Chapter 3. Continuous Distribution

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1. Random Variables of the Continuous Type

For Discrete RV

$$P(X = x) = \pm of total outcomes$$

Let the random variable X denote the outcome when a point is selected at random from an interval [0, 1].

If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from an interval $[\frac{1}{3}, \frac{1}{2}]$ is

The CDF of X is

$$P(X \in [\frac{1}{3}, \frac{1}{2}]) = \frac{\operatorname{length}}{\operatorname{length}} f(\frac{1}{3}, \frac{1}{2}] = \frac{1}{6}$$

$$P(X \in [\frac{1}{3}, \frac{1}{2}]) = \frac{\operatorname{length}}{\operatorname{length}} f(\frac{1}{3}, \frac{1}{2}] = \frac{1}{6}$$

$$P(X \in [\frac{1}{3}, \frac{1}{2}]) = \frac{\operatorname{length}}{\operatorname{length}} f(0, 1) = \frac{1}{6}$$

$$P(X \in X) = \frac{\operatorname{length}}{\operatorname{length}} f(0, 1) = \frac{1}{6}$$

$$P(X \in X) = \frac{\operatorname{length}}{\operatorname{length}} f(0, 1) = \frac{1}{6}$$

$$P(X \in X) = \frac{1}{6}$$

$$P(X \in X) = \frac{1}{6}$$

Definition

We say a random variable X on a sample space S is a continuous random variable if there exists a function f(x) such that

- $f(x) \ge 0$ for all x,
- $\int_{S(X)} f(x) \, dx = 1$, and
- For any interval $(a, b) \subset \mathbb{R}$,

$$\mathbb{P}(a < X < b) = \int_a^b f(x) \, dx$$

The function f(x) is called **the probability density function (PDF)** of X.

Note
$$P(X=a)=0$$
.
($F(X=a)=0$.
($F(X=a)=0$.
($F(X=a)=0$.
($F(X=a)=0$.
 $F(X)=0$.
 F

X: conti. RV.
$$\Rightarrow$$
 we have a PDF $\frac{f(x)}{f(x)}$
 $a f(x) \neq 0$
 $a \int_{-\infty}^{\infty} f(x) dx = 1$
 $a \int_{-\infty}^{b} f(x) dx = P(x \in (a, b)) = P(a \leq x \leq b)$
 $= P(a < x \leq b)$
 $= P(a < x \leq b)$

 $= \bigcap (X \in (-\infty, \times)]$ The CDF of X is $F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(t) dt$ The expectation (mean) of X is $E[x] = \int_{-\infty}^{\infty} x f(x) dx = \mu$ The variance of X is $Var(X) = IE \Gamma(X-\mu)^2 J = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$ The standard deviation of X is $Sfd(x) = \sqrt{Var(x)}$ The moment generating function of X is $M(t) = E [e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

Discrete Case :
$$E[u(X)] = \sum u(X) \cdot f(X)$$

Conti. Case : $E[u(X)] = \int_{-\infty}^{\infty} u(X) \cdot f(X) \, dX$.

of ex, sinx, cosx, lnx, $\frac{1}{x}$, x^n , ----Change of variables, Integration by Parts.

$$\frac{f(x)}{PDF} = P(x = x)$$

$$p(a < x < b) = \int_{a}^{b} f(x) dx$$
Continuous Random Variables
$$F = P(x = x) < 1 \qquad PDF$$
Properties
$$F = P(x = x) < 1 \qquad PDF$$
Properties
$$F = P(x = x) < 1 \qquad PDF$$
Properties
$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$F = P(x = x) < 1 \qquad PDF$$

$$(U \cdot v)' = U' \cdot v + U \cdot v'$$

$$U' \cdot v = (U \cdot v)' - U \cdot v'$$

$$\int u' \cdot v = U \cdot v - \int u \cdot v'$$

$$\int u' \cdot v = U \cdot v - \int u \cdot v'$$

$$\int a' \cdot v = \int a \cdot v - \int u \cdot v'$$

$$\int a' \cdot v = \int a \cdot v - \int a \cdot v'$$

$$= IBP (Integration by Parts)$$

$$\int a' \cdot v = \int a \cdot (-e^{-x}) \int_{0}^{\infty} - \int_{0}^{\infty} 1 \cdot (-e^{-x}) dx$$

