widehat{y}$ is in W^{\perp} because

Example Ra

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \vec{u}_{1} \cdot \vec{u}_{2}=0
$$

Construct the decomposition $\vec{y}=\widehat{y}+w^{\perp}$, where \widehat{y} is the orthogonal projection of \vec{y} onto the subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

$$
\begin{aligned}
& \hat{y}=\operatorname{prj}_{w}(\vec{y}) \\
& \text { ortheganal (Yes) } \\
& \text { oho normal (} N_{0} \text {) } \\
& =\frac{\vec{y} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} u_{1}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}} u_{2} \quad\left\{u_{1}, u_{2}\right\} \\
& \text { orthogonal basis } \\
& =\frac{4.2+0.2+3.0}{2^{2}+2^{2}} \vec{u}_{1}+\frac{3 \cdot 1}{1^{2}} \vec{u}_{2} \quad \text { for } w \\
& =\overrightarrow{u_{1}}+3 \cdot \vec{u}_{2}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Best Approximation Theorem

Theorem

Let W be a subspace of $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{n}$, and \widehat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{w} \neq \hat{y} \in W$, we have

$$
\|\vec{y}-\widehat{y}\|<\|\vec{y}-\vec{w}\|
$$

That is, \widehat{y} is the unique vector in W that is closest to \vec{y}.

Section 6.3 Slide 40

Proof (if time permits)

The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y}.

Example ab

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

What is the distance between \vec{y} and subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$? Note that these vectors are the same vectors that we used in Example Ra.

$$
\hat{y}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right] \leftarrow \text { minimizes } \quad\left\|\vec{y}-\underline{c_{1} \vec{u}_{1}}-\stackrel{3}{\|} \vec{c}_{2} \vec{u}_{2}\right\|
$$

distance $(\vec{y}, w)=\|\vec{y}-\hat{y}\|$

$$
=\left\|\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]\right\|
$$

$$
=\sqrt{8}
$$

Section 6.4: The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares
Math 1554 Linear Algebra

Vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are given linearly independent vectors. We wish to construct an orthonormal basis $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}$ for the space that they span.

Topics and Objectives

Topics

1. Gram Schmidt Process
2. The $Q R$ decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis.
2. Compute the $Q R$ factorization of a matrix.

Motivating Question The vectors below span a subspace W of \mathbb{R}^{4}. Identify an orthogonal basis for W.

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Example
The vectors below span a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.

$$
\vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

$W=S_{\text {pan }}\left(\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}\right) \quad$ Onthugomal basis?

$$
\overrightarrow{v_{1}}=\vec{x}_{1}
$$

Find \vec{v}_{2} is. (1) $\vec{v}_{2} \perp \overrightarrow{v_{1}}$ i.e. $\vec{v}_{1} \cdot \vec{v}_{2}=0$
(2) $S_{\text {pan }}\left\{\vec{x}_{1}, \overrightarrow{x_{2}}\right\}=\operatorname{Span}\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}$
$0=\vec{v}_{1} \cdot \vec{v}_{2}=\left(\vec{x}_{2}-c \cdot\left(\vec{x}_{2}\right) \cdot \overrightarrow{v_{1}}\right.$
lin. Comb. of \vec{x}_{1}, \vec{x}_{2}
$0=\vec{x}_{2} \cdot \vec{v}_{1}-\frac{\vec{v}_{1}}{c} \cdot \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}$

$$
\Rightarrow \quad c=\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}
$$

Section 6.4 Slide 45 $\quad \overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 1\end{array}\right]=\frac{3}{4}$
Find $\overrightarrow{v_{3}}=\vec{x}_{3}-c_{1} \overrightarrow{v_{1}}-c_{2} \overrightarrow{v_{2}} \Rightarrow$ Spam $\left\{x_{1}, x_{2}, x_{2}\right\}$
Need: $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{3}}=0, \overrightarrow{v_{2}} \cdot \overrightarrow{v_{3}}=0$ $=S_{\text {pam }}\left\{v_{1}, v_{1} v_{1}\right\}$ $=W$

$$
\begin{aligned}
0 & \vec{v}_{1} \cdot \overrightarrow{v_{3}}=\left(\overrightarrow{x_{3}}-c_{1} \overrightarrow{v_{1}}-c_{2} \overrightarrow{v_{2}}\right) \cdot \overrightarrow{v_{1}}
\end{aligned}=\frac{\overrightarrow{x_{3}}-\overrightarrow{v_{1}}-c_{1} \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}{\therefore \quad c_{1}=\frac{\overrightarrow{x_{3}}-\overrightarrow{v_{1}}}{\vec{v}_{1}} \cdot \overrightarrow{v_{1}}}=\frac{1}{2}
$$

