Chapter 3. Continuous Distribution

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Random Variables of the
Continuous Type

$$
\mathbb{P}(x=x)=\frac{\text { RV }}{\# \text { of total owtrewer }}
$$

Continuous Random Variables

Let the random variable X denote the outcome when a point is selected at random from an interval $[0,1]$.

If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from an interval $\left[\frac{1}{3}, \frac{1}{2}\right]$ is

The CDF of X is

$$
\begin{align*}
& {\left[\begin{array}{cc}
x \\
{\left[\begin{array}{lll}
x & \frac{1}{2} & 1
\end{array}\right]}
\end{array}\right.} \\
& \mathbb{P}\left(X \in\left[\frac{1}{3}, \frac{1}{2}\right]\right)=\frac{\text { length of }\left[\frac{1}{3}, \frac{1}{2}\right]}{\text { length of }[0,1]}=\frac{1}{6} \text {. } \tag{1}\\
& C D F=F(x)=\mathbb{P}(x \leqslant x)=\frac{\text { length of }[0, x]}{\text { length } f,[0,1]} \\
& \begin{array}{lll}
{\left[\begin{array}{lll}
2 \\
0 & x & 1
\end{array}=x .\right.}
\end{array}=x . \\
& \$(x=0.55)=0 .
\end{align*}
$$

Continuous Random Variables

Definition
We say a random variable X on a sample space S is a continuous random variable if there exists a function $f(x)$ such that

- $f(x) \geq 0$ for all x,
- $\int_{S(X)} f(x) d x=1$, and
- For any interval $(a, b) \subset \mathbb{R}$,

$$
\mathbb{P}(a<X<b)=\int_{a}^{b} f(x) d x
$$

The function $f(x)$ is called the probability density function (PDF) of X.
(density)

Note $\cdot \frac{\mathbb{P}(X=a)}{11}=0$.

$$
\left(\because \lim _{\varepsilon \rightarrow 0} \mathbb{P}(a-\varepsilon<x<a+\varepsilon)=\lim _{\varepsilon \rightarrow \infty} \int_{a-\varepsilon}^{a+\varepsilon} f(x) d x=0\right)
$$

RV

X : contr. RV. \Rightarrow we have a PDF $\underline{\underline{f(x)}}$
(1) $f(x) \geqslant 0$
(2) $\int_{-\infty}^{\infty} f(x) d x=1$

$$
=\mathbb{P}(a<x<b)
$$

(3)

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\mathbb{P}(x \in(a, b))=\mathbb{P}(a \leqslant x \leqslant b) \\
& =\mathbb{P}(a<x \leqslant b)=P(a \leqslant x<b)
\end{aligned}
$$

Continuous Random Variables

$$
=\mathbb{P}(x \in(-\infty, x])
$$

The CDF of X is $\quad F(x)=\mathbb{P}(X \leqslant x)=\int_{-\infty}^{\infty} f(t) d t$
The expectation (mean) of X is $\mathbb{E}[x]=\int_{-\infty}^{\infty} x f(x) d x=\mu$
The variance of x is $\operatorname{Var}(x)=\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$
The standard deviation of X is $\quad S_{t d}(x)=\sqrt{\operatorname{Var}(x)}$
The moment generating function of X is

$$
M(t)=\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Discrete Case: $\mathbb{E}[u(x)]=\sum_{u} u(x)+f(x)$
Cont. Case : $\mathbb{E}[u(x)]=\int_{-\infty}^{\infty} u(x)-f(x) d x$.
$\left\{\begin{array}{l}e^{x}, \sin x, \cos x, \ln x, \frac{1}{x}, x^{n}, \ldots \\ \text { Change of variables, Integration by Parts. }\end{array}\right.$

$$
\begin{array}{ll}
\frac{f(x)}{P D F}=\mathbb{P}(x=x) \\
& \mathbb{P}(a<x<b)=\int_{d}^{b} f(x) d x
\end{array}
$$

Continuous Random Variables

Properties
(1) The PMF of a discrete random variable is bounded by 1 . But for PDF, $f(x)$ can be greater than 1.
(2) For CDF F, we have $F^{\prime}(x)=f(x)$ where F is differentiable at x.

