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Section 1.
Bivariate Distributions of the
Discrete Type



Suppose that we observe the maximum daily temperature, X, and maximum relative

humidity, Y, on summer days at a particular weather station.
Qa«wlﬁ“" .

We want to determine a relationship between these two variables.

For instance, there may be some pattern between temperature and humidity that can
be described by an appropriate curve Y = u(X).
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Joint distribution

disurore

Let X and Y be twagndom variables defined on a discrete sample space.

Let S denote the corresponding two-dimensional space of X and Y/, the two random
variables of the discrete type.

Definition J,’ od
The function f(x,y) = P(X = X@Y = y) is called the joint probability mass function
(joint PMF) of X and Y.
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Joint distribution
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Joint distribution

Example ( & Q_EOMC_QCQ\

Roll a pair of fair dice.

Let X denote the smaller and Y the larger outcome on the dice.

Find the joint PMF of (X, Y).
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Marginal distribution

Definition
Let X and Y have the joint probability mass function f(x, y).

The probability mass function of X, which is called the marginal probability mass
function of X, is defined by

fx(x) =) flx,y) =P(X = x).
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Marginal distribution

Definition ( N4 Y " QLqu_Q,—FQJB
We say X and Y are independent if

Tonb PHE =P(X=x,Y=y)=PX=x)P(Y =y) = Padwd  of
for all (x,y) € S. MO"’QJM&Q P
Equivalently, f(x,y) = fx(x)fy(y) for all x, y.

Otherwise, we say X and Y are dependent.



Marginal distribution

Example
Let the joint PMF of X and Y be defined by

f(x,y) = X;y
for x and y <£1,2.
Find the marginal PMFs of X and Y.
Determine whether they are independent.
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Marginal distribution

Example
Let the joint PMF of X and Y be defined by

o)=L = (o foncbin < (Fach D

forx=1,2,3and y =1, 2. 2\

Find the marginal PMFs of X and Y.

Determine whether they are independent.

2
£y ) = ]ﬂcx(ls + $(x, ) = %ﬂ_ N )(.3_2,3”
- C R
J L 0y) Frevy) €38.9)
b 1. > > ) -a, C N f
—3;L§ " l—’a_\é— + 335 = 355 f T T

2

f (KL\[\ = £>((><\ - Jg((vx
X o Loy
%b 6



Expectations

Definition

Let X; and X5 be random variables of the discrete type with the joint PMF f(x1, x2)
on the space S. If u(Xy, X2) is a function of these two random variables, then

Elu(X, X)) = Y. :

u(xy, x2)f(x1, x2).
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In particular, if u(xi,x2) = x1, then

Elu(X1, X2)] = E[X1] = Z x1f(x1,x2)
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Expectations

Example

There are eight similar chips in a bowl: three marked (0,0), two marked (1,0), two
marked (0, 1), and one marked (1, 1).

A player selects a chip at random.

Let X7 and X5 represent those two coordinates.
Find the joint PMF.

Compute E[X1 + X3].
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Trinomial distribution

Example
In manufacturing a certain item, it is found that in normal production about 95% of
the items are good ones, 4% are "seconds,” and 1% are defective.

A company has a program of quality control by statistical methods, and each hour an
online inspector observes 20 items selected at random, counting the number X of

seconds and the number Y of defectives.
Suppose that the production is normal.

Find the probability that, in this sample of size n = 20, at least two seconds or at

least two defective items are discovered.



Exercise

Roll a pair of four-sided dice, one red and one black.
Let X equal the outcome of the red die and let Y equal the sum of the two dice.
Find the joint PMF.

Are they independent?
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The Correlation Coefficient



Covariance and Correlation coefficient
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The covariance of X and Y is
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Covariance and Correlation coefficient

Properties

1. If X and Y are independent, then Cov(X, Y) = 0.
2. Cov(X,Y) = E[XY] — E[X]E[Y].

3. —1<p<l1.
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Covariance and Correlation coefficient

Example
Let the joint PMF of X and Y be defined by
X+ 2y
f(va): 18
forx=1,2and y =1,2.
Compute Cov(X, Y) and p.
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The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two

random variables X and Y.

