Sample sapces having equally likely (Sec 2.5)

University of Illinois at Urbana-Champaign
Math 461 Spring 2022

Instructor: Daesung Kim

Recall
Axiom of Probability

- $\quad 0 \leqslant P(E) \leqslant 1$

$$
P\left(S^{\prime}\right)=1 \quad\left(E_{i} \cap E_{j}=\phi \quad \text { for } i \neq j\right)
$$

- If E_{1}, E_{2}, \cdots are mutually exclusive events

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

\Rightarrow (i) $P(\phi)=0$
(ii) $P(E) \leqslant \mathbb{P}(F)$ if $E \subseteq F$.
(ii) $P\left(E^{c}\right)=1-P(E)$
(iv) $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)$

Let S be a sample space with finitely many outcomes. For convenience, let $S=\{1,2,3, \cdots, N\}$.

In many cases, it is natural to assume that all outcomes in S are equally likey to occur. In other words, we assume

$$
\mathbb{P}(\{1\})=\mathbb{P}(\{2\})=\cdots=\mathbb{P}(\{N\}) .
$$

By the axioms (ii) and (iii), we have

$$
1=\mathbb{P}(S)=\mathbb{P}(\{1\})+\mathbb{P}(\{2\})+\cdots+\mathbb{P}(\{N\}) .
$$

Therefore, $\mathbb{P}(\{i\})=\frac{1}{N}$ for each $i=1,2, \cdots, N$. Define the probability of an event E by $\mathbb{P}(E)=p(\{2,3,8,10-\})=\{a\} \cup\{ \}\}$

$$
\mathbb{P}(E)=\sum_{i \in E} \mathbb{P}(\{i\})=\frac{\text { Number of Outcomes in } E}{\text { Number of Outcomes in } S}=\frac{1}{N} \cdot \notin E(\{a \mid)
$$

Then one can see that (S, \mathbb{P}) is a probability space.

$$
P(E)=\binom{5}{3}+\binom{6}{3}+\binom{8}{3} /\binom{19}{3}
$$

Example 1-A
all balls are distinct.
An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3 balls is randomly selected, what is the probability that each of the balls will be

1. of the same color?
2. of different colors?

$$
\begin{array}{r}
\begin{array}{l}
\text { all } \\
\text { Outcomes }:= \\
\\
\left.=\begin{array}{c}
\text { Chose } \\
3 \\
3
\end{array}\right)
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Outcomes in } E=\frac{3 \mathrm{red}}{6 f 5} \text { or } 3 \frac{\text { blue }}{f 6} \text { or } 3 \text { green } \\
& \text { of } 8
\end{aligned}
$$

Example 1-A

An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3 balls is randomly selected, what is the probability that each of the balls will be

1. of the same color?
2. of different colors? F
no ordering

$$
\binom{5}{1}^{\mathrm{ml}} \times\binom{ 6}{1} \stackrel{\text { ad }}{\times\binom{ 8}{1} .}
$$

$P(F)=$

$$
\binom{19}{3}
$$

Example 1-B

$$
\mathbb{P}(E)=\frac{5^{3}+6^{3}+8^{3}}{19^{3}}
$$

An urn contains 5 red, 6 blue, and 8 green balls. Suppose we draw a ball, note its color, and replace it into the urn. If we draw 3 balls in this way, what is the probability that each of the balls are of the same color? or of different colors?

$$
\begin{aligned}
& S^{\prime}=19 \times 19 \times 19 \text { out comes } \\
& E=5 \times 5 \times 5 \& 3 R \\
& 6 \times 6 \times 6 \div 3 B \\
& 8 \times 8 \times 8 \& 3 G
\end{aligned}
$$

Example 1-B
Ordering
An urn contains 5 red, 6 blue, and 8 green balls. Suppose we draw a ball, note its color, and replace it into the urn. If we draw 3 balls in this way, what is the probability that each of the balls are of the same color? or of different colors?

$$
\begin{aligned}
& \text { F } \\
& P(F)=\frac{1}{19^{3}} \cdot(\underbrace{\underbrace{5}_{R} \times \underbrace{B} \times 8 \times\binom{ G!}{\sim}) ~}_{\text {perm }} \\
& B \quad R \quad G=6 \times 5 \times 8 \\
& B \quad G \quad R=6 \times 8 \times 5
\end{aligned}
$$

Example 1-B

An urn contains 5 red, 6 blue, and 8 green balls. Suppose we draw a ball, note its color, and replace it into the urn. If we draw 3 balls in this way, what is the probability that each of the balls are of the same color? or of different colors?

Example 2-A
A football team consists of 20 offensive and 20 defensive players. The players are to be paired in groups of 2 for the purpose of determining roommates. If the pairing is done at random, what is the probability that there are no offensive-defensive roommate pairs?

$$
\begin{aligned}
S: \quad & \begin{array}{c}
40 \text { people } \longrightarrow \\
\frac{1}{20!}\binom{40}{2} \cdot\binom{38}{2} \cdot\binom{36}{2} \cdots\binom{4}{2}\binom{2}{2}
\end{array} \\
= & \frac{1}{20!}\binom{40}{2,2,2, \cdots, 2} \\
= & \frac{1}{20!} \frac{40!}{2!2!\cdots 2!}=\frac{40!}{20!\cdot 2^{20}}
\end{aligned}
$$

Example 2-A

$$
\frac{\left(\frac{201}{2^{00} \cdot 10!}\right)^{2}}{\left(\frac{40!}{2^{20} \cdot 20!}\right)}
$$

A football team consists of 20 offensive and 20 defensive players. The players are to be paired in groups of 2 for the purpose of determining roommates. If the pairing is done at random, what is the probability that there are no offensive-defensive roommate pairs?

Example 2-B

$$
\left(\frac{16!}{2^{8} \cdot 8!}\right)^{2} \cdot\binom{20}{4}^{2} \cdot 4!/\left(\frac{40!}{2^{20} \cdot 20!}\right)
$$

A football team consists of 20 offensive and 20 defensive players. The players are to be paired in groups of 2 for the purpose of determining roommates. What is the probability that there are 4 offensive-defensive roommate pairs?

Example 3

If 4 married couples are arranged in a row, find the probability that no husband sits next to his wife.

Example 4-A

Suppose there are n distinct balls and r distinct urns. How many ways are there to distribute balls into urns?

Example 4-B

What if the balls are indistinguishable?