- What is PDF

$$
\begin{aligned}
\lim _{\varepsilon \in \operatorname{do}} \frac{1}{2 \varepsilon} \mathbb{P}(x-\varepsilon<x<x+\varepsilon) & =\lim _{\varepsilon \operatorname{sio}} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t) d t \\
& =f(x)
\end{aligned}
$$

- $\quad \frac{d}{d x} F(x)=\frac{d}{d x} \int_{-\infty}^{x} f(t) d t=f(x)$
(Fundamental The of Calculus)

Continuous Random Variables

Example
Let X be a continuous random variable with a $\operatorname{PDF}_{g}^{\frac{1}{g}}(x)=2 x$ for $0<x<1$.
Find the CDF and the expectation.

$$
f(x)=\left\{\begin{array}{cc}
2 x, & 0<x<1 \\
0, & 0 . w .
\end{array}\right.
$$

$$
\begin{aligned}
& \text { CDF: } F(x)=\int_{-\infty}^{x} f(t) d t= \begin{cases}0, & x \leqslant 0 \\
1, & x \geqslant 1 \\
\int_{0}^{x} 2 t d t & =\left[t^{2}\right]_{0}^{x} \\
& =x^{2}-0^{2} \\
& =x^{2}, 0<x<1\end{cases} \\
& \begin{aligned}
& E x p \\
& \mathbb{E}[x]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x \cdot(2 x) d x=\left[\frac{2}{3} x^{3}\right]_{0}^{1} \\
&=\frac{2}{3} .
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(u \cdot v)^{\prime} & =u \cdot v+u \cdot v^{\prime} \quad \begin{cases}v=x & v^{\prime}=1 \\
u^{\prime}=e^{-x} & u=-e^{-x}\end{cases} \\
u^{\prime} \cdot v & =(u \cdot v)^{\prime}-u \cdot v^{\prime} \quad u \cdot u^{\prime} \cdot v
\end{array}\right)=u \cdot v \cdot v^{\prime} \quad \& \operatorname{IBP} \text { (Integration by Parts) }
$$

$$
f(x)=\left\{\begin{array}{cc}
x e^{-x}, & x>0 \\
0, & x \leq 0
\end{array}\right.
$$

for $x>0$
Example
Let X have the PDF $f(x)=x e^{-x}$. Find the MGF.
Check if f is a PDF < $f(x) \geqslant 0$

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} x e^{-x} d x=
$$

MGF: $\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x$

$$
\begin{aligned}
& \begin{array}{l}
=\int_{0}^{\infty} e^{t x} \cdot x e^{-x} d x=\int_{0}^{\infty} x \cdot e^{-(1,} \\
=\int_{0}^{\infty} \frac{u}{(1-t)} e^{-u} \frac{d u}{(1-t)}
\end{array} \\
& =\frac{1}{(1-t)^{2}} \int_{0}^{\infty} u e^{-u} d u \\
& \text { (2) } \\
& u=(1-t) x \\
& d u=(1-t) \cdot d x \\
& = \begin{cases}\frac{1}{(1-t)^{2}} & t<1 \\
D N F . & t \geqslant 1\end{cases}
\end{aligned}
$$

Uniform Random Variables

Definition

X is a uniform random variable if its PDF is constant on its support.
If its support is $[a, b]$, then the PDF is $f(x)=\left\{\begin{array}{cl}\frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, & x>b_{\text {or }} x<a\end{array}\right.$
We denote by $X \sim U(a, b)=U_{\text {rif }}(a, b)$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & x \in[a, b] \\
0, & 0 . \omega
\end{array}\right. \\
& \text { Theorem } \\
& \text { If } X \sim U(a, b) \text {, then } \\
& \mathbb{E}[X]=\frac{a+b}{2} \\
& \operatorname{Var}[X]=\frac{(b-a)^{2}}{12} \\
& M(t)= \begin{cases}\frac{e^{t^{\prime 2}}-e^{t_{a}}}{t(b-a)}, & t \neq 0 \\
1, & t=0\end{cases} \\
& 8 \\
& \mathbb{E}[x]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{1}{(b-a)}-\left[\frac{1}{2} x^{2}\right]_{a}^{b} \\
& =\frac{1}{b-a} \frac{1}{2}\left(b^{2}-a^{2}\right)=\frac{1}{2}(a+b)=\mu \\
& \operatorname{Var}(x)=\int_{a}^{b}(x-\mu)^{2} \cdot \frac{1}{b-a} d x=\frac{(b-a)^{2}}{12} .
\end{aligned}
$$

Uniform Random Variables

Example

If X is uniformly distributed over $(0,10)$, calculate $\mathbb{P}(X<3), \mathbb{P}(X>6)$, and $\mathbb{P}(3<X<8)$.

$$
\mathbb{P}(3<x<8)=\frac{5}{10}
$$

$$
\mathbb{P}(x<3)=\frac{3}{10} .
$$

Recall

- X is conti. RV if it has a PDF.

$$
\text { . } \quad x \sim v(a, b)
$$

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

Uniform Random Variables

Example
A bus travels between the two cities A and B, which are 100 miles apart.
If the bus has a breakdown, the distance from the breakdown to city A has a $U(0,100)$ distribution.