$$= \int a \cdot (-e^{-x}) \int_{0}^{\infty} - \int_{0}^{\infty} 1 \cdot (-e^{-x}) dx$$

$$= \int a \cdot (-e^{-x}) \int_{0}^{\infty} - \int_{0}^{\infty} 1 \cdot (-e^{-x}) dx$$

$$= \int a \cdot (-e^{-x}) \int_{0}^{\infty} - \int_{0}^{\infty} 1 \cdot (-e^{-x}) dx$$

$$= \int a \cdot (-e^{-x}) \int_{0}^{\infty} - 1 \cdot (-e^{-x}) dx$$

$$= \int a \cdot (-e^{-x}) \int_{0}^{\infty} - 1 \cdot (-e^{-x}) dx$$

	$f(x) = \int x e^{-x}$	C	870
	20	e	×50
for x70			
Example			
Let X have the PDF $f(x) = xe^{-x}$. Find the MGF.			
Check if \$ is a PDF {	$f(x) \ge 0$ $\int_{-\infty}^{\infty} f(x) dx = 1$		
$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} x e^{-x} dx =$	~~~		

$$MGF: \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx \qquad 0 \qquad 6$$

$$= \int_{0}^{\infty} e^{tx} x e^{x} dx = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x} e^{x} e^{x} e^{x} dx} = \int_{0}^{\infty} \frac{e^{tx} f(x) dx}{x e^{x} e^{x}$$

Uniform Random Variables

Definition

X is a uniform random variable if its PDF is constant on its support.

 $f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & x > b = x \le a \end{cases}$ If its support is [a, b], then the PDF is

We denote by $X \sim U(a, b) = \text{Onif}(a, b)$

Uniform Random Variables

$$f_{(\chi)} = \begin{cases} \frac{1}{b-\alpha}, & \chi \in [\alpha, b] \\ \hline x \in [\alpha, b], \text{ then} \end{cases}$$

$$E[X] = \frac{\alpha+b}{2}$$

$$Var[X] = \frac{(b-\alpha)^{2}}{(2}$$

$$M(t) = \begin{cases} \frac{e^{tb} - e^{t}}{1}, & \frac{1+\alpha}{2} \\ \frac{1}{1}, & t=\alpha \end{cases} \qquad f_{\chi} = \frac{b-\alpha}{2} = \alpha + \frac{b-\alpha}{2}$$

$$B$$

$$E[X] = \int_{\alpha}^{b} x \cdot \frac{1}{b-\alpha} dx = \frac{1}{(b-\alpha)} \cdot \left(\frac{1}{2}x^{2}\right)_{\alpha}^{b}$$

$$= \frac{1}{b-\alpha} - \frac{1}{2} \left(\frac{b^{2} - \alpha^{2}}{b-\alpha}\right) = \frac{1}{2} (\alpha+b) = M$$

$$Var(X) = \int_{\alpha}^{b} (x-\mu)^{2} \cdot \frac{1}{b-\alpha} dx = \frac{(b-\alpha)^{2}}{12}$$

Uniform Random Variables

Example

If X is uniformly distributed over (0,10), calculate $\mathbb{P}(X < 3)$, $\mathbb{P}(X > 6)$, and $\mathbb{P}(3 < X < 8)$.

$$P(3\langle X \langle 8 \rangle) = \frac{5}{10}$$

$$P(X < 3) = \frac{3}{10}$$

Recall

- X TS Conti. RV TF it has a PDF.
.
$$f(x)$$
 TS a PDF if $f(x) \ge 0$ for all x.
 $\int_{R} f(x) dx = 1$
 $P(a < X < b) = \int_{a}^{b} f(x) dx$.
. $X \sim U(a,b)$ $f(x) = \int_{a}^{b} f(x) dx$.