One of natural ways is to consider a linear relation between X and Y, that is, to figure
out the best possible slope b such that Y — uy = b(X — ux) has small errors.
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The Least Squares Regression Line

One can see by some calculus that the error is minimized when

p=,2Y - Gulx ) oy _ Guky)
X G\Xw‘( TR \ow— ()

and the minimum error is 0%,(1 — p?).

The line Y — puy = pg—;(X — px) is called the line of best fit, or the least squares
regression line.
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The Least Squares Regression Line

Example
Let X equal the number of ones and Y the number of twos and threes when a pair of
fair four-sided dice is rolled.
Then X and Y have a trinomial distribution. C_Yj, &q(”)\}\%\ %/N\Y
Find the least squares regression line. % = Q 534////———/
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Trinomial distribution

Pr+pParPr=1¢

Consider an experiment with three outcomes, say perfect, seconds, and defective.
Let p1, p2, p3 be the corresponding probabilities.
Repeat the experiment n times and let X, Y be the numbers of perfect and seconds.

We say (X, Y) has the trinomial distribution.
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Uncorrelated
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We say X, Y are uncorrelated if p = 0.
If X,Y are independent then they are uncorrelated.
However, the converse is not true.
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Uncorrelated
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Let X and Y have the joint pmf f(x,y) = 3 for (x,y) = (0,1),(L,0),(2,1).

Example

Exy)= 0 -L-Eey + (o- R ey 2 (-H)
I v—\i)v
o~

_

[
S

3
£ [ x] Oftb,(\ 4—1&(,63 > £o) = 4
E(Y]l= ofumrtden +ifen = 2
Cou(X 0y = B0y - ECUELY]

— > S —
— \-Hi-g- = O .

3
X o o (arrelated

[l



Exercise

The joint pmf of X and Y is f(x,y) = %, 0 <x+y <2, where x and y are

nonnegative integers.

Find the covariance and the correlation coefficient.
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Conditional Distributions



Conditional distribution

Definition

The conditional probability mass function of X, given that Y = y, is defined by
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Conditional distribution

Example
Let the joint pmf of X and Y be defined by

X+y
21

for x =1,2,3 and y = 1,2. We have shown that

f(Xv)/):

A= 25 Al =20
Find the conditional PMFs.
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Conditional distribution

Definition

The conditional expectation of Y given X = x is defined by

E[Y|X = x] = nyﬂx(ﬂx)-

The conditional variance of Y given X = x is defined by

Var(Y|X = x) = E[(Y — E[Y|X = x])?|X = X]
= EB[Y?X = x] — (E[Y|X = x])2.
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Example

Let the joint PMF of X and Y be defined by

X +
f(x,y)= 4

X+ %
21 i (40 P
forx=1,2,3and y =1,2.
Find E[Y|X = 3] and Var(Y|X = 3).
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Contional expectation as a function and a random variable

One can consider E[Y|X = x] as a function of x.
Say h(x) = E[Y|X = x]
We define a random variable E[Y|X] = h(X).



Contional expectation as a function and a random variable
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Example

Let the joint pmf of X and Y tse defined by

X+Yy

for x =1,2,3 and

= 1,2. One can see that E[Y|X = 1] = % E[Y|X=2]=1
)

E[Y|X =3] =3 7 ((Q
Find the PMF of E[Y|X] and E[E[Y|X]].
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Contional expectation as a function and a random variable

Theorem
1. E[E[Y|X]] = E[Y] " Conditraniy”
2. Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
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Contional expectation as a function and a random variable
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Example

Let X have a Poisson distribution with mean 4, and let Y be a random variable
whose conditional distribution, given that X = x, is binomial with sample size
n = x + 1 and probability of success p.

Find E[Y] and Var(Y).
Y| X ~ Bin(xet, p)d
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Linear case

J,_ o Lonctmm  oF X 21
Suppose E[Y|X = x] is linear in x, that is, E[Y|X = x] = a + bx.

Then we have py = a+ bux and E[XY] = aux + bE[X?].
Solving for a,, we have
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Example
Let X and Y have the trinomial distribution with parameters n, px, py, that is, the
joint pmf is given by X ~ B (n P
/"%
n

f — XpL(1— px — py)" Y.
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A miner is trapped in a mine containing 3 doors.
The first door leads to a tunnel that will take him to safety after 3 hours of travel.

The second door leads to a tunnel that will return him to the mine after 5 hours of

travel.
The third door leads to a tunnel that will return him to the mine after 7 hours.