$$
\begin{aligned}
& 0=\overrightarrow{v_{2}} \cdot \overrightarrow{v_{3}}=\left(\vec{x}_{3}-\vec{c}_{1}-\vec{v}_{1} \overrightarrow{v_{2}}\right) \cdot \overrightarrow{v_{2}} \\
& =\overrightarrow{x_{3}} \cdot \overrightarrow{v_{2}}-\underline{C_{2}} \cdot \overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}} \\
& c_{2}=\frac{\vec{x}_{3} \cdot \vec{v}_{L}}{\vec{v}_{L} \cdot \vec{v}_{2}^{3}}=\frac{1 / 2}{\left(\frac{1}{4}\right)^{2} \cdot 12}=\frac{1}{2} \cdot \frac{168}{12}=\frac{2}{3} . \\
& v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\sqrt{1}-\frac{2}{3} \cdot \frac{1}{2}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{6}\left(\left[\begin{array}{c}
-3 \\
-3 \\
3 \\
3
\end{array}\right]-\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]\right) \\
& =\frac{1}{6}\left[\begin{array}{c}
0 \\
-4 \\
2 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

The Gram-Schmidt Process

Given a basis $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ for a subspace W of \mathbb{R}^{n}, iteratively define

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\text { prole }\left(\vec{x}_{2}\right) \\
& \vec{v}_{3}=\vec{x}_{3}-\left(\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}\right)_{\text {(Span }\{v, 4)^{1}}^{\text {prop }}\left(\overrightarrow{x_{3}}\right) \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\cdots-\frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}
\end{aligned}
$$

Then, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W.

Proof

Geometric Interpretation

Suppose $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are linearly independent vectors in \mathbb{R}^{3}. We wish to construct an orthogonal basis for the space that they span.

We construct vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, which form our orthogonal basis.

$$
W_{1}=\operatorname{Span}\left\{\vec{v}_{1}\right\}, W_{2}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} .
$$

> Orthonormal Bases
> $\overrightarrow{u_{r}}=\frac{\overrightarrow{v_{1}}}{\left\|\overrightarrow{\vec{v}_{1}}\right\|}, \cdots, \overrightarrow{u_{p}}=\frac{\overrightarrow{v_{p}}}{\left\|\overrightarrow{v_{p}}\right\|}$

A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.

Example

The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for W.

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] . \\
& \overrightarrow{u_{1}}=\underset{\underbrace{\frac{1}{3^{2}+2^{2}}}}{\frac{1}{2}}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right], \quad \overrightarrow{u_{2}}=\frac{1}{\underbrace{\frac{1}{\sqrt{14}}}_{\frac{\pi}{\sqrt{-22^{2}+3^{2}+1^{2}}}}} \begin{array}{c}
-2 \\
3 \\
1
\end{array}]
\end{aligned}
$$

QR Factorization
 $$
A=Q R
$$

Theorem

Any $m \times n$ matrix A with linearly independent columns has the $\mathbf{Q R}$ factorization

$$
A=Q R
$$

where

1. Q is $m \times n$, its columns are an orthonormal basis for $\operatorname{Col} A$.
2. R is $n \times n$, upper triangular, with positive entries on its diagonal, and the length of the $j^{\text {th }}$ column of R is equal to the length of the $j^{\text {th }}$ column of A.

In the interest of time:

- we will not consider the case where A has linearly dependent columns
- students are not expected to know the conditions for which A has a QR factorization

Proof
$\left\{\vec{x}_{1}, \cdots \vec{x}_{p}\right\} \quad$ lin. Tndep.