There are bus service stations in city A, in B, and in the center of the route between A and B.

It is suggested that it would be more efficient to have the three stations located 25, 50 , and 75 miles, respectively, from A.

Do you agree? Why?
100 mi

X : breakdown point $\sim U(0,100)$
$u(X)$: distance from x to $\cdot \boldsymbol{S t a t i o n}$.
$\mathbb{E}[u(x)] \quad$ minimize this

$$
\text { Plan 1: } \quad u(x)= \begin{cases}x & 0<x<25 \\ |x-50| & 25<x<75 \\ 100-x & 75<x<100\end{cases}
$$

$$
\begin{aligned}
& \mathbb{E}[\underbrace{u(x)}_{R V}]=\int u(x) \cdot f(x) d x=\frac{1}{100} \underbrace{\int_{0}^{100} u(x) d x} \\
& =\frac{1}{100} \cdot 50 \cdot 25=\frac{25}{2} .
\end{aligned}
$$

Plaw 2.

Better!

$$
\begin{aligned}
E[u(x)] & =\left(25 \cdot 25+25 \cdot \frac{25}{2}\right) \frac{1}{100} \\
& =25 \cdot 25 \cdot\left(1+\frac{1}{2}\right) \cdot \frac{1}{10} \\
& =25 \cdot \frac{3}{8}
\end{aligned}
$$

$$
0 \leqslant P \leqslant 1 \quad 0 \leqslant 100 p \leqslant 100 .
$$

The (100p)-th percentile is a number π_{p} such that $F\left(\pi_{p}\right)=p$.

For example, the 50 th percentile is the number $\pi_{\frac{1}{2}}=q_{2}$ such that $F\left(\pi_{\frac{1}{2}}\right)=\frac{1}{2}$ and this is called the median.

The 25th and 75 th percentiles are called the first and third quartiles, respectively, and are denoted by $q_{1}=\pi_{0.25}$ and $q_{3}=\pi_{0.75}$.

$$
\begin{aligned}
& =2^{n d} \text { quartile }
\end{aligned}
$$

Ex.
$50^{\text {th }}$ percentile $=\left(100 \cdot \frac{1}{2}\right)^{\text {th }}$ percentile $=$ median

$25^{\text {th }}$ percentile $=\left(100 \cdot \frac{1}{4}\right)^{\text {th }}$ percentite $=1^{\pi^{t}}$ quartile

Percentile

Example

Let X be a continuous random variable with PDF $f(x)=|x|$ for $-1<x<1$. Find q_{1}, q_{2}, q_{3}.

$\frac{1}{2} \cdot x^{2}=\frac{1}{4}$

$$
q_{1}=-\frac{1}{\sqrt{2}}
$$

$$
x=\frac{1}{\sqrt{2}}
$$

$$
\left.\begin{array}{l}
q_{2}=0 \\
q_{3}=\frac{1}{\sqrt{2}}
\end{array}\right\} \quad \text { by symmetry. }
$$

Exercise

Let $f(x)=c \sqrt{x}$ for $0 \leq x \leq 4$ be the PDF of a random variable X.
Find c, the CDF of X, and $\mathbb{E}[X]$.

Section 2.
The Exponential, Gamma, and Chi-Square Distributions
$X=\#$ of customers in $[0,1]$

$$
\text { Exp. } \#=\lambda \text { in } 1 \mathrm{hr}
$$

$W=$ waiting time for $1^{\text {st }}$ customer
Find CDF of $W: F(t)=\mathbb{P}(W \leqslant t)=1-\mathbb{P}\left(\frac{W>t)}{\text { no customer }}\right.$

$$
\text { in }[0, t]
$$

Exponential random variables

Consider a Poisson random variable X with parameter λ.
This represents the number of occurrances in a given interval, say $[0,1]$.
If $\lambda=5$, that means the expected number of occurrances in $[0,1]$ is 5 .
Let W be the waiting time for the first occurrence. Then,

$$
\mathbb{P}(W>t)=\mathbb{P}(\text { no occurrences in }[0, t])=\mathbb{P}\left(X_{t}=\theta\right)
$$

for $t>0$.

