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Let S be a sample space with finitely many outcomes. For
convenience, let S = {1, 2, 3, · · · , N}.

In many cases, it is natural to assume that all outcomes in S are
equally likey to occur. In other words, we assume

P({1}) = P({2}) = · · · = P({N}).

By the axioms (ii) and (iii), we have

1 = P(S) = P({1}) + P({2}) + · · ·+ P({N}).

Therefore, P({i}) = 1
N for each i = 1, 2, · · · , N. Define the

probability of an event E by

P(E) =
X

i2E

P({i}) =
Number of Outcomes in E
Number of Outcomes in S
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Then one can see that (S,P) is a probability space.
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Example 1-A

An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3
balls is randomly selected, what is the probability that each of
the balls will be

1. of the same color?
2. of different colors?
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Example 1-A

An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3
balls is randomly selected, what is the probability that each of
the balls will be

1. of the same color?
2. of different colors?
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Example 1-B

An urn contains 5 red, 6 blue, and 8 green balls. Suppose we
draw a ball, note its color, and replace it into the urn. If we draw
3 balls in this way, what is the probability that each of the balls
are of the same color? or of different colors?
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Example 1-B

An urn contains 5 red, 6 blue, and 8 green balls. Suppose we
draw a ball, note its color, and replace it into the urn. If we draw
3 balls in this way, what is the probability that each of the balls
are of the same color? or of different colors?
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Example 1-B

An urn contains 5 red, 6 blue, and 8 green balls. Suppose we
draw a ball, note its color, and replace it into the urn. If we draw
3 balls in this way, what is the probability that each of the balls
are of the same color? or of different colors?



Example 2-A

A football team consists of 20 offensive and 20 defensive
players. The players are to be paired in groups of 2 for the
purpose of determining roommates. If the pairing is done at
random, what is the probability that there are no
offensive–defensive roommate pairs? no

group
ordering.
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Example 2-A

A football team consists of 20 offensive and 20 defensive
players. The players are to be paired in groups of 2 for the
purpose of determining roommates. If the pairing is done at
random, what is the probability that there are no
offensive–defensive roommate pairs?
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Example 2-B

A football team consists of 20 offensive and 20 defensive
players. The players are to be paired in groups of 2 for the
purpose of determining roommates. What is the probability that
there are 4 offensive–defensive roommate pairs?
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Example 3

If 4 married couples are arranged in a row, find the probability
that no husband sits next to his wife.





Example 4-A

Suppose there are n distinct balls and r distinct urns. How
many ways are there to distribute balls into urns?



Example 4-B

What if the balls are indistinguishable?