Uniform Random Variables

Example

A bus travels between the two cities A and B, which are 100 miles apart.

If the bus has a breakdown, the distance from the breakdown to city A has a U(0, 100) distribution.

There are bus service stations in city A, in B, and in the center of the route between A and B.

It is suggested that it would be more efficient to have the three stations located 25, 50, and 75 miles, respectively, from A.

Percentile

For example, the 50th percentile is the number $\pi_{\frac{1}{2}} = q_2$ such that $F(\pi_{\frac{1}{2}}) = \frac{1}{2}$ and this is called the median.

The 25th and 75th percentiles are called the first and third quartiles, respectively, and are denoted by $q_1 = \pi_{0.25}$ and $q_3 = \pi_{0.75}$.

Ex. =
$$2^{M}$$
 quantile
 53^{H} percentile = $(100 \cdot \frac{1}{2})^{H}$ percentile = median
 11
 11
 11
 11
 $2t^{H}$ percentile = $(100 \cdot \frac{1}{4})^{H}$ percentile = 1^{St} quantile
 $= g_{1}$
 $T_{\frac{1}{4}}$
 PDF

Percentile

Example

Q1=

Let X be a continuous random variable with PDF f(x) = |x| for -1 < x < 1. Find q_1, q_2, q_3 .

$$q_2 = 0$$

 $q_3 = \frac{1}{\sqrt{2}} i b_1$ symmetry

Exercise

Let $f(x) = c\sqrt{x}$ for $0 \le x \le 4$ be the PDF of a random variable X. Find c, the CDF of X, and $\mathbb{E}[X]$. Section 2. The Exponential, Gamma, and Chi-Square Distributions

Consider a Poisson random variable X with parameter λ .

This represents the number of occurrances in a given interval, say [0, 1].

If $\lambda = 5$, that means the expected number of occurrances in [0, 1] is 5.

Let W be the waiting time for the first occurrence. Then,

$$P(W > t) = P(no \text{ occurrences in } [0, t]) = P(X_{\pm} = 0)$$
for $t > 0$.

$$X_{\pm} : \# + Cuctomers \text{ Tr } [o, t]$$

$$\sim P_{\text{DTS}} (\lambda \pm)$$

$$= e^{-\lambda \pm} \cdot \frac{(\lambda \pm)^{0}}{\circ} = e^{-\lambda \pm}$$

$$F(\pm) = 1 - P(W > \pm) = 1 - e^{-\lambda \pm}$$

$$F'(\pm) = \lambda e^{-\lambda \pm} = f(\pm) \qquad \pm \ge 0$$

Theorem

Suppose that X is an exponential random variable with parameter $\lambda = \frac{1}{\theta}$. $\mathbb{E}[X] = \frac{1}{\lambda} = \theta$ $Var[X] = \frac{1}{\lambda^2} = \theta^2$ Exercise $M(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \theta t}$ $E[X] = \int_{\mathbb{R}} x \neq (x) dx = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \int_{0}^{\infty} (\lambda x) e^{-\lambda x} dx$ $u = \lambda x$ $u = \lambda x$ $u = \lambda dx$ $u = \frac{1}{\lambda} \int_{0}^{\infty} u \cdot e^{-u} du$ $u = \frac{1}{\lambda} \int_{0}^{\infty} 1 \cdot (-e^{-u}) du$ $u = \frac{1}{\lambda}$

$$f(x) = \frac{1}{Q} e^{-\frac{x}{Q}} = \lambda e^{-\lambda x}, \quad x \neq 0.$$

17

Example

Let X have an exponential distribution with a mean $\theta = 20$.