$$
\begin{aligned}
& \overrightarrow{v_{1}}=\overrightarrow{x_{1}} \quad \longrightarrow \quad \overrightarrow{\vec{u}_{1}^{2}}=\frac{1}{\sqrt{\vec{x}_{1}-\overrightarrow{x_{1}}}} \overrightarrow{x_{1}}=\frac{1}{\left(\vec{v}_{1} \|\right)^{2}} \\
& \overrightarrow{v_{2}}=\vec{x}_{2}-\underline{\left(\overrightarrow{x_{2}}-\overrightarrow{u_{1}}\right)-\overrightarrow{u_{1}}} \longrightarrow \overrightarrow{\vec{u}_{2}}=\frac{1}{\| \overrightarrow{v_{2}}} \overrightarrow{\overrightarrow{u_{2}}} \\
& \overrightarrow{v_{3}}=\overrightarrow{x_{3}}-\underset{\substack{\left(\overrightarrow{x_{3}} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}}}{\substack{\vec{x}_{5} \\
\vdots \\
\\
i \\
\vec{u}_{2}}} \overrightarrow{\vec{u}_{2}} \rightarrow \overrightarrow{\vec{u}_{3}}=\frac{1}{\left\|v_{3}\right\|} \overrightarrow{v_{3}} \\
& \begin{array}{l}
\overrightarrow{x_{1}}=\left\|\overrightarrow{x_{1}}\right\| \cdot \overrightarrow{u_{1}} \\
\overrightarrow{x_{2}}=\underbrace{}_{\overrightarrow{v_{2}}} \| \cdot \overrightarrow{u_{2}}+\left(\overrightarrow{x_{2}} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}
\end{array}
\end{aligned}
$$

$$
\overrightarrow{x_{2}}=\underset{Q}{\overrightarrow{u_{1}}} \ldots \vec{u}_{p} \cdots\left[\begin{array}{c}
\vec{x}_{2} \cdot \vec{u}_{1} \\
r v_{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Example

Construct the $Q R$ decomposition for $A=\left[\begin{array}{cc}3 & -2 \\ 2 & 3 \\ 0 & 1\end{array}\right]$.
$\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{p}\right\} \quad$ lin. indep.
Gran-Sohmidt

$$
\omega_{1}=S_{\text {paw }}\left\langle\vec{x}_{1}\right\}=S_{\text {pan }}\left\{\vec{v}_{1}\right\}
$$

$\left\{\overrightarrow{v_{1}}, \vec{v}_{2}, \cdots, \vec{v}_{p}\right\} \quad$ orthogonal set $+w_{2}=\operatorname{span}\left\langle\vec{x}_{1}, \vec{x}_{2}\right\}=\left\{\operatorname{pan} \alpha \vec{v}_{1}, \overrightarrow{v_{2}}\right\}$

$$
w_{p}=\operatorname{Span}\left\{x_{1} \cdots, x_{p}\right\}=\operatorname{Span}\left\{v_{1}, \cdots ; v_{p}\right\}
$$

How to find $\left\{v_{1}, \cdots, v_{p}\right\}$

$$
\begin{aligned}
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\operatorname{prj}\left(x_{2}\right)=x_{2}-\left(\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) \cdot v_{1} \\
& v_{3}=x_{3}-\operatorname{prj} j_{w_{2}}\left(x_{3}\right)=x_{3}-\left(\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}}\right) v_{2}
\end{aligned}
$$

$\left\{\vec{u}_{1}, \cdots, \overrightarrow{u_{p}}\right\} \quad$ orthonormal

$$
\begin{aligned}
& \vec{u}_{i}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{\|}\right\|}, \quad \vec{u}_{2}=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}, \cdots, \quad \vec{u}_{\beta}=\frac{\vec{v}_{p}}{\left\|\vec{v}_{p}\right\|}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow A^{\prime} \\
& {\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{p}
\end{array}\right] }
\end{aligned} \begin{aligned}
& \\
& \\
& \left.\begin{array}{llll}
u_{1} & \cdots & u_{p}
\end{array}\right]\left[\begin{array}{cccc}
x_{1} \cdot u_{1} & x_{2} \cdot u_{1} & & x_{p} \cdot u_{1} \\
0 & x_{2} \cdot u_{2} & & x_{p} \cdot u_{2} \\
0 & 0 & \cdots & \vdots \\
\vdots & \vdots & & \vdots \\
0 & 0 & & x_{p} \cdot u_{p}
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Columns

Midterm 3. Your initials: \qquad
7. (4 points) Show all work for problems on this page.

