MIDTERM EXAM 1

$$
\begin{aligned}
\text { DATE: } & \text { SEP. } 13 \text { (WED) } \\
\text { TIME : } & 6: 30 P M-7: 45 P M \\
\text { PLACE : } & \text { SECTION A - BOGGS BF } \\
& (8: 25) \\
& \text { SECTION E }- \text { HOWEY-PHYSICS } \\
& (11: 00) \quad \text { LS }
\end{aligned}
$$

COVERAGE: UP TO MON CLASS
REVIEW: SEP. 13 in CLASS
C SAMPLE EXAMS: S22,F22,

$$
\text { i } 523 \text {) }
$$

MASTER WEBPAGE.
2.3 Fall 22 makeup

$$
523 \quad 4,5 \quad \text { T/F } \mid 7-(6)
$$

Math 1554 Linear Algebra Spring 2023
 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Kim Prof Barone Prof David/Schroeder Prof Kumar

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 8 pages of questions.

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false

If a vector \vec{b} can be written uniquely as a linear combination of vectors $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ then there is a pivot in the first three columns of the matrix $\left(\vec{a}_{1} \vec{a}_{2} \vec{a}_{3} \vec{b}\right)$.
$\bigcirc \bigcirc$
If $A \vec{x}=\vec{b}$ is consistent, then \vec{b} is in the span of the columns of A.

If \vec{v} and \vec{w} are solutions to an inhomogeneous system $A \vec{x}=\vec{b}$, then $\vec{v}-\vec{w}$ is a solution to $A \vec{x}=\overrightarrow{0}$.

\# If $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is linearly dependent, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly, dependent.

If A is size 3×4 and none of the rows of A consist entirely of zeros, then A has 3 pivots.

If A and B are square $n \times n$ matrices, then $A^{2}-B^{2}=(A-B)(A+B)$.

If A is size $m \times n$ with $m \neq n$ and the columns of A are linearly independent, then the transformation $T(\vec{x})=A \vec{x}$ is onto.
$\bigcirc \quad$ If the coefficient matrix A for a system of linear equations has a pivot in every row, then the system $A \vec{x}=\vec{b}$ has a solution for any \vec{b} in \mathbb{R}^{m}.

$$
A+\vec{x}=0
$$

Kiery now \Rightarrow is onto

$$
\Rightarrow \quad A \vec{x}=\vec{b} \quad \text { IJ consitsy }
$$

for any \vec{b}

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

An $m \times n$ matrix A with a pivot in its last column such that $A \vec{x}=\overrightarrow{0}$ is inconsistent.
\square Two nonzero vectors \vec{v}_{1}, \vec{v}_{2} such that $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly independent and $\left\{\vec{v}_{1}-\vec{v}_{2}, \vec{v}_{1}+\vec{v}_{2}\right\}$ is linearly dependent.

A matrix A of size 4×3 with linearly dependent columns.
\bigcirc

A transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ that is onto.
(c) (2 points) If A is an $m \times 5$ matrix and $A \vec{x}=0$ has a unique solution, then which of the following is true. Select only one.
$m \geq 5$
$m=5$
$m \leq 5$
m can be any natural number

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(d) (3 points) For the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Which of the following sets are linearly independent? Select all that apply.
$\bigcirc\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
$\bigcirc\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$
$\bigcirc\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
(e) (2 points) Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Which of following accurately describes the transformation $T(\vec{x})=A \vec{x}$? Select only one.Rotation by $\frac{\pi}{2}$ radians around the x axis.
Rotation by $\frac{\pi}{2}$ radians around the z axis.
Reflection across the $x=0$ plane.
\bigcirc Reflection across the $y=z$ plane.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (2 points) If possible, fill in the box with the missing element of the vector \vec{w} with a number so that $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent. If it is not possible write NP in the space.

$$
\vec{u}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad \vec{v}=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right), \quad \vec{w}=\binom{5}{\square}
$$

3. (4 points) Find b and c such that $A B=B A$.

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
2 & b \\
-3 & c
\end{array}\right)
\end{aligned} \quad B=\left(\begin{array}{cc}
4 & -5 \\
3 & 5
\end{array}\right)
$$

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
4. (8 points) Let T be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{2} \\
2 x_{1}-4 x_{2}
\end{array}\right]
$$

(i) What is domain and codomain of T ?