Find $\mathbb{P}(X < 18)$.

$$F(18) = P(x < 18) = \int_{0}^{18} \frac{1}{20} \cdot e^{-\frac{x}{20}} dx = \left[-e^{-\frac{x}{20}}\right]_{0}^{18}$$
$$= 1 - e^{-\frac{18}{20}}$$

$$F(t) = 1 - e^{-\lambda t}$$

$$P(\chi > t) = e^{-\lambda t}$$

Example

Customers arrive in a certain shop according to an approximate Poison process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes for the arrival of the first customer?

$$W = \text{ writing time (hr)} \sim \text{Exp} \quad \lambda = 20.$$

$$(\quad (\text{min}) \quad \sim \text{Exp} \quad \lambda = \frac{1}{3})$$

$$P(\text{ more thm} \quad 5 \text{ min}) = P(W > \frac{5}{60}) = e^{-20 \cdot \frac{5}{60}} = e^{-\frac{5}{3}}.$$

$$= \int_{\frac{5}{60}}^{\infty} 20 \cdot e^{-20 \times} d\chi$$

Gamma random variables

Consider a Poisson random variable X with λ .

W~ Gamma (X, X)

Let W be the waiting time until α -th occurrences, then its CDF is

$$F(t) = \mathbb{P}(W \le t) = 1 - \mathbb{P}(W > t) = 1 - \sum_{k=0}^{\alpha-1} \frac{(\lambda t)^k e^{-\lambda t}}{k!}.$$

F is \mathcal{P} MF of Poisson

Thus, the PDF is

Q :

$$F(x) = f(x) = \frac{\lambda(\lambda x)^{\alpha - 1}}{(\alpha - 1)!} e^{-\lambda x}. \quad for \quad x \neq 0$$

This random variable is called a gamma random variable with λ and α where $\lambda = \frac{1}{\theta} > 0$.

This can be extended to non-integer $\alpha > 0$.

$$E_{X} \quad X = \frac{1}{2}$$
What is $\left(\frac{1}{2}\right)! \quad \left(\frac{7}{3}\right)! \quad \pi!$

Exponential RV

$$f$$
 to f customers = $X \sim Pois(X)$
 $W = Waitry time for 1st customer $v Exp(X)$
 $f_w(t) = \lambda e^{-\lambda t}$, $t \ge 0$
 $W = Waitry time for 3rd customer $v = Comma(X, A)$
 $W = Waitry time for 3rd customer $v = Comma(X, A)$
 $(A^{th})$$$$

The gamma function is defined by

$$\Gamma(t) = \int_{0}^{\infty} y^{t-1} e^{-y} dy$$

for $t > 0$.
By integration by parts, we have

$$\Gamma(+) = \int_{0}^{\infty} y^{t-1} e^{-\frac{y}{2}} dy = \left[y^{t-1} \cdot (-e^{-\frac{y}{2}}) \right]_{0}^{\infty} - \int_{0}^{\infty} (+1) \frac{y^{t-2}}{2} (-e^{-\frac{y}{2}}) dy$$

$$= \left[\lim_{N \to \infty} \left[y^{t-1} (-e^{-\frac{y}{2}}) \right]_{0}^{N} + (+1) \int_{0}^{\infty} y^{t-1} e^{-\frac{y}{2}} dy \right]_{0}^{20}$$

$$= \Gamma(+-1) \cdot \Gamma(+-1)$$

$$\Gamma(+) = (+-1) \cdot \Gamma(+-1)$$

Gamma functions

In particular,
$$\Gamma(1) = \int_{0}^{\infty} y^{1-1} e^{-y} dy = \int_{0}^{\infty} e^{-y} dy = [-e^{-y}]_{0}^{\infty} = 1$$
.
 $\Gamma(2) = 1 \cdot \Gamma(1) = 1$
 $\Gamma(3) = 2 \cdot \Gamma(2) = 2 \cdot 1 = 2$, $\Gamma(4) = 3 \cdot \Gamma(3) = 3 \cdot 2 \cdot 1 = 6$
 $\Gamma(n) = (n-1) \Gamma(n-1) = (n-1) (n-2) \Gamma(n-2) = \dots = (n-1)(n-2) \dots 1$
for integers n

for integers ii.