Let $\mathcal{B}=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4}, where

$$
\vec{x}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
2
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)
$$

(a) Apply the Gram-Schmidt process to the set of vectors $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthogonal basis $\mathcal{H}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W. Clearly show all steps of the Gram-Schmidt process.

$$
\begin{aligned}
& v_{1}=x_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \\
& v_{2}=x_{2}-\left(\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) \cdot v_{1}=\left[\begin{array}{c}
-2 \\
1 \\
1 \\
2
\end{array}\right]-\frac{(-4)}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \quad \mathcal{H}= \\
& \left.=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right]_{\quad}\right) x_{1}-\left(1 x_{2}\right. \\
& v_{3}=x_{3}-\left(\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}}\right) v_{2}=\left[\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right] \underbrace{-\frac{(-2)}{4}}_{\frac{1}{2}}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \underbrace{-\frac{1-3)}{6}}_{\frac{1}{2}}\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right] \\
& =\frac{1}{2}\left(\left[\begin{array}{c}
0 \\
4 \\
-2 \\
-2
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{c}
0 \\
3 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

$$
\begin{aligned}
v_{3} & =x_{3}-c_{1} x_{1}-c_{2} x_{2} \\
v_{3} & =x_{3}-c_{1} v_{1}-c_{2} v_{2} \\
0=\vec{v}_{1} \cdot \vec{v}_{3} & \left.=v_{1} \cdot x_{3}-c_{1} v_{1}-\underline{c_{2}} v_{2}\right) \\
0 & =x_{3} \cdot v_{1}-c_{1} \cdot v_{1} \cdot v_{1} \Rightarrow c_{1}=\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}}
\end{aligned}
$$

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) The standard matrix of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has orthonormal columns. Which one of the following statements is false?
Choose only one.
$\bigcirc\|T(\vec{x})\|=\|\vec{x}\|$ for all \vec{x} in \mathbb{R}^{3}.
If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^{3} are scalar multiples of each other, then $\|T(\vec{x}+\vec{y})\|^{2}=\|T(\vec{x})\|^{2}+\|T(\vec{y})\|^{2}$.
\bigcirc If \mathcal{P} is a parallelpiped in \mathbb{R}^{3}, then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P}.
T is one-to-one.

$$
\begin{aligned}
& \underline{Q}^{\top} \cdot Q=I \\
& R=\left[\begin{array}{cc}
x_{1} \cdot u_{1} & x_{2} \cdot u_{1} \\
\sim & \sim_{2} \\
0 & x_{2} \cdot u_{2}
\end{array}\right]
\end{aligned}
$$

2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right] \quad Q=\left[\frac{1}{2} /\left[\begin{array}{ll}
x_{2} & u_{1} \\
1 & \frac{1 / \sqrt{3}}{1 / \sqrt{3}} \\
1 & -\sqrt{3} \\
1 & 1 / \sqrt{3}
\end{array}\right] \quad u_{2} \quad u_{2}=\frac{1}{2} \frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
-3 \\
1
\end{array}\right]\right.
$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$
\begin{aligned}
& R=\left[\begin{array}{ll}
\frac{2}{\infty} & \frac{1}{\sqrt{3}}
\end{array}\right] \\
& x_{1} \cdot u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
\sqrt{3}
\end{array}\right] \\
& x_{2} \cdot u_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=1=\frac{1}{2 \sqrt{3}} \cdot 6=\sqrt{8}=\sqrt{3}
\end{aligned}
$$

Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares
Math 1554 Linear Algebra

https://xkcd.com/1725

Topics and Objectives

Topics

1. Least Squares Problems
2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares problems using the normal equations and the $Q R$ decomposition.

Motivating Question A series of measurements are corrupted by random errors. How can the dominant trend be extracted from the measurements with random error?

Inconsistent Systems

Suppose we want to construct a line of the form

$$
\rightarrow \frac{y=m x+b}{\ulcorner } \text { Find } \wedge^{m, \quad b}
$$ that best fits the data below.

$$
(4, ?)
$$

From the data, we can construct the system:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
1 \\
2.5 \\
3
\end{array}\right]
$$

Can we 'solve' this inconsistent system?

Section 6.5 Slide 55

$$
\left.\begin{array}{rl}
0.5=\frac{1}{2} & =m \cdot 0+b \\
1 & =m-1+b \\
2.5 & =m-2+b \\
3 & =m-3+b
\end{array}\right\}
$$

Definition: Least Squares Solution
Let A be a $m \times n$ matrix. A least squares solution to $A \vec{x}=\vec{b}$ is the solution \widehat{x} for which

$$
\begin{aligned}
& \min _{\vec{x} \in \mathbb{R}^{n}}\|\vec{b}-A \vec{x}\|=\|\vec{b}-A \widehat{x}\| \leq\|\vec{b}-A \vec{x}\| \\
& \text { for all } \vec{x} \in \mathbb{R}^{n} \text {. }
\end{aligned}
$$

$A \vec{x}=\vec{b}$ If consistant
$\|\vec{b}-A \vec{x}\|$ as error

Section $6.5 \quad$ Slide 56
Consistent $\Leftrightarrow \quad b \in \operatorname{Col}(A)$

A Geometric Interpretation

The vector \vec{b} is closer to $A \hat{x}$ than to $A \vec{x}$ for all other $\vec{x} \in \operatorname{Col} A$.