(ii) What is the standard matrix of T ?
(iii) Find a vector \vec{x} such that $T(\vec{x})=\vec{b}$, where $\vec{b}=\left[\begin{array}{c}-2 \\ 9 \\ -4\end{array}\right]$.

Midterm 1. Your initials:
5. (5 points) Show all work for problems on this page.

For what value(s) of h is the following set of vectors linearly dependent?

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
-2 \\
h \\
h^{2}
\end{array}\right)\right\} \\
h=\square
\end{gathered}
$$

Midterm 1. Your initials: \qquad
6. (5 points) Show your work in the space below and put your answer in the box. Provide a dependence relation on $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, i.e., a nontrivial linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ equaling the zero vector which demonstrates that the vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ are linearly dependent.
For full credit, show how the dependence relation is obtained by row reducing the appropriate coefficient matrix.
You may leave your answer in terms of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

$$
\vec{v}_{1}=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
5 \\
4 \\
3
\end{array}\right)
$$

Midterm 1. Your initials: \qquad
7. Show your work in the space below the first box and put your answers in the boxes.
(a) (5 points) Write the parametric vector form for the general solution to the inhomogeneous equation $A \vec{x}=\vec{b}$.

$$
A=\left(\begin{array}{ccccc}
2 & 1 & 0 & -4 & 1 \\
5 & 3 & 0 & -10 & 4
\end{array}\right), \quad \vec{b}=\binom{7}{18}
$$

(b) (2 points) For the homogeneous system with the same coefficient matrix A as part (a) above, write down the general solution to $A \vec{x}=\overrightarrow{0}$. Hint: use your answer from part (a).

Math 1554 Linear Algebra Fall 2022
 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false

If A has a pivot in every column then the system $A \vec{x}=\vec{b}$ has a unique solution.
$\bigcirc \quad$ Suppose A is a 6×4 matrix with 4 pivots, then there is \vec{b} such that $A \vec{x}=\vec{b}$ has no solution.
$\bigcirc \bigcirc$ The sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $\left\{\vec{v}_{1}+\vec{v}_{2},-\vec{v}_{1}-\vec{v}_{2}\right\}$ have the same span.
$\bigcirc \quad$ If A and B are square $n \times n$ matrices, then $A^{2}-B^{2}=(A-B)(A+B)$.
\bigcirc The matrix equation $A \vec{x}=\overrightarrow{0}$ is always consistent.

Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ are nonzero vectors in \mathbb{R}^{n} and the sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, $\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$, and $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ are all linearly independent. Then, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent.
\bigcirc If $A \vec{v}=0, A \vec{u}=0$ and $\vec{w}=3 \vec{v}-2 \vec{u}$, then $A \vec{w}=0$.
$\bigcirc \quad$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\vec{x})=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{m}$. Then T is one-to-one.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A 7×5 matrix A with linearly independent columns.
A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is not onto and its
standard matrix has linearly independent columns.

$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is onto and its standard matrix has exactly
one non-pivotal column.

Two non-zero matrices A, B of size 2×2 with $A B=\left(\begin{array}{ll}0 & 0 \\
0 & 0\end{array}\right)$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left(\begin{array}{ccc|c}
1 & 3 & 0 & 1 \\
0 & 3 h & 3 & 6 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

be an augmented matrix of a system of linear equations. For which values of h does the system have a free variable? Choose the best option.
0 only
O $\frac{1}{3}$ only
1 only
for all values of h
\bigcirc for no values of h
(d) (2 points) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ maps each of the standard unit vectors \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} to 1 . Which of the following statements is TRUE? Select only one.
$\bigcirc T$ is one-to-one.
T is not onto.
The solution set of $T(\vec{x})=\overrightarrow{0}$ spans a plane in \mathbb{R}^{3}.
\bigcirc The range of T is $\{1\}$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right)$ and sketch (a) a non-zero vector \vec{b} such that $A \vec{x}=\vec{b}$ is consistent, and (b) the set of solutions to $A \vec{x}=\overrightarrow{0}$.
(a) a vector $\vec{b} \neq \overrightarrow{0}$
(b) set of solutions

3. (2 points) Consider the linear system in variables x_{1}, x_{2}, x_{3} with unknown constants below.