$$\Gamma'(t) = \int_{\infty}^{\infty} y^{t+1} e^{y} dy$$

Could be non-integer humber 21

$$= Generalized Factorial
\Gamma(\frac{1}{2}) = ((-\frac{1}{2}))() = \int_{\infty}^{\infty} y^{\frac{1}{2}+1} e^{-y} dy = \int_{\infty}^{\infty} \frac{e^{-y}}{4y} dy$$

$$\begin{pmatrix} y = z^{2} \\ z = \sqrt{y} \\ dz = \frac{1}{2} \cdot \frac{1}{4y} dy \end{pmatrix} = 2 \int_{\infty}^{\infty} e^{-z^{2}} dz = A \qquad polar coordinate
A^{2} = \int_{\infty}^{\infty} e^{-z^{2}} dz \int_{\infty}^{\infty} e^{-w^{2}} dw = \int_{0}^{\infty} e^{-(z^{2}+w^{2})} dz dw$$

Gamma random variables

Gamma random variables

Example

Suppose the number of customers per hour arriving at a shop follows a Poisson random variable with mean 20.

That is, if a minute is our unit, then $\lambda = \frac{1}{3}$.

What is the probability that the second customer arrives more than five minutes after the shop opens for the day?

$$W = \text{ waiting time for } 2^{n4} \text{ customer } \sim \text{ Gomma}\left(\frac{1}{3}, 2\right)$$

$$f(t) = \frac{x^{4} + t^{4}}{(x^{-1})!} e^{-xt} = \left(\frac{1}{3}\right)^{2} + e^{-\frac{x}{3}}$$

$$P(W > 5) = \int_{5}^{\infty} \frac{1}{9} + e^{-\frac{x}{3}} dt \qquad 23$$

$$= \frac{1}{9} \cdot \left(\left[\frac{1}{4} \cdot (-3e^{-\frac{x}{3}})\right]_{5}^{\infty} - \int_{5}^{\infty} (-3e^{-\frac{x}{3}}) dt \right)$$

$$= \frac{1}{9} \left((5 \cdot 3 \cdot e^{-\frac{x}{3}} + 3 \left[-3e^{-\frac{x}{3}} \right]_{5}^{\infty} \right)$$

$$= \frac{1}{9} \left((5 e^{-\frac{x}{3}} + 9e^{-\frac{x}{3}}) = \frac{24}{9}e^{-\frac{x}{3}}$$

 $\frac{1}{5} \quad X = \# \circ f \quad \text{customer} \quad \sim P_{\circ is}(\frac{5}{3})$ 0 P(W75) = P(# of customer in [0,5] = 0,1) $= \mathbb{P}(X=0) + \mathbb{P}(X=1)$ $= e^{-\frac{5}{3}} \frac{(\frac{5}{3})^{2}}{0!} + e^{-\frac{5}{3}} \frac{(\frac{5}{3})^{2}}{1!}$ $P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\frac{5}{3}} \left(1 + \frac{5}{3} \right)$ $= \frac{8}{8} \cdot \frac{6}{-3}$ In general, $W \sim Gamman (\lambda, n)$ $X_{+} \sim Poisson (\lambda +)$ $\mathbb{P}(W>+) = \mathbb{P}(X_{t} < n)$ "Similar" property for Bin, Neg Bin

Chi-square distribution

Let X have a gamma distribution with $\theta = 2$ and $\alpha = r/2$, where r is a positive integer.

The pdf of X is

$$f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$$

for x > 0.

We say that X has a chi-square distribution with r degrees of freedom and we use the notation $X \sim \chi^2(r)$.

$$\mathbb{P}(X > t) = e^{-\frac{t}{2}}.$$

Exercise

$$f_{x}(+) = \frac{1}{2}e^{-\frac{1}{2}} + 70$$

Let X have an exponential distribution with mean θ .

