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Section 1.

Bivariate Distributions of the

Discrete Type



Motivation

Suppose that we observe the maximum daily temperature, X , and maximum relative

humidity, Y , on summer days at a particular weather station.

We want to determine a relationship between these two variables.

For instance, there may be some pattern between temperature and humidity that can

be described by an appropriate curve Y = u(X ).

Random.
V



Joint distribution

Let X and Y be two random variables defined on a discrete sample space.

Let S denote the corresponding two-dimensional space of X and Y , the two random

variables of the discrete type.

Definition

The function f (x , y) = P(X = x ,Y = y) is called the joint probability mass function

(joint PMF) of X and Y .

PMF)Prob .
Mass Function) : &(M) = P(X = x)

discrete
-

and"

f(x
, y) = (P(2X = xyn4Y= y4)



Joint distribution

Note that

• 0  f (x , y)  1

•
P

(x ,y)2S f (x , y) = 1

• P((X ,Y ) 2 A) =
P

(x ,y)2A f (x , y)

K

Joint PMF = Prob .

"

=(P - C

& &-PS)



Joint distribution

Example

Roll a pair of fair dice.

Let X denote the smaller and Y the larger outcome on the dice.

Find the joint PMF of (X ,Y ).
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Marginal distribution

Definition

Let X and Y have the joint probability mass function f (x , y).

The probability mass function of X , which is called the marginal probability mass

function of X , is defined by

fX (x) =
X

y

f (x , y) = P(X = x).

fx(x) = (P(X = x

- [P(4x=y=y
all possible

y

= 2 1(x
, y)

Y

tyly) + E f(x , y)



Marginal distribution

Definition

We say X and Y are independent if

P(X = x ,Y = y) = P(X = x)P(Y = y)

for all (x , y) 2 S .

Equivalently, f (x , y) = fX (x)fY (y) for all x , y .

Otherwise, we say X and Y are dependent.

R X
,
Y RV s and

,
s

↑ Indep. if P) X - AGY Y - B)

= P(XEA) (P(Y = B)
General
-

for all possible A
,
B

.

& X
, Y : discrete

Joint PMF =
-

Product of

Marginal PMFs



Marginal distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find the marginal PMFs of X and Y .

Determine whether they are independent.

& &

fx(x = P(x =x = Ef(x , y) = f(x
, 1 + f(x

,2)
y

= E(x+ 1 + 4(x+2) = 4
,
(2x+3)

fy(y) = P(Y = y) = 2)f(x , y) = f(
, y)+7(2

,y) +f (3
,y)

= 2 . ((y +1 + (y +2) + (y+ 3)) = π(3y+b) =F(y+2)

f(x
,y) = f(x) - fyly)

& (x +y) ! (2x+3) · f(y +2)

--

why?
--

dependent.



Marginal distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
xy2

30

for x = 1, 2, 3 and y = 1, 2.

Find the marginal PMFs of X and Y .

Determine whether they are independent.

-> (a function of - [fenction of
y

2

fx() = f(x , + 7(
,
2) = * + *

=*. (5) =

fu(y) =

f(1 , y) + f (2, y) + f(b
,y)

=

+ 2 + = y=
?f (x

,y) = fx(x) - fylys

# - & .



Expectations

Definition

Let X1 and X2 be random variables of the discrete type with the joint PMF f (x1, x2)

on the space S . If u(X1,X2) is a function of these two random variables, then

E[u(X1,X2)] =
X

(x1,x2)2S

u(x1, x2)f (x1, x2).

In particular, if u(x1, x2) = x1, then

E[u(X1,X2)] = E[X1] =
X

(x1,x2)2S

x1f (x1, x2) =
X

x1

x1fX1(x1).

&

-

# W(X,, x2) = X1 -> (X1] = 21 x , f(x,xz)
Xi ,X2

3 = X2 -> (Xz] =2X2 f(xx
/ E X1 + x2- E(X, + xi)

= 2 (x , xd)f(x,x)/
I X1 : X2 X)

,
kn

*
E[X,. x)

= 2 x , .x- f(x ,x2
X, ,42



Expectations

Example

There are eight similar chips in a bowl: three marked (0, 0), two marked (1, 0), two

marked (0, 1), and one marked (1, 1).

A player selects a chip at random.

Let X1 and X2 represent those two coordinates.

Find the joint PMF.