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} & =b_{1} \\
c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} & =b_{2}
\end{aligned}
$$

Which of the following statements about the solution set of this system are possible? Select all that apply.The solution set is empty.
\bigcirc The solution set is a single point.
The solution set is a line.
\bigcirc The solution set is a plane.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
4. Fill in the blanks.
(a) (3 points) Let A be a coefficient matrix of size 2×2 and B be a coefficient matrix of size 3×2. Construct an example of two augmented matrices $[A \mid \vec{b}]$ and $[B \mid \vec{d}]$ which are both in RREF and such that the systems $A \vec{x}=\vec{b}$ and $B \vec{x}=\vec{d}$ each have the exact same unique solution $x_{1}=3$ and $x_{2}=6$. If this is not possible write NP in each box.

$$
[A \mid \vec{b}]=\square
$$

(b) (2 points) Let $\vec{u}_{1}=\binom{1}{-1}, \vec{u}_{2}=\binom{0}{1}$, and $\vec{b}=\binom{1}{2}$. Find c_{1}, c_{2} such that $\vec{b}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}$.

$$
c_{1}=\square \quad c_{2}=\square
$$

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (8 points) Let T be a linear transformation that maps \vec{v}_{1} to $T\left(\vec{v}_{1}\right)$ and \vec{v}_{2} to $T\left(\vec{v}_{2}\right)$, where

$$
\vec{v}_{1}=\binom{2}{-1}, \quad \vec{v}_{2}=\binom{-1}{1}, \quad T\left(\vec{v}_{1}\right)=\left(\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right), \quad T\left(\vec{v}_{2}\right)=\left(\begin{array}{c}
3 \\
-1 \\
-2 \\
1
\end{array}\right)
$$

(i) What is domain and codomain of T ?
domain is
codomain is
\square
(ii) Is it true that $\mathbb{R}^{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$?
\bigcirc yes
no
(iii) Write $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$ as linear combinations of \vec{v}_{1} and \vec{v}_{2}.

(iv) What is the standard matrix of T ?

(v) Is T one-to-one?

Oyes
○ no

Midterm 1. Your initials:
6. Show all work for problems on this page.
(a) (3 points) For what value of k will matrix A have exactly two pivots?

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 1 & k
\end{array}\right) \\
k=
\end{gathered}
$$

(b) (4 points) Find b and c such that $A B=B A$.

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right) & B=\left(\begin{array}{ll}
1 & b \\
c & 0
\end{array}\right) \\
b=\square & c=\square
\end{array}
$$

Midterm 1. Your initials:
7. (4 points) Show your work for problems on this page.

Write down the parametric vector form for solutions to the homogeneous equation $A \vec{x}=\overrightarrow{0}$.

$$
A=\left[\begin{array}{ccccc}
1 & -1 & -2 & -3 & -1 \\
0 & 1 & 0 & 3 & 1 \\
-1 & 1 & 2 & 3 & 2
\end{array}\right]
$$

8. (4 points) Determine whether the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent. Justify your answer in the space below.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
8
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-2 \\
2 \\
-9
\end{array}\right]
$$linearly independent

\bigcirc linearly dependent

Math 1554 Linear Algebra Spring 2022
 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad
@gatech.edu

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Barone Prof Shirani Prof Simone Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1. Your initials:

\qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false

The span of two non-zero vectors in \mathbb{R}^{3} is necessarily a plane.
If an echelon form of A has a row of zeros, then the system $A \vec{x}=\vec{b}$ has a free variable.

If $A \vec{v}=\vec{b}$, and $[A \mid \vec{b}]$ is row equivalent to $[C \mid \vec{d}]$, then $C \vec{v}=\vec{d}$. If the columns of A span \mathbb{R}^{m}, then $A \vec{x}=\vec{b}$ is consistent for an $\vec{b} \vec{b} \in \mathbb{R}^{m}$. If $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution, then the columns of A are linearly dependent.

If \vec{v} and \vec{u} are solutions of a homogeneous system of linear equations, then $\vec{v}+\vec{u}$ is also a solution of that system.
\bigcirc If the columns of a matrix A are linearly dependent, then the system $A \vec{x}=\vec{b}$ can not have a unique solution.

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation such that $T(\vec{x})=\vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^{n}$, then T is not one-to-one.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is not onto.
A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is onto and its
standard matrix has two non-pivotal columns.

A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ that is onto and its
standard matrix has linearly dependent columns.