$$
\begin{aligned}
& F(t)=1-\mathbb{P}(W>t)=1-e^{-\lambda t} \\
& F^{\prime}(t)=\lambda e^{-\lambda t}=f(t) \quad t \geqslant 0
\end{aligned}
$$

Exponential random variables

Exponential random variables

Theorem
Suppose that X is an exponential random variable with parameter $\lambda=\frac{1}{\theta}$.

$$
\begin{align*}
& \mathbb{E}[X]=\frac{1}{\lambda}=\theta \\
& \left.\operatorname{Var}[X]=\frac{1}{\lambda^{2}}=\theta^{2}\right\} \text { Exercise } \\
& M(t)=\frac{\lambda}{\lambda-t}=\frac{1}{1-\theta t} \quad t<\lambda \quad \text { or } t<\frac{1}{\theta} \\
& \mathbb{E}[x]=\int_{\mathbb{R}} x f(x) d x=\int_{0}^{\infty} \underset{-e^{-u}}{x} \underset{e^{-\lambda x}}{ } d x=\int_{0}^{\infty}(\lambda x)-e^{-\lambda x} d x \\
& u=\lambda x \\
& d u=\lambda d x \\
& =\frac{1}{\lambda} \int_{0}^{\infty} u \cdot e^{\uparrow-u} d u \tag{16}\\
& =\frac{1}{\lambda}[\underbrace{\left[u \cdot\left(-e^{-u}\right)\right]_{0}^{\infty}-\int_{0}^{\infty} 1 \cdot\left(-e^{-u}\right) d u}_{=1}] \\
& =\frac{1}{\lambda} \text {. }
\end{align*}
$$

Exponential random variables

$$
f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}=\lambda e^{-\lambda x}, \quad x \geq 0 .
$$

Example
Let X have an exponential distribution with a mean $\theta=20$.
Find $\mathbb{P}(X<18)$.

$$
\begin{aligned}
F(18) & =\mathbb{P}(x<18)=\int_{0}^{18} \frac{1}{20} \cdot e^{-\frac{x}{20}} d x
\end{aligned}=\left[-e^{-\frac{x}{2}}\right]_{0}^{18} .
$$

$$
\begin{aligned}
& F(t)=1-e^{-\lambda t} \\
& \mathbb{P}(x>t)=e^{-\lambda t}
\end{aligned}
$$

Exponential random variables

Example

Customers arrive in a certain shop according to an approximate Poison process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes for the arrival of the first customer?

$$
\begin{aligned}
W=\text { writing time }(h r) & \sim E_{x p}
\end{aligned} \quad \lambda=20 .
$$

$\mathbb{P}($ more than 5 min $)=\mathbb{P}\left(\omega>\frac{5}{60}\right)=e^{-20 \cdot \frac{5}{60}}=e^{-\frac{5}{3}} \cdot 18$

$$
\geq \int_{\frac{5}{60}}^{\infty} 20 \cdot e^{-20 x} d x
$$

Gamma random variables

Consider a Poisson random variable X with λ.

Let W be the waiting time until α-th occurrences, then its CDF is

$$
F(t)=\mathbb{P}(W \leq t)=1-\mathbb{P}(W>t)=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda t)^{k} e^{-\lambda t}}{k!}
$$

Thus, the PDF is
$T_{\text {PMF of Poisson }}$

$$
F^{\prime}(x)=f(x)=\frac{\lambda(\lambda x)^{\alpha-1}}{(\alpha-1)!} e^{-\lambda x} . \quad \text { for } \quad x \geqslant 0
$$

This random variable is called a gamma random variable with λ and α where $\lambda=\frac{1}{\theta}>0$.

This can be extended to non-integer $\alpha>0$.

$$
\text { Ex. } \quad \alpha=\frac{1}{2}
$$

Q: What is

$$
\left(\frac{1}{2}\right)!\quad,\left(\frac{7}{3}\right)!
$$

Exponential RV

$$
\begin{aligned}
& W_{T}^{*} \text { Waiting time for } 1^{\text {st }} \text { customer } \sim \operatorname{Exp}(\lambda) \\
& f_{w}(t)=\lambda e^{-\lambda t}, t \geqslant 0 \quad\left\{\begin{array}{c}
E[x]=\frac{1}{\lambda}=\theta \\
\operatorname{Var}(x)=\frac{1}{x^{2}}=\theta^{2} \\
P(w>t)=e^{-\lambda t}
\end{array}\right.
\end{aligned}
$$