If we assume that the miner is at all times equally likely to choose any one of the
doors, what is the expected length of time until he reaches safety?
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Section 4.
Bivariate Distributions of the
Continuous Type



Joint PDF

Definition
An integrable function f(x, y) is the joint probability density function of two
random variables X, Y if yemt POF .

o f(x,y)>0

o [[f(x,y)dxdy =1

o P((X,Y) e A) = [[,f(x,y) dxdy >

The marginal density functions for X, Y are
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Joint PDF

Example
Let X and Y have the joint PDF

4

f(x,y) = 5(1 — xy)

for 0 < x,y < 1. Find fx, fy, and P(Y < %).
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Joint PDF

Example
Let X and Y have the joint PDF

. y) = 22(1 = Iy
forE<X,y<1j
Find E[X] and E[Y].
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Definition
Two random variables X, Y with joint pdf are independent if and only if
f(x,y) = fx(x)fy(y).
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Independent random variables

Example 3 WW‘ (Heg — Diﬁm ~A
Let X and Y have the joint pdf f(x,y) =2 for\O <x<y<l1 \ S
Compute P(0 < X, Y < 3). X=0

Are they independent?
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Conditional densities and Conditional Expectation

Definition
The conditional density of Y given X = x is defined by

i) = o2

As in the discrete case, the conditional expectation and the conditional variance are
defined by

E[Y|X = x] = / Ve (v1x) dy,

Var(YIX = x) = EI(Y — B[Y|X = x]PIX = x]= E{ V"o — (B[ Yk-3)
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Conditional densities and Conditional Expectation

E (

_ o f‘
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Example x d
Let X and Y have the joint PDF f(x,y) =2for 0 < x <y < 1.

Then, fx(x) =2(1 —x) for 0 < x <1and fy(y) =2y for 0 < y < 1.
Find E[X|Y = y] and E[Y|X = x].
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Conditional densities and Conditional Expectation

CELYIX)= X4

Example
Let X be U(0, 1), and let the conditional distribution of Y, given X = x be U(x, 2x).
Find IE[Y] and Var(Y).
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Exercise

Let f(x,y) =2e7>7 ,0<x <y, be the joint pdf of X and Y.
Find fx(x) and fy(y). Are X and Y independent?
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Section 5.
The Bivariate Normal Distribution
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Let X be a random variable.

We construct a random variable Y in the following way:

The conditional distribution of Y given X = x satisfies

1. it is normal for each x

. o . (AN
2. B[Y|X =x]islinearinx = E[Y|X=«]= bx+c :P'FIQ‘X‘NQ*‘M\(
3. Var(Y|X = x) is constant in x N 8

Use  Voarl{d = ElVar(¥I0] + Var CE[Y[x])
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Then, Y|X = x is normal with mean p1y + pg~(x — px) and variance o%,(1 - p?).

The conditional density is

. B 1 (v = (uy +pZ(x — ix)))?
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Bivariate normal distribution

K NN (Mx ( G\xk D
If X itself has normal distribution, (X, Y) is called a bivariate normal random

variables. - T




Bivariate normal distribution
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We say (X, Y) has a bivariate normal distribution with mean vector <,ux> and
Ky

2
_ _ o oxo e L
covariance matrix X . X2 V) ifits joint pdf is given by
POXOY Oy

1 1 X2 pxy PP ))
f(x,y) = exp (— (— — 2 +
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where X = x — ux and y =y — uy.
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Bivariate normal distribution

Example

Let us assume that in a certain population of college students, the respective grade
point averages, say X and Y, in high school and the first year of college have a
bivariate normal distribution with parameters ux = 2.9, uy = 2.4, ox = 0.4,

oy = 0.5, and p = 0.6.

Find P(2.1 < Y < 3.3|X = 3.2).
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Bivariate normal distribution

Theorem

If X and Y have a bivariate normal distribution with correlation coefficient p, then X

and Y are independent if and only if p = 0.
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Exercise

For a female freshman in a health fitness program, let X equal her percentage of body
fat at the beginning of the program and Y equal the change in her percentage of body
fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with ? Y‘V N (MY | G,YDW
ux =245, ny = —0.2, ox =4.8, oy =3, and p = —0.32.

o
Find P(1.3 < Y < 5.8), E[Y|X = x], and Var(Y|X = x). Mo N (-8 3)
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