1. If $\vec{b} \in \operatorname{Col} A$, then \widehat{x} is \ldots
2. Seek \widehat{x} so that $A \widehat{x}$ is as close to \vec{b} as possible. That is, \widehat{x} should solve $A \widehat{x}=\widehat{b}$ where \widehat{b} is \ldots

The Normal Equations

Theorem (Normal Equations for Least Squares)
The least squares solutions to $A \vec{x}=\vec{b}$ coincide with the solutions to

$$
\underbrace{A^{T} A \vec{x}=A^{T} \vec{b}}_{\text {Normal Equations }}
$$

$A \vec{x}=\vec{b}$

- \hat{x} is a least-squares solution if

$$
\|\vec{b}-A \hat{x}\|=\min _{\vec{x}}\|\vec{b}-A \vec{x}\|
$$

Section 6.5
Slide 58

$$
\begin{aligned}
\vec{b}-A \hat{x} \perp \operatorname{Col}(A) & \vec{b}-A \hat{x} \in \operatorname{Col}(A)^{\perp}=\operatorname{Mull}^{\prime}(A T) \\
A^{\top} \cdot(b-A \hat{x})=0 & \text { always consistent } \\
A^{\top} \cdot b-A^{\top} A \hat{x}=0 & \Rightarrow A^{\top} A \hat{x}=A^{\top} \cdot \vec{b}
\end{aligned}
$$

Derivation

The least-squares solution \hat{x} is in \mathbb{R}^{n}.

1. \widehat{x} is the least squares solution, is equivalent to $\vec{b}-A \widehat{x}$ is orthogonal to \square A.
2. A vector \vec{v} is in Null A^{T} if and only if $\square \vec{v}=\overrightarrow{0}$.
3. So we obtain the Normal Equations:

Example

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right] \quad \underbrace{A^{\top} \cdot A} x=\underbrace{A^{\top} b}
$$

Solution:

Section 6.5 Slide 60

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] } & =\frac{1}{84}\left[\begin{array}{cc}
5 & -1 \\
-1 & 17
\end{array}\right]\left[\begin{array}{l}
19 \\
11
\end{array}\right] \\
& =\frac{1}{84}\left[\begin{array}{c}
84 \\
2.84
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

The normal equations $A^{T} A \vec{x}=A^{T} \vec{b}$ become:

Section 6.5 Slide 61

$$
\frac{A-\vec{x})}{\text { lin. corbie. of columns in } A}=\underline{\vec{b}} \quad \operatorname{cositstent} \quad \Leftrightarrow \quad b \in C_{0} f_{p}(A)
$$

Note Why ATA $x=A^{\top} b$ is consistent?

Theorem (Unique Solutions for Least Squares)
Let A be any $m \times n$ matrix. These statements are equivalent.

1. The equation $A \vec{x}=\vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^{m}$.
2. The columns of A are linearly independent. $\Leftrightarrow T$ is 1 - 1
3. The matrix $A^{T} A$ is invertible.

And, if these statements hold, the least square solution is

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Useful heuristic: $A^{T} A$ plays the role of 'length-squared' of the matrix A. (See the sections on symmetric matrices and singular value decomposition.)

$$
A^{\top} A x=A^{\top} \cdot b
$$

$$
A={\underset{\uparrow}{\uparrow}}^{Q} R^{\text {uppertriayular. }}
$$

has orthonormal
Example
Columns

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Hint: the columns of A are orthogonal.

$$
\begin{aligned}
& A^{\top} \cdot A x=A^{\top} \cdot b \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-6 & -2 & 1 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
0 & 90
\end{array}\right]} \\
& {\left[\begin{array}{ll}
4 & 0 \\
0 & 90
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
8 \\
45
\end{array}\right]} \\
& x_{1}=2, \quad x_{2}=\frac{1}{2}
\end{aligned}
$$

Section 6.5 Slide 63

Theorem (Least Squares and $Q R$)
Let $m \times n$ matrix A have a $Q R$ decomposition. Then for each $\vec{b} \in \mathbb{R}^{m}$ the equation $A \vec{x}=\vec{b}$ has the unique least squares solution

$$
R \vec{x}=Q^{T} \vec{b} .
$$

(Remember, R is upper triangular, so the equation above is solved by back-substitution.)