$W=$ Waiting time for $3^{\text {rd }}$ customer $\sim \operatorname{Gamma}(\lambda, \alpha)$

The gamma function is defined by

$$
\Gamma(t)=\int_{0}^{\infty} y^{t-1} e^{-y} d y
$$

for $t>0$.

$$
\left(-e^{-y}\right)
$$

$$
\begin{aligned}
& \text { By integration by parts, we have } \Gamma_{0}^{\infty} \int_{0}^{t} y^{t-1} e^{-y} d y=\left[y^{t-1} \cdot\left(-e^{-y}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}(t-1) y^{t-2}\left(-e^{-y}\right) d y \\
& =\lim _{N \rightarrow \infty}[t-1) y^{t-2} \\
& \left.=0 y^{t-1}\left(-e^{-y}\right)\right]_{0}^{N}+(t-1) \int_{0}^{\infty} y^{(t-1)-1} e^{-y} d y{ }^{20} \\
& =0 \quad \Gamma(t-1) \\
& \quad \Gamma(t)=(t-1) \cdot \Gamma(t-1)
\end{aligned}
$$

In particular, $\Gamma(1)=\int_{0}^{\infty} y^{1-1} e^{-y} d y=\int_{0}^{\infty} e^{-y} d y=\left[-e^{-y}\right]_{0}^{\infty}=1$.

$$
\begin{aligned}
& \Gamma(2)=1 \cdot \Gamma(1)=1 \\
& \Gamma(3)=2 \cdot \Gamma(2)=2 \cdot 1=2, \Gamma(4)=3 \cdot \Gamma(3)=3 \cdot 2 \cdot 1=6 \\
& \Gamma(n)=(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=\cdots=(n-1)(n-2) \cdots 1 \\
& \text { for integers } n .
\end{aligned}
$$

$$
\Gamma(t)=\int_{\lambda}^{\infty} y^{t-1} e^{-y} d y
$$

could be non-integes number = Generalized Factorial.

$$
\begin{aligned}
& \text { Ex } \Gamma\left(\frac{1}{2}\right)="\left(-\frac{1}{2}\right)!"=\int_{0}^{\infty} y^{\frac{1}{2}-1} e^{-y} d y=\int_{0}^{\infty} \frac{e^{-y}}{\sqrt{y}} d y \\
& \left.\left(\begin{array}{l}
y=z^{2} \\
z=\sqrt{y} \\
d z=\frac{1}{2} \cdot \frac{1}{\sqrt{y}} d y
\end{array}\right)=2 \int_{0}^{\infty} e^{-z^{2}} d z\right]_{0}=A \quad \text { polar corrine: } \\
& A^{2}=\int_{0}^{\infty} e^{-z^{2}} d z \int_{0}^{\infty} e^{-\omega^{2}} d \omega=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(z^{2}+\omega^{2}\right)} d z d \omega
\end{aligned}
$$

Gamma random variables

Expectation of Exp. RV

Example
Suppose the number of customers per hour arriving at a shop follows a Poisson random variable with mean 20 .

That is, if a minute is our unit, then $\lambda=\frac{1}{3}$.
What is the probability that the second customer arrives more than five minutes after the shop opens for the day?
$W=$ waiting tome for $2^{\text {nd }}$ customer $\sim \operatorname{Gamma}\left(\frac{1}{3}, 2\right)$

$$
f(t)=\frac{\lambda^{\alpha} t^{\alpha-1}}{(\alpha-1)!} e^{-\lambda t}=\left(\frac{1}{3}\right)^{2} t e^{-\frac{t}{3}}
$$

$$
\mathbb{P}(W>5)=\int_{5}^{\infty} \frac{1}{9} \tau_{1} e^{-\frac{t}{3}} d t
$$

$$
=\frac{1}{9} \cdot\left(\left[t \cdot\left(-3 e^{-\frac{t}{7}}\right)\right]_{5}^{\infty}-\int_{5}^{\infty}\left(-3 e^{-\frac{t}{3}}\right) d t\right)
$$

$$
=\frac{1}{9}\left(5 \cdot 3 \cdot e^{-\frac{5}{3}}+3\left[-3 e^{-\frac{t}{3}}\right]_{5}^{\infty}\right)
$$

$$
=\frac{1}{9}\left(15 e^{-\frac{5}{3}}+9 e^{-\frac{5}{3}}\right)=\frac{24}{9} e^{-\frac{5}{3}}
$$