Compute E[X1 + X2].

f(x
, x) = 3/8

, [X1 ,<D = (0
, 0)

2/8 -
(1 , 064 2/8 S 20

,
3)

(1 ,
K

Y8 (

E [X1 + X2] = 2 (x2 +XD f(x1
, x2)

= (010) . + (1+0) . + (0+ 1) · Ea + It

=

0 + # + + =



Trinomial distribution

Example

In manufacturing a certain item, it is found that in normal production about 95% of

the items are good ones, 4% are ”seconds,” and 1% are defective.

A company has a program of quality control by statistical methods, and each hour an

online inspector observes 20 items selected at random, counting the number X of

seconds and the number Y of defectives.

Suppose that the production is normal.

Find the probability that, in this sample of size n = 20, at least two seconds or at

least two defective items are discovered.



Exercise

Roll a pair of four-sided dice, one red and one black.

Let X equal the outcome of the red die and let Y equal the sum of the two dice.

Find the joint PMF.

Are they independent?



Section 2.

The Correlation Coe�cient



Covariance and Correlation coe�cient

Definition

The covariance of X and Y is

Cov(X ,Y ) = E[(X � µX )(Y � µY )].

The correlation coe�cient of X and Y is

⇢ =
Cov(X ,Y )

�X�Y
.

#XX] =Mx ,
ECY) =My

Var(x) =+ , Var(y) = k

X.Y discrete

f
-> I (x- x)(y -My f(x ,y)

x
,y

=but e

Special cases

(i) X = 1 : Gr(X
,
x = ( )(X- x ) ] = Var() =k

P =x
(ii) x = -Y : (v(X

,
- X) = - E((X-Mx)) = - R

p =
- 1 fx(x)· fyly)

Civil indep .

CoV(X : ) =

I! (X=Mx) · (y -My) F(x,y
X

, 4

f(x
, y) = fx(x) tyly)

= (2i(x-Mx)fx()) - )& (y-My fuly



Covariance and Correlation coe�cient

Properties

1. If X and Y are independent, then Cov(X ,Y ) = 0.

2. Cov(X ,Y ) = E[XY ]� E[X ]E[Y ].

3. �1  ⇢  1.

- E[X-Mx] · E[Y-My] = -

-

--

& Cor(x , ) = EC M
= X Y -Mx Y -My X +MxMy

= ECXY] - MxE/Y] -My E(X] +Mx My--
#

T MX

= E [X Y] -

Mx :

My

③ - P 1 E p
=

4 1 P = sis
# Cov(X

,
i) & Var(X) -Var(Y)

((((X--x) - (Y- x)))4(((x- xP)E((Y-Mc)))
#

Canchy-Schwartz Inequality.



Covariance and Correlation coe�cient

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + 2y

18

for x = 1, 2 and y = 1, 2.

Compute Cov(X ,Y ) and ⇢.

Cor(X .4) = E[XY) - E(X) . E(Y]

E(X .Y)=
x . y

. f(xy)

= 1 - 1 - f(l , 1) + 1 2 f(
,
2) + 2 1 #(2 , 1)

+ 2 .2 f (2 ,2)
C M4(2/

18:al+& . 4+22+
E [X] = Ex . f(x

,y)

= 1 . (2) + 1 . 44 + 2 .R2 + 2 .(



The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two

random variables X and Y .

One of natural ways is to consider a linear relation between X and Y , that is, to figure

out the best possible slope b such that Y � µY = b(X � µX ) has small errors.

We measure the error by E[((Y � µY )� b(X � µX ))2].

= ! . (3 + 5 + 8 + 12)
= = =

#(i) = 2 y f(x ,4)

= 1 . (2) + 2 .4 + 1 .R2 + 2.(
= T(3 + 10 + 4 + 12) =

Cor(X
.Y)= -*

-
in b

minimize

Y = b X + c : Linear relation

Y = bx + C
-

H
least

,

E((s) = (b x +3)

↑ A t My = bMx + C

best Choose

approx
c = - bMx +My

I Y -My = b(X-x)
minimize

I "

error



The Least Squares Regression Line

One can see by some calculus that the error is minimized when

b = ⇢
�Y
�X

and the minimum error is �2
Y (1� ⇢2).

The line Y � µY = ⇢�Y
�X

(X � µX ) is called the line of best fit, or the least squares

regression line.

P = se

= G . Es = Corls e

Y -

My =P(X -My

y -

My = P-( -Mx)

YX Tit
~I It

In

-->
X



The Least Squares Regression Line

Example

Let X equal the number of ones and Y the number of twos and threes when a pair of

fair four-sided dice is rolled.

Then X and Y have a trinomial distribution.

Find the least squares regression line.