Three non-zero matrices A, B, C of size 2×2 with $A C=B C$
and $A \neq B$.

$A \vec{x}=0$
v, u solutions
\|
3π Solution?
Need

$$
\begin{gathered}
A \cdot(\overrightarrow{2}+4 \vec{u})= \\
3 A \vec{v}+4 A \vec{u} \\
3 \cdot 11 \\
3 \cdot \overrightarrow{0}+4 \overrightarrow{0}=\overrightarrow{0}
\end{gathered}
$$

$$
A \vec{x}=\vec{\theta} \neq \overrightarrow{0}
$$

v, u solutions $\quad \Rightarrow \quad A \vec{v}=\vec{b}$

$$
A \vec{u}=\vec{b}
$$

$$
A \cdot(\vec{v}+\vec{u})=A \vec{v}+A \vec{u}=\vec{b}+\vec{b}=2 \vec{b}
$$

$v+u$ is Not a solution to $A \vec{r}=\vec{b}$ is a solution to $\vec{A}=2 \vec{b}$
T is onto \Leftrightarrow for any $\vec{b} \in \mathbb{R}^{m}, \quad T(\underset{\underline{N}}{ })=\vec{b}$ for some \vec{x}
\Leftrightarrow for and $\vec{b} \in R^{m}, A \vec{x}=\vec{b}$ is consistent

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & h^{2} & 0
\end{array}\right]
$$

be a row echelon form of an augmented matrix of a system of linear equations. For which values of h is the system consistent? Choose the best option.
\bigcirc for all values of h
0 only
for no values of h
1 and -1 only
(d) (2 points) Let

$$
\left[\begin{array}{ccccc|c}
1 & -1 & 0 & \pi & 2 & -1 \\
0 & 0 & 1 & -2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

be a row echelon form of an augmented matrix of a system of equations. How many solutions does the system have? Choose the best option.
\bigcirc
$\bigcirc 1$
infinitely many
(e) (2 points) Suppose $A \vec{x}=\vec{b}$ is a system of three linear equations in three variables. If the system $A \vec{x}=\vec{b}$ is consistent, which of the following could be the graphs in \mathbb{R}^{3} of the three equations represented by the rows of $[A \mid b]$? Circle all pictures that apply.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$ and sketch a) a non-zero solution to $A \vec{x}=\overrightarrow{0}$, and b) the span of the columns of A.

3. (5 points) Let $A \in \mathbb{R}^{3 \times 5}, B \in \mathbb{R}^{4 \times 3}$ and $\vec{a} \in \mathbb{R}^{3}, \vec{b} \in \mathbb{R}^{4}, \vec{c} \in \mathbb{R}^{5}$. Which of the following are defined? Choose all the expressions which are defined.$B \vec{b}$
$\bigcirc \vec{c}$
$\bigcirc A(B \vec{a})$
$\bigcirc B(A \vec{c})$
$B(\vec{a}+\vec{b})$
4. (3 points) In each of the following cases, indicate whether $A \vec{x}=\vec{b}$ has no solutions, a unique solution, infinitely many solutions, or if this can not be determined with the given information.

no	unique	infinitely	can't be
solution	solution	many deter-	delutions mined

\bigcirc
\square $A \in \mathbb{R}^{3 \times 4}, \vec{b}=\overrightarrow{0}$, and A has 2 pivots

$A \in \mathbb{R}^{5 \times 2}, \vec{b}=\overrightarrow{0}$, and A has 2 pivots

\square
$A \in \mathbb{R}^{3 \times 5}$ and A has 3 pivots

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
5. Fill in the blanks.
(a) (2 points) If the augmented matrix $[A \mid \vec{b}]$ of a system of equations is 3×6 and the system has two pivot (basic) variables, then how many free variables does it have?

(b) (2 points) For what value(s) of h is the following set of vectors linearly dependent?