Compute
$$\mathbb{P}(X > 15|X > 10)$$
 and $\mathbb{P}(X > 5) = e^{-\frac{5}{6}}$

$$= \frac{\mathbb{P}(X > 15)}{\mathbb{P}(X > 6)} = \frac{e^{-\frac{5}{6}}}{e^{-\frac{5}{6}}} = e^{-\frac{5}{6}} = e^{-\frac{5}{6}}$$

$$(Memory bessness Phoperty) > \mathbb{P}(X > t + s | X > 5) = \mathbb{P}(X > t)$$

$$(X > t + s | X > 5) = \mathbb{P}(X > t)$$

$$(X > t + s | X > 5) = \mathbb{P}(X > t)$$

Section 3. The Normal Distribution

Gaussian random variables

Definition

We say X is a Gaussian random variable or has a normal distribution if its PDF is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Here μ is \ldots $X \sim N(\mu, \sigma^2).$ $\uparrow \quad \nabla$ variance. Here μ is the mean and σ is the standard deviation. We use the notation

Gaussian random variables

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot c} e^{-\frac{(x-\mu)^{1}}{2\sigma^{2}}} -\infty \langle x \langle \infty \rangle$$

$$Theorem$$

$$\int_{\mathbb{R}} f(x) dx = 1 \quad (x)$$

$$\mathbb{E}[X] = \mu$$

$$Var[X] = \sigma^{2}$$

$$M(t) = \exp\left(\mu t + \frac{\sigma^{2}t^{2}}{2}\right)$$

$$T_{o} \quad \varsigma how \quad (x), \qquad \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \cdot c} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx \quad (= 1)$$

$$\frac{z}{\sigma} = \frac{x-\mu}{\sigma} + e^{-\frac{z^{2}}{2}} dz \quad 27$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} dz \quad 27$$

In particular, if $\mu = 0$ and $\sigma = 1$, then $Z \sim N(0, 1)$ is called **the standard normal** random variable.

Example
Let
$$Z \underset{be}{P} N(0, 1)$$
.
Find $\mathbb{P}(Z \le 1.24)$, $\mathbb{P}(1.24 \le Z \le 2.37)$, and $\mathbb{P}(-2.37 \le Z \le -1.24)$.
 $\Phi(...24) = \mathbb{P}(2 \le 1.24) = \int_{-\infty}^{1.24} \frac{1}{\sqrt{2\pi}} e^{-\frac{2\pi}{2}} dz$
 $\mathbb{P}(1.24 \le Z \le 2.37) = \mathbb{P}(Z \le 2.37) - \mathbb{P}(Z \le 1.24)$
(by symm.) $\mathbb{N} = \Phi(2.37) - \Phi(1.24)$

$$P(-2.37 \le Z \le -(.24))$$

$$P(-2.37 \le Z \le -(.24))$$

Theorem If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma}$ is the standard normal. (1) X: Hormal $\Rightarrow \alpha X + b$: Normal (2) Z: normal $Z = (\frac{1}{\sigma}) \cdot X + (-\frac{M}{\sigma})$ $E[Z] = E[\frac{X-M}{\sigma}]$ $= \frac{1}{\sigma} E[X-M] = \frac{1}{\sigma} (E[X] - M) = 0_{29}$ $Var(Z) = Var(\frac{X-M}{\sigma}) = \frac{1}{\sigma^2} Var(X-M) = \frac{1}{\sigma^2} Var(X)$ = 4

Example

Let $X \sim N(3, 16)$.

Find $\mathbb{P}(4 \leq X \leq 8)$, $\mathbb{P}(0 \leq X \leq 5)$, and $\mathbb{P}(-2 \leq X \leq 1)$.

$$M = 3, \quad \sigma^{2} = 46, \quad \sigma = 4 \quad Z = \frac{X - 3}{4} \sim N(0, 1)$$