$$
\begin{aligned}
& \text { [I } X=\# \text { of customer } \sim \operatorname{Pois}\left(\frac{5}{3}\right) \\
& \begin{aligned}
\mathbb{P}(W>5) & =\mathbb{P}(\# \text { of customer in }[0,5]=0,1) \\
& =\mathbb{P}(x=0)+\mathbb{P}(x=1) \\
& =e^{-\frac{5}{3}} \cdot \frac{\left(\frac{5}{3}\right)^{0}}{0!}+e^{-\frac{5}{3}} \frac{\left(\frac{5}{3}\right)^{1}}{1!} \\
\left.\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \right\rvert\, & =e^{-\frac{5}{3}} \cdot\left(1+\frac{5}{3}\right) \\
& =\frac{8}{3} \cdot e^{-\frac{5}{3}} .
\end{aligned} .
\end{aligned}
$$

In general,
$W \sim \operatorname{Gamana}(\lambda, n)$
$X_{t} \sim \operatorname{Porsson}(\lambda \cdot t)$

$$
\mathbb{P}(w>t)=\mathbb{P}\left(x_{t}<n\right)
$$

"Similar" property for Bin, NegBin

Chi-square distribution

Let X have a gamma distribution with $\binom{\lambda=\frac{1}{2}}{\theta=2}$ and $\alpha=r / 2$, where r is a positive integer.

The pdf of X is

$$
f(x)=\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}
$$

for $x>0$.

We say that X has a chi-square distribution with r degrees of freedom and we use the notation $X \sim \chi^{2}(r)$.

$$
\mathbb{P}(x>t)=e^{-\frac{t}{\theta}}
$$

Exercise

$$
f_{x}(t)=\frac{1}{\theta} e^{-\frac{t}{\theta}}, t \geqslant 0 .
$$

Let X have an exponential distribution with mean θ.
Compute $\mathbb{P}(X>15 \mid X>10)$ and $\mathbb{P}(X>5)=e^{-\frac{5}{9}}$

$$
=\frac{\mathbb{P}(x>15)}{\mathbb{P}(x>10)}=\frac{e^{-\frac{15}{\theta}}}{e^{-\frac{10}{\theta}}}=e^{-\frac{15}{\theta}+\frac{10}{\theta}}=e^{-\frac{5}{\theta}}
$$

<Mernorylessness Property>

$$
\mathbb{P}(x>t+s \mid x>s)=\mathbb{P}(x>t)
$$

Section 3.

The Normal Distribution

Gaussian random variables

Definition

We say X is a Gaussian random variable or has a normal distribution if its PDF is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Here μ is the mean and σ is the standard deviation. We use the notation $X \sim N\left(\mu, \sigma^{2}\right)$.
$\uparrow \uparrow$ variance.
mean

$$
f(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
$$

Theorem

$$
\begin{aligned}
& \underbrace{\int_{\mathbb{R}} f(x) d x=1}_{\mathbb{E}[X]=\mu} \quad(\not)) \\
& \operatorname{Var}[X]=\sigma^{2} \\
& M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)
\end{aligned}
$$

To show (), $\quad \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \cdot \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \quad(=1)$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& d z=\frac{1}{\sigma} \cdot d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
&=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z
\end{aligned}
$$

related to $\Gamma\left(\frac{1}{2}\right)$

$$
\begin{array}{ll}
x \sim N\left(\mu, \sigma^{2}\right) & f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}}-e^{-\frac{|x-\mu|^{2}}{2 \sigma^{2}}},-\infty<x<\infty \\
\mathbb{E}[x]=\mu & \operatorname{Var}(x)=\sigma^{2}
\end{array}
$$

$Z \sim N(0,1) \quad\left(\mu=0, \quad \sigma^{2}=1\right) \quad$ Standard Normal.
$\Phi(x)=\mathbb{P}(z \leqslant x)$
CDF of Z

In particular, if $\mu=0$ and $\sigma=1$, then $Z \sim N(0,1)$ is called the standard normal random variable.
Example
Let $Z N(0,1)$.
be
Find $\mathbb{P}(Z \leq 1.24), \mathbb{P}(1.24 \leq Z \leq 2.37)$, and $\mathbb{P}(-2.37 \leq Z \leq-1.24)$.