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
1 \\
1 \\
h
\end{array}\right),\left(\begin{array}{l}
1 \\
h \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
h
\end{array}\right)\right\} \\
h=1,-\frac{1}{2}
\end{gathered}
$$

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & h & 0 \\
h & 1 & h
\end{array}\right] \quad \text { Neel: free variable. }
$$

$$
\left.\xrightarrow[R_{2} \rightarrow R_{2}-R_{1}]{\longrightarrow R_{3}-h \cdot R_{1}}\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & h-1 & 1 \\
0 & 1-h & 2 h
\end{array}\right] \xrightarrow[\substack{1 \\
R_{3} \rightarrow R_{2}+R_{2}}]{\left[\begin{array}{ccc}
1 & 1 \\
0 & h-1 & 1 \\
0 & 0 & 2 h+1
\end{array}\right]} \begin{array}{ccc}
1 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Midterm 1. Your initials: \qquad
6. Show all work for problems on this page.
(a) (1 point) Let $\vec{b}=\left[\begin{array}{c}3 \\ -4 \\ -6 \\ 1\end{array}\right], \overrightarrow{a_{1}}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right], \overrightarrow{a_{2}}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\overrightarrow{a_{3}}=\left[\begin{array}{c}3 \\ -3 \\ -5 \\ 2\end{array}\right]$. Is \vec{b} in the span of $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$, and $\overrightarrow{a_{3}}$?
\bigcirc Yes
○ No
(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$. If you answered no, give an echelon form of the augmented matrix $\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \mid \vec{b}\end{array}\right]$.

Midterm 1. Your initials:
7. (3 points) Show your work for problems on this page.

Suppose that we have

$$
[A \mid \vec{b}] \sim\left[\begin{array}{cccc|c}
1 & 4 & 0 & -1 & 3 \\
0 & 0 & 1 & 5 & 2
\end{array}\right]
$$

Find the parametric vector form for the solutions of $A \vec{x}=\vec{b}$.

8. (2 points) Suppose $A \vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $A \vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$. Compute $A(2 \vec{v}-\vec{u})$.

Midterm 1. Your initials:
9. (8 points) Show all work for problems on this page. Consider the linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}, x_{1}-x_{2}\right)$ with domain \mathbb{R}^{2}.
(i) What is the codomain of T ? \square
(ii) What is the standard matrix of T ? \square
(iii) Is T onto?

Oyes
○ no
(iv) Write an equation using the variables b_{1}, b_{2}, and b_{3} which is satisfied exactly when $T\left(x_{1}, x_{2}\right)=\left(b_{1}, b_{2}, b_{3}\right)$ has a solution for x_{1}, x_{2}.

(v) What is the range of T ?

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1 - Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.

true false

$\bigcirc \bigcirc$ If A has a pivot in every column then the system $A \vec{x}=\vec{b}$ has a unique solution.
\bigcirc The solution set of the homogeneous system $2 x_{1}-x_{2}=0$ in \mathbb{R}^{3} is a line passing through the origin.
$\bigcirc \bigcirc$ The sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $\left\{\vec{v}_{1}+\vec{v}_{2},-\vec{v}_{1}+\vec{v}_{2}\right\}$ have the same span.

If A, B and C are square matrices, then if $A B=A C$ then $B=C$.The matrix equation $A \vec{x}=\vec{b}$ is always consistent if A is $n \times n$.
Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ are nonzero vectors in \mathbb{R}^{n} and the sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, $\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$, and $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ are all linearly independent. Then, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent.
\bigcirc If $A \vec{v}=\vec{b}, A \vec{u}=\vec{b}$ and $\vec{w}=\vec{v}+\vec{u}$, then $A \vec{w}=\vec{b}$.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\vec{x})=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{m}$. Then T is one-to-one.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

A 3×5 matrix A with linearly independent columns.
A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that is not onto.
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is one-to-one and its standard matrix has exactly one non-pivotal column.
Two non-zero matrices A, B that are not scalar multiples of each other, and neither of which is I or 0 , of size 2×2 with $A B=B A$.

Midterm 1 - Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left(\begin{array}{ccc|c}
1 & 4 & -1 & 5 \\
0 & h^{2} & 1 & 2 \\
0 & 0 & 2 & 4
\end{array}\right)
$$

be an augmented matrix of a system of linear equations. For which values of h does the system have a free variable? Choose the best option.
$\bigcirc 1$ only
1 or -1 , only
0 only
for all values of h
\bigcirc for no values of h
(d) (2 points) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ maps each of the standard unit vectors \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} to 1 . Which of the following statements is TRUE? Select only one.
The solution set of $T(\vec{x})=\overrightarrow{0}$ spans a plane in \mathbb{R}^{3}.
T is one-to-one.
T is not onto.
\bigcirc The range of T is $\{1\}$.