$$P(4 \leq X \leq 8) = P(\frac{4 - 3}{4} \leq Z \leq \frac{8 - 3}{4})$$

$$= P(0, 25 \leq Z \leq 1, 25)$$

$$= \Phi(1, 25) - \Phi(0, 25)$$
³⁰

. /

In general,
$$\overline{\Phi}(-z) = 1 - \overline{\Phi}(z)$$

Table	Va The Sta	ndard Nori	mal Distrib	ution Funct	ion					
f(z) $\Phi(z_0)$ 0.2 0.1							€(7	e) = (P ((. Z ≤ Z (,Z-4) = ≈ 0,	-) €(124 8925
$P(Z \le z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} dw$										
-	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.00
4	0.5000	0.01	0.02	0.05	0.04	0.05	0.00	0.07	0.00	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5559
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6 <mark>1</mark> 79	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6 <mark>5</mark> 54	0.6591	0.6628	0.6664	0.6700	0 <mark>.6</mark> 736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0 <mark>.7</mark> 088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0 <mark>.7</mark> 422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.80/8	0.8106	0.8133
0.9	0.0139	0.0100	0.8212	0.8495	0.8204	0.0209	0.8515	0.8540	0.8505	0.6569
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.85//	0.8599	0.8621
12	0.8043	0.8005	0.8888	0.8708	0.8925	0.8944	0.8770	0.8790	0.8010	0.8850
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9/13	0.9719	0.9726	0.9732	0.9738	0.9/44	0.9750	0.9756	0.9761	0.9/6/
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9820	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9004	0.9913	0.99916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
α	0.400	0.300	0.200	0.100	0.050	0.025	0.020	0.010	0.005	0.001
z_{α}	0.253	0.524	0.842	1.282	1.645	1.960	2.054	2.326	2.576	3.090
$Z_{\alpha/2}$	0.842	1.036	1.282	1.645	1.960	2.240	2.326	2.576	2.807	3.291

Example

Let $X \sim N(25, 36)$.

Find a constant c such that $\mathbb{P}(|X-25| \leq c) = 0.9544$.

 $M = 25, \quad \sigma^2 = 36, \quad \sigma = 6, \quad Z = \frac{\chi - 25}{6} \sim N(0, 1)$ $P\left(\frac{|\chi - 25| \leq \frac{C}{6}}{6} = P\left(|Z| \leq \frac{C}{6}\right)$

$$= \mathbb{P}\left(-\frac{1}{c} \leqslant \neq \leqslant \frac{1}{c}\right)$$
$$= \Phi\left(\frac{1}{c}\right) - \Phi\left(-\frac{1}{c}\right)$$
$$= \Phi\left(\frac{1}{c}\right) - \left(1 - \Phi\left(\frac{1}{c}\right)\right)$$

$$= 2 \cdot \overline{\Phi}(\frac{c}{6}) - 1 = 0.9544$$

$$2 \cdot \underline{\Phi}(\frac{2}{6}) = 1.9544$$

$$\underline{\Phi}(\frac{2}{6}) = 0.9772 = \underline{\Phi}(2) \qquad \therefore \qquad \underbrace{\xi}_{=} = 2$$

$$(= 12)$$

Theorem
$$e^{\overline{z}}$$
 Gramma $(\frac{1}{2}, \frac{1}{z})$
If Z is the standard normal, then Z^2 is $\chi^2(1)$.
 $\chi = \overline{z^2} - A$ New RV.
Q: How to find the distribution of χ ?
 CDF
 $F_{\chi}(\chi) = P(\overline{z^2} \leq \chi) = P(-\sqrt{\chi} \leq \overline{z} \leq \sqrt{\chi})$
 $= \overline{\Phi}(\sqrt{\chi}) - \overline{\Phi}(-\sqrt{\chi})$
 $= 2 \cdot \overline{\Phi}(\sqrt{\chi}) - 1$
 $f_{\chi}(\chi) = \frac{d}{d\chi} F_{\chi}(\chi) = 2 \cdot \overline{\Phi}(\sqrt{\chi}) \cdot \frac{1}{\sqrt{\chi}}$
 $= \frac{1}{\sqrt{\chi}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{\sqrt{\chi}}{2}} = \frac{1}{\sqrt{\chi}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{\chi}{2}}$

Section 4. Additional Models

Recall the postulates of an approximate Poisson:

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh .

λ

One can think the event occurrence as a failure and so λ can be understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant failure rate.

Sometimes, it is more natural to choose λ as a function of t in the last assumption.