$$
\begin{aligned}
& \Phi(1.24)=\mathbb{P}(z \leqslant 1.24)=\int_{-\infty}^{1.24} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& \mathbb{P}(1.24 \leqslant z \leqslant 2.37)=\mathbb{P}(z \leqslant 2.37)-\mathbb{P}(z \leqslant 1.24) \\
& (\text { by symm.) } \|
\end{aligned}
$$

$$
P(-2.37 \leqslant z \leqslant-1.24)
$$

Theorem
If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$ is the standard normal.
(1) X :Normal $\Rightarrow a X+b:$ Normal
(2)

$$
\begin{aligned}
Z & =\text { normal } \\
\mathbb{E}[Z] & =\mathbb{E}\left[\frac{X-\mu}{\sigma}\right] \\
& \left.=\frac{1}{\sigma} \mathbb{E}[X-\mu]=\frac{1}{\sigma}\right) \cdot x+\left(-\frac{\mu}{\sigma}\right) \\
\operatorname{Var}(Z) & =\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \operatorname{Var}(X-\mu)=\frac{1}{\sigma^{2}} \operatorname{Var}(X) \\
& =1 .
\end{aligned}
$$

Example
Let $X \sim N(3,16)$.
Find $\mathbb{P}(4 \leq X \leq 8), \mathbb{P}(0 \leq X \leq 5)$, and $\mathbb{P}(-2 \leq X \leq 1)$.

$$
\begin{aligned}
\mu=3, \sigma^{2}=16 & \quad \sigma=4 \quad z=\frac{x-3}{4} \sim N(0,1) \\
\mathbb{P}(4 \leqslant x \leqslant 8) & =\mathbb{P}\left(\frac{4-3}{4} \leqslant z \leqslant \frac{8-3}{4}\right) \\
& =\mathbb{P}(0.25 \leqslant z \leqslant 1.25) \\
& \approx \Phi(1.25)-\Phi(0.25) \\
\mathbb{P}(0 \leqslant x \leqslant 5) & =\mathbb{P}\left(\frac{0.3}{4} \leqslant z \leqslant \frac{5-3}{4}\right) \\
& =\Phi(0.5)-\Phi(-0.75) \\
& \approx 0.6915-(1-7734)
\end{aligned}
$$

In general, $\Phi(-z)=1-\Phi(z)$
Talleva The Slandard Nomal Distribuion Function

Standard normal distribution

Example
Let $X \sim N(25,36)$.
Find a constant c such that $\mathbb{P}(|X-25| \leq c)=0.9544$.

$$
\begin{aligned}
& \mu=25, \quad \sigma^{2}=36, \quad \sigma=6, \quad Z=\frac{x-25}{6} \sim N(0,1) \\
& \mathbb{P}\left(\frac{|x-25|}{6} \leqslant \frac{c}{6}\right)=\mathbb{P}\left(\quad|z| \leqslant \frac{c}{6}\right) \\
& =\mathbb{P}\left(-\frac{c}{6} \leqslant Z \leqslant \frac{c}{6}\right) \\
& =\Phi\left(\frac{c}{6}\right)-\Phi\left(-\frac{c}{6}\right) \\
& =\Phi\left(\frac{c}{6}\right)-\left(1-\Phi\left(\frac{c}{6}\right)\right) \\
& =2 \cdot \Phi\left(\frac{c}{6}\right)-1=0.9544 \\
& \text { 2. } \Phi\left(\frac{c}{6}\right)=1.9544 \\
& \Phi\left(\frac{c}{6}\right)=0.9772=\Phi(2) \quad \therefore \quad \frac{c}{6}=2 \\
& c=12 \text {. }
\end{aligned}
$$

Theorem

$$
e^{z}=\operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

If Z is the standard normal, then Z^{2} is $\chi^{2}(1)$.

$$
x=z^{2} \& \text { A New RV. }
$$

Q : How to find the distribution of X ?
CDF

$$
\begin{aligned}
F_{x}(x) & =\mathbb{P}\left(z^{2} \leqslant x\right)=\mathbb{P}(-\sqrt{x} \leqslant z \leqslant \sqrt{x}) \\
& =\Phi(\sqrt{x})-\Phi(-\sqrt{x}) \\
& =2 \cdot \Phi(\sqrt{x})-1 \\
f_{x}(x) & =\frac{d}{d x} F_{x}(x)=2 \cdot \Phi^{\prime}(\sqrt{x}) \cdot \frac{1}{R \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{(\sqrt{x})^{2}}{2}}=\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{x}{2}}
\end{aligned}
$$

Section 4.
Additional Models

Weibull distribution

Recall the postulates of an approximate Poisson:

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.