Trinomial
-

- p
.(x

-Mx)
+M

O

E Y I

E /

My= Wy =

2

MX = Tx =

~ Bin /2 , I * ~ B (2 ,E
-

Exercise-fl x
, y) = ( X=0

. y =0

↑ 2:(() X = 1
, Y Fo

-> G(xY)
X = 2

, y =0

X = 0 -Y
=/

i &



Trinomial distribution

Consider an experiment with three outcomes, say perfect, seconds, and defective.

Let p1, p2, p3 be the corresponding probabilities.

Repeat the experiment n times and let X , Y be the numbers of perfect and seconds.

We say (X ,Y ) has the trinomial distribution.

Pl +P2+P3 = 1

D -..... []
(i)n times

f(x
,y =*in-x-

x
-

y
. p

- (x+y)
PH Pa

Among I trials

secondsI many perfect,y manye
any det.



Uncorrelated

We say X ,Y are uncorrelated if ⇢ = 0.

If X ,Y are independent then they are uncorrelated.

However, the converse is not true.

Ne X
,
Y indep * P = 0 = Cor(X ,Y)

Thereexist X 4 such that

CorlX .Y = 0 but

X
, Y dependent .

Exercise : Find an example &



Uncorrelated

Example

Let X and Y have the joint pmf f (x , y) = 1
3 for (x , y) = (0, 1), (1, 0), (2, 1).

fx(0) =5 fy(1)=

Indep C
f(x

,y) = f(x) -f
f(0 . 1 = . Not inde.

W v V

# X Y) = 0 . 1.700 . 11 + 1 . 0 . f(1 , 0) +2
- 1 f(2, 1)

- -
-

--

Z
I

3

E [X] = 0 Fo . D + 1 F(1
,
01 + 2 . f(2

. D = 1

# (Y) = 0 +(10) + 1 f(0 , 1) + 1 f (2 , 1) = =
Cov(X ,Y = E(XY) - ([X] #(Y)

= - + -

= 0
.

X
,
4 uncorrelated.



Exercise

The joint pmf of X and Y is f (x , y) = 1
6 , 0 < x + y < 2, where x and y are

nonnegative integers.

Find the covariance and the correlation coe�cient.



Section 3.

Conditional Distributions



Conditional distribution

Definition

The conditional probability mass function of X , given that Y = y , is defined by

fX |Y (x |y) =
f (x , y)

fY (y)
.

+x /y(x(y) = P(X = x/Y= y)

-X= x
,
Y= y)

P(Y= y)
joint PMF

= Ex marginal of Y



Conditional distribution

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. We have shown that

fX (x) =
2x + 3

21
, fY (y) =

3y + 6

21
.

Find the conditional PMFs.

f / y(X / y) = Elit = /2 = Ite
(x+y)/2)fix(y(x) = E = 2
-



Conditional distribution

Definition

The conditional expectation of Y given X = x is defined by

E[Y |X = x ] =
X

y

yfY |X (y |x).

The conditional variance of Y given X = x is defined by

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ]

= E[Y 2|X = x ]� (E[Y |X = x ])2.

In general #[UlY)/x =& = E1Ucy) Fill
e



Conditional distribution

Example

Let the joint PMF of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2.

Find E[Y |X = 3] and Var(Y |X = 3).

Let X . 4 be RVs with joint PMF
.

X 14=

y
conditional PMF fXlY(X(y) = P(X = x / Y= y) = El

L
YIX= x L fY(X(y(x) = Axie

Conditional Expectation

# (u(X)(Y = y) =
u( · Fxy(yy

Var(X(Y=y) = [(X - E /X /Y=3))
"

/Y = y]

- # (X /Y= y) - (t(X/Y=y])

&fisix(y(y)= s

2

#/Y(x =3] = Y . fix(

I
1
- At + 2 .A=

= H
.

2

#Y(x =3) = I 2

q=,
y . fu(x(y/3)

= +: At + 2 .A =

20
- I

Var(Y(x =x = /Y x=3) - (E(Y(x=3])= -(



Contional expectation as a function and a random variable

One can consider E[Y |X = x ] as a function of x .

Say h(x) = E[Y |X = x ]

We define a random variable E[Y |X ] = h(X ).

#) /X = =3 =

yAxlyOf
a functioo the

= h(x)

Consider 2)X) -> a new random variable

= /X] notation



Contional expectation as a function and a random variable

Example

Let the joint pmf of X and Y be defined by

f (x , y) =
x + y

21

for x = 1, 2, 3 and y = 1, 2. One can see that E[Y |X = 1] = 8
5 E[Y |X = 2] = 11

7

E[Y |X = 3] = 14
9

Find the PMF of E[Y |X ] and E[E[Y |X ]].