Midterm 1 - Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right)$ and sketch (a) a non-zero vector \vec{b} such that $A \vec{x}=\vec{b}$ is consistent, and (b) the set of solutions to $A \vec{x}=\overrightarrow{0}$.
have a solution

(b) set of solutions

$$
=\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: \underbrace{\left.\left[\begin{array}{rr}
3 & -1 \\
-6 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\}}_{l}
$$

$$
y=3 x \leftarrow \begin{gathered}
3 x-y=0 \\
-6 x+2 y=0
\end{gathered} \leftarrow\left[\begin{array}{c}
3 x-y \\
-6 x+2 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

3. (2 points) Consider the linear system in variables x_{1}, x_{2}, x_{3} with unknown constants below.

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=t_{1} \\
& a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=-\frac{b 1}{21}
\end{aligned} \quad C_{1}
$$

select all that apply.
The solution set is empty.
The solution set is a single point.
\bigcirc The solution set is a line.
The solution set is a plane.

$$
\left[\begin{array}{lll|l}
a_{1} & a_{2} & a_{3} & b_{1} \\
a_{0} & a_{2} & a_{3} & -\underline{b_{1}}
\end{array}\right]
$$

$$
\left.\begin{array}{c}
{\left[\left.\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 1
\end{array} \right\rvert\, \begin{array}{c}
2 \\
5
\end{array}\right]} \\
x_{1}=3 x_{3}+2 \\
x_{2}=-x_{3}+5 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 x_{3}+2 \\
x_{1} \\
x_{3}+5 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
2 \\
5 \\
0
\end{array}\right] .
$$

$$
\begin{aligned}
& b_{1}=0 \\
& \text { II } \\
& \text { consistent. } \\
& \hline
\end{aligned}
$$

$$
\text { if } b, \neq 0
$$

d. inconsistent

I free variable is NOT possible.

Midterm 1 - Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
4. Fill in the blanks.
(a) (3 points) Let A be a coefficient matrix of size 3×2 and B be a coefficient matrix of size 2×2. Construct an example of two augmented matrices $[A \mid \vec{b}]$ and $[B \mid \vec{d}]$ which are both in RREF and such that the systems $A \vec{x}=\vec{b}$ and $B \vec{x}=\vec{d}$ each have the exact same unique solution $x_{1}=1$ and $x_{2}=6$. If this is not possible write NP in each box.

(b) (2 points) Let $\vec{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \vec{u}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$, and $\vec{b}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$. Find c_{1}, c_{2} such that $\vec{b}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}$.

$$
c_{1}=\square \quad c_{2}=\square
$$

Midterm 1 - Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (8 points) Let T be a linear transformation that maps \vec{v}_{1} to $T\left(\vec{v}_{1}\right)$ and \vec{v}_{2} to $T\left(\vec{v}_{2}\right)$, where

$$
\vec{v}_{1}=\binom{1}{1}, \quad \vec{v}_{2}=\binom{1}{-1}, \quad T\left(\vec{v}_{1}\right)=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right), \quad T\left(\vec{v}_{2}\right)=\left(\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right)
$$

(i) What is domain and codomain of T ?
domain is
codomain is
\square
(ii) Is it true that $\mathbb{R}^{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$?

Oyes
(iii) Write $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$ as linear combinations of \vec{v}_{1} and \vec{v}_{2}.

(iv) What is the standard matrix of T ?

(v) Is T one-to-one?

Oyes
○no

Midterm 1 - Make-up. Your initials:
6. Show all work for problems on this page.
(a) (3 points) For what value of k will matrix A have exactly two pivots?

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 1 & k
\end{array}\right) \\
k=
\end{gathered}
$$

(b) (4 points) Find b and c such that $A B=0$. If this is not possible, write NP in each box and justify your answer.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
b & b \\
c & 1
\end{array}\right) \\
& b=\square
\end{aligned}
$$

Midterm 1 - Make-up. Your initials:
7. (4 points) Show your work for problems on this page.

Write down the parametric vector form for solutions to the homogeneous equation $A \vec{x}=\overrightarrow{0}$.

$$
A=\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
2 & 2 & -4 & 1 \\
-1 & -1 & 2 & -1
\end{array}\right]
$$

8. (4 points) Determine whether the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent. Justify your answer in the space below.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
8
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-2 \\
3 \\
-12
\end{array}\right]
$$linearly independent \bigcirc linearly dependent