Weibull distribution

One can think the event occurrence as a failure and so λ can be understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant failure rate.

Sometimes, it is more natural to choose λ as a function of t in the last assumption.
Then the waiting time W for the first occurrence satisfies

$$
\mathbb{P}(W>t)=\exp \left(-\int_{0}^{t} \lambda(w) d w\right) .
$$

Weibull distribution

$$
\lambda(t)=\text { (const.) } t^{\text {power }}
$$

Definition

If $\lambda(t)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}}$, then the waiting time W for the first occurrence has the density

$$
g(t)=\lambda(t) \exp \left(-\int_{0}^{t} \lambda(w) d w\right)=\alpha \frac{t^{\alpha-1}}{\beta^{\alpha}} \exp \left(-\left(\frac{t}{\beta}\right)^{\alpha}\right)
$$

W is called the Weibull random variable.

$$
\mathbb{P}(\omega>t)=e^{-\int_{0}^{t} \lambda(\omega) d \omega}=e^{-\left(\frac{t}{\beta}\right)^{\alpha}}
$$

Weibull distribution

$$
\lambda(t)=\frac{\alpha t^{\alpha-1}}{\beta^{\alpha}} \quad \mathbb{P}(w>t)=e^{-t^{2}}
$$

Example
If $\lambda(t)=2 t$, then the waiting time W has the density
and it is a Weibull random variable with $\alpha=2$ and $\beta=1$.
Exp $)$ max
If W_{1}, W_{2} are independent Weibull with α and β above, is the minimum of W_{1}, W_{2} Weibull?

$$
\begin{aligned}
& x=\min \left\{\omega_{1}, \omega_{2}\right\} \\
& \mathbb{P}(x \leqslant t)=1-\mathbb{P}(x>t) \\
& \mathbb{P}(x>t)=\mathbb{P}\left(\left\{W_{1}>t\right\} \text { anal }\left\{W_{2}>t\right\}\right)_{36} \\
& =\mathbb{P}\left(W_{1}>t\right) \mathbb{P}\left(W_{2}>t\right) \\
& =e^{-t^{2}} \cdot e^{-t^{2}}=e^{-2 t^{2}} \\
& =e^{-(\sqrt{2} t)^{2}} \sim \text { Weibull. } \\
& \left(\alpha=2, \quad \beta=\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Weibull distribution

Theorem

The mean of W is $\mu=\beta \Gamma\left(1+\frac{1}{\alpha}\right)$.
The variance is $\sigma^{2}=\beta^{2}\left(\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}\right)$.

Mixed type random variables

Example
Suppose X has a CDF

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<1 \\ \frac{1}{2}, & 1 \leq x<2 \\ \frac{x}{3}, & 2 \leq x<3 \\ 1, & x \geq 3 .\end{cases}
$$

Find $\mathbb{P}(0<X<1), \mathbb{P}(0<X \leq 1)$, and $\mathbb{P}(X=1)$.

$$
\begin{aligned}
\mathbb{P}(& 0<x<1) \\
= & \mathbb{P}(x \leqslant 1)-\mathbb{P}(x \leqslant 0)-\mathbb{P}(x=1)^{38} \\
= & F(1)-F(0)-\mathbb{P}(x=1) \\
= & \frac{1}{2}-0-\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{4} .
\end{aligned}
$$

Discrete RVs:
Countable S
Contr. RVS : PDF

All have CDF

Mixed type random variables

Example
Consider the following game: A fair coin is tossed.
If the outcome is heads, the player receives $\$ 2$.
If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to
1.

The player then receives that fraction of a dollar associated with the point selected by the spinner.

Let X be the amount received. Draw the graph of the pdf $F(x)$.

$$
\begin{gathered}
X=\left\{\begin{array}{cc}
2 & \text { if Heads } \\
U & \text { if Tails, }
\end{array}\right. \\
F(x)=\mathbb{P}(x \leqslant x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} \cdot x & 0 \leqslant x<1 \\
\frac{1}{2} & 1 \leqslant x<2 \\
1 & x \geqslant 2
\end{array}\right. \\
x=-1
\end{gathered}
$$

Exercise

The cdf of X is given by

$$
F(x)= \begin{cases}0, & x<-1 \\ \frac{x}{4}+\frac{1}{2}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Find $\mathbb{P}(X<0), \mathbb{P}(X<-1)$, and $\mathbb{P}\left(-1 \leq X<\frac{1}{2}\right)$.