Then the waiting time W for the first occurrence satisfies

$$\mathbb{P}(W > t) = \exp\left(-\int_0^t \lambda(w) \, dw\right).$$

$$\lambda(t) = (Const.) +$$

Definition

If $\lambda(t) = \alpha \frac{t^{\alpha-1}}{\beta^{\alpha}}$, then the waiting time W for the first occurrence has the density

$$g(t) = \lambda(t) \exp\left(-\int_0^t \lambda(w) \, dw\right) = \alpha \frac{t^{\alpha-1}}{\beta^{\alpha}} \exp\left(-\left(\frac{t}{\beta}\right)^{\alpha}\right).$$

W is called the Weibull random variable. $P(W > +) = e^{-\int_{0}^{+} \lambda(w) dw} = e^{-\int_{0}^{+} \psi(w) dw}$

$$\lambda(t) = \frac{\alpha t^{k+1}}{\beta^{\alpha}} \qquad P(W > t) = e^{-t^{\alpha}}$$
Example

If $\lambda(t) = 2t$, then the waiting time W has the density

and it is a Weibull random variable with $\alpha = 2$ and $\beta = 1$.

If W_1, W_2 are independent Weibull with α and β above, is the minimum of W_1, W_2

Weibull?

 $\chi = m \sin \sqrt{W_1}, W_2$?

 $P(\chi \leq t) = 1 - P(\chi > t)$

 $P(\chi > t) = P(-1W_1 > t) \alpha \alpha d (W_2 > t)$

 $= P(W_1 > t) P(W_2 > t)$

 $= e^{-t^{\alpha}} e^{-t^{\alpha}} = e^{-2t^{\alpha}}$

 $= e^{-(t^{\alpha} + t)^{\alpha}} e^{-t^{\alpha}} = e^{-2t^{\alpha}}$

Order Statistics

 $= e^{-(t^{\alpha} + t)^{\alpha}} \sqrt{W_1 + t^{\alpha}}$

Theorem

The mean of W is $\mu = \beta \Gamma(1 + \frac{1}{\alpha})$.

The variance is $\sigma^2 = \beta^2 \left(\Gamma(1 + \frac{2}{\alpha}) - \Gamma(1 + \frac{1}{\alpha})^2 \right).$

Mixed type random variables

Example

Suppose X has a CDF

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{4}, & 0 \le x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{x}{3}, & 2 \le x < 3 \\ 1, & x \ge 3. \end{cases}$$

2

Find $\mathbb{P}(0 < X < 1)$, $\mathbb{P}(0 < X \le 1)$, and $\mathbb{P}(X = 1)$.

$$P(0 \le x \le 1) = P(x \le 1) - P(x \le 0) - P(x = 1)^{38} \\
 = F(1) - F(0) - P(x = 1) \\
 = \frac{1}{2} - 0 - (\frac{1}{2} - \frac{1}{4}) = \frac{1}{4}.$$

Mixed type random variables

Example

Consider the following game: A fair coin is tossed.

If the outcome is heads, the player receives \$2.

If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to 1.

The player then receives that fraction of a dollar associated with the point selected by the spinner.

Let X be the amount received. Draw the graph of the cdf F(x).

$$X = \begin{cases} 2 & \text{if Heads} \end{cases}$$

$$V = \begin{cases} 2 & \text{if Heads} \end{cases}$$

$$U = \begin{cases} U & \text{if Tails} \end{cases}, \quad U \sim \text{Unif (0,1)}$$

$$F(x) = P(x \leq x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} \cdot x & 0 \leq x < 1 \\ \frac{1}{2} & 1 \leq x < 2 \\ \frac{1}{2} & 1 \leq x < 2 \\ \frac{1}{2} & 1 \leq x < 2 \end{cases}$$

Exercise

The cdf of X is given by

$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{x}{4} + \frac{1}{2}, & -1 \le x < 1 \\ 1, & x \ge 1. \end{cases}$$

Find $\mathbb{P}(X < 0)$, $\mathbb{P}(X < -1)$, and $\mathbb{P}(-1 \le X < \frac{1}{2})$.