#2) = # y
. fy(y) figly) = = **

= 1 : fyll) + 2 - Fyly)

= 1 . E + 2 . 4 =
# [ECYIX)) = =

.

-x(x)=

sign)
=

e
-

-- n

(Y(X= x)
= = ECYIX] as a RV

.

What is the PMF of ElYIx] ? I h(x =

( +
if x=

if x=2

fz(z) = P)E(Y(X) = x) =

↳ if x=3

z=B z= h(X)
an

*
5

P(((Y(X) = = ) = P(h(X)= ) = P(x = 1) = I

P(E(Y(X) =+ = P(X =2)=
P(t(Y(X) = 14) = (V = 3) =



Contional expectation as a function and a random variable

Theorem

1. E[E[Y |X ]] = E[Y ]

2. Var(Y ) = E[Var(Y |X )] + Var(E[Y |X ])

5

fz)zl -

S E
< z=

·

z=
-
21

- = #
# X] = 2 E(Y(X = x) · fz(x)

*

= ·

=
. + + =

"Conditioning"

E1E11X]
=

=1*x=x1-
-

= y #.-
E y - f(x

,y)
= E(Y).

.



Contional expectation as a function and a random variable

Example

Let X have a Poisson distribution with mean 4, and let Y be a random variable

whose conditional distribution, given that X = x , is binomial with sample size

n = x + 1 and probability of success p.

Find E[Y ] and Var(Y ).

CEXp. RV mean =4 implies x=
X=4

Y/X = xwBin(x+1
, pl

E(Y) = /XIX]] = E((X + 1) - p]

=

P . (E(X) + 1) = 5p .

Var() = E) VarIX)] + Var(t[YIXT)

= E((X+1) .

p . (p)] + Var/(X+D )

= P . (p)( # (x) +1) + p2. Var(XL
mik -

4

= Sp(tp) + 4p2
,



Linear case

Suppose E[Y |X = x ] is linear in x , that is, E[Y |X = x ] = a+ bx .

Then we have µY = a+ bµX and E[XY ] = aµX + bE[X 2].

Solving for a,, we have

a = µY � ⇢
�Y
�X

µX , b = ⇢
�Y
�X

.

Thus,

E[Y |X = x ] = µY + ⇢
�Y
�X

(x � µX ).

If E[Y/X= x] = a + bx

E(VIX) = a +bX
,

X . #(Y(X) = aX + bx2

My
= E(4) = E(t(Y(X)) = E(a +bx) = a + b . E(X) = a +bMx

-

E(XY] = ((((XY(x]) = *#** (Y(X7] = ((ax + b x ) = aE(x) + bE(x)

2
a
function of e :

--
what is this !

# (x2) = Var(X) + (t(xj P = 4 +M>

Cov1X
, 1) = E[X . Y) - E[X) . ECY)

E(XY) = Cor(X
,4) + MxiMy =

P- Tx . Ty +MXMy
-

Y = a + bX -> minimize errors

-> (Y-My) = p. (X-Mx)

Y -

My = P
. Ex(X -Mx) : line of best fit

least square regression



Linear case

Example

Let X and Y have the trinomial distribution with parameters n, pX , pY , that is, the

joint pmf is given by

f (x , y) =

✓
n

x , y

◆
pxXp

y
Y (1� pX � pY )

n�x�y .

Find E[Y |X = x ].

- Ax = b

escet

consistent

Algebr

sure
solution

= projection
Conditional Expectation = "Projection

Cy =

in!
= ( ** ) . (vie

X~Bin(n
, Px)

fx(x = 2f(x ,y) = (4x) . p* (5 px

M

f

Each experiment has three results A
,
B

,
C

PX Py Pz
t

(Px Py + Pz = 1)

Repeata times

X = # of A ,
Y = # of B

#(Y(X = x) = y . tyx(y() = 2, y .

Ext
fx(x)

frix(y(x) = * ) ( *** ) ** Py It Px-Pyl-
* -Y

-

(n-x- y) + y# · (tPx)
(n-x) -

y= (n - ) .),



Exercise

A miner is trapped in a mine containing 3 doors.

The first door leads to a tunnel that will take him to safety after 3 hours of travel.

The second door leads to a tunnel that will return him to the mine after 5 hours of

travel.

The third door leads to a tunnel that will return him to the mine after 7 hours.

If we assume that the miner is at all times equally likely to choose any one of the

doors, what is