Example 3. Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

Solution. The $Q R$ decomposition of A is

$$
\begin{gathered}
A=Q R=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right] \\
R \cdot \hat{x}=A^{\top} \cdot b .
\end{gathered}
$$

$$
Q^{T} \vec{b}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
4
\end{array}\right]
$$

And then we solve by backwards substitution $R \vec{x}=Q^{T} \vec{b}$

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]}_{R}\left[\begin{array}{l}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]-6} \\
2
\end{array}\right]\left[\begin{array}{c}
6 \\
-6 \\
4
\end{array}\right] \\
& \quad 2 x_{3}=4 \Rightarrow x_{3}=2
\end{aligned}
$$

$$
\hat{x}=\left[\begin{array}{c}
10 \\
-6 \\
2
\end{array}\right] \quad \begin{aligned}
& 2 \cdot x_{2}+3 \cdot 2=-6 \\
& 2 \cdot x_{1}+4 \cdot(-6)+5 \cdot 2=6 \\
& 2 x_{1}-2+4+10=6
\end{aligned} \quad \Rightarrow x_{1}=10 .
$$

Chapter 6 : Orthogonality and Least Squares 6.6 : Applications to Linear Models

Topics and Objectives

Topics

1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply least-squares and multiple regression to construct a linear model from a set of data points.
2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line $y=\beta_{0}+\beta_{1} x$ that best fits the data

x	2	5	7	8
y	1	1	4	3

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the \qquad .
The least squares line minimizes the sum of squares of the \qquad .

Example 1 Compute the least squares line $y=\beta_{0}+\beta_{1} x$ that best fits the data

x	2	5	7	8		
y	1	1	4	3	\leftarrow DATA \quad	$x=9$
:---						
$y=?$						
$y=?$						

We want to solve

This is a least-squares problem : $X \vec{\beta}=\vec{y}$.

$$
x \vec{\beta}=\vec{y}
$$

Normal Equ: $X^{\top} \cdot x \cdot \vec{\beta}=x^{\top} \cdot \vec{y}$

The normal equations are
square

$$
\begin{aligned}
& X^{T} X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]=\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right] \\
& X^{T} \vec{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]
\end{aligned}
$$

So the least-squares solution is given by

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]} \\
& y=\beta_{0}+\beta_{1} x=\frac{-5}{21}+\frac{19}{42} x
\end{aligned}
$$

As we may have guessed, β_{0} is negative, and β_{1} is positive.

Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

$$
y=c_{0}+c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{k} f_{k}(x)
$$

If functions f_{i} are known, this is a linear problem in the c_{i} variables.
Example
Consider the data in the table below.

x	-1	0	0	1
y	2	1	0	6

Determine the coefficients c_{1} and c_{2} for the curve $y=c_{1} x+c_{2} x^{2}$ that best fits the data.

Section 6.6 Slide 73

$$
\left\{\begin{aligned}
2 & =c_{1}(-1)+c_{2}(-1)^{2}=-c_{1}+c_{2} \\
1 & =c_{1} \cdot 0+c_{2} \cdot 0^{2}=0 \cdot c_{1}+0 \cdot c_{2} \\
0 & =c_{1} \cdot 0+c_{2} \cdot 0^{2}=0 \cdot c_{1}+0 \cdot c_{2} \\
6 & =c_{1} \cdot 1+c_{2} \cdot 1^{2}=c_{1}+c_{2}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
6
\end{array}\right]}_{\vec{y}}=\underbrace{\left[\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]}_{x} \underset{\rightarrow}{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]} \xrightarrow{\left[\begin{array}{l}
\boldsymbol{\beta}
\end{array}\right.} \\
& x^{\top} \cdot x \vec{\beta}^{2}
\end{aligned}
$$

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha, Mathematica, and many other software.

WolframAlpha

$$
\text { linear fit }\left\{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}
$$

Mathematica

$$
\text { LeastSquares }\left[\left\{\left\{x_{1}, x_{1}, y_{1}\right\},\left\{x_{2}, x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, x_{n}, y_{n}\right\}\right\}\right]
$$

Almost any spreadsheet program does this as a function as well.

A has lin. indap col.

$$
\begin{aligned}
& \begin{array}{l}
\Leftrightarrow \quad \operatorname{Null}(A)=20\} \\
\quad \operatorname{Nanl}\left(A^{\top} \cdot A\right) \quad(\because
\end{array} \\
& A \vec{x}=0 \Rightarrow A^{\top} A x=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A^{\top} \cdot A-x}{\Perp}=0 \quad \Rightarrow \quad A x=\text { ? } \\
& \|A x\|^{2}=(A x) \cdot(A x)=(A x)^{\top}(A x)=x^{\top} \cdot A^{\top} \cdot A \cdot x=0 \Rightarrow A x=0 \\
& \Leftrightarrow \quad A^{\top} \text {. A has lin. index. columns } \Leftrightarrow A^{\top} A \text { invertible }
\end{aligned}
$$

A has lin. index.

Midterm 3. Your initials: \qquad
8. (8 points) Show work on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values α and β which best fit the curve

$$
y=\alpha \cdot \frac{1}{1+x^{2}}+\beta
$$

to the data points $(-1,1),(0,-1),(1,0)$ using the parameters α and β.
(i) What is the augmented matrix for the linear system of equations associated to this least

$$
\begin{aligned}
& \text { squares problem? } \\
& 1=\alpha \cdot \frac{1}{1+(-r)^{2}}+\beta=\frac{1}{2} \alpha+\beta \\
& -1=\alpha \frac{1}{1+0^{2}}+\beta=\alpha+\beta \Rightarrow \\
& 0=\alpha \frac{1}{1+1^{2}}+\beta=\frac{1}{2} \alpha+\beta
\end{aligned}
$$

(ii) What is the augmented matrix for the normal equations for this system.

$$
\left.\begin{array}{l}
x^{\top} x \hat{\beta}=x^{\top} \cdot \vec{y} \\
x^{\top} \cdot x=\left[\begin{array}{ccc}
\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{2} & 1 \\
1 & 1 \\
\frac{1}{2} & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{3}{2} & 2 \\
2 & 3
\end{array}\right]\left[\left.\begin{array}{ll|}
{\left[\frac{3}{2}\right.} & 2 \\
2 & 1
\end{array} \right\rvert\, 0\right.
\end{array}\right]
$$

(iii) Find a least-squares solution to the linear system from (i) to determine the parameters α and β of the best fitting curve.

$$
\left.\begin{array}{ccc}
\phi & -3 & 2 \\
= & \alpha=\square & \beta=\square \\
2
\end{array}\right]
$$

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (6 points) Suppose A is a real $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false
$\bigcirc \quad$ For any line $L \in \mathbb{R}^{2}$ passing through the origin, the matrix corresponding to the transformation that reflects across the line L must always be diagonalizable.

If A and B are $n \times n$ orthogonal matrices, then $A B$ is also $n \times n$ and orthogonal.

If A is the reduced row echelon form (RREF) of B and A is diagonalizable, then B is diagonalizable.
$\bigcirc \quad$ If $\vec{b} \in \operatorname{Col}(A)$, then the least squares solution to the linear system $A \vec{x}=\vec{b}$ is unique.

$$
\operatorname{Null}_{11}\left(A^{\top}-A\right)^{\perp}
$$

$$
\text { For any rectangular } m \times n \text { matrix } A, \underbrace{\left(A^{\top} . A\right)}_{\left.\operatorname{Null}^{(N)}(A)=\operatorname{Nul} A\right)^{\perp}=\operatorname{Row}\left(A^{T} A .\right)}
$$

$\bigcirc \quad$ If the distance of \vec{w} from \vec{v} is equal to the distance of \vec{w} from $-\vec{v}$, then $\vec{w} \cdot \vec{v}=0$.
(b) (2 points) Indicate whether the following situations are possible or impossible.
possible impossible
$\bigcirc \quad$ A diagonal matrix A that is similar to $\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$.

An orthogonal matrix A such that $|\operatorname{det} A| \neq 1$.

Math 1554 Linear Algebra, Midterm 3. Your initials:
8. (4 points) Show all work for problems on this page. If $A=Q R=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)$, determine the least-squares solution to $A \hat{x}=\binom{\sqrt{2}}{2 \sqrt{2}}$. You do not need to determine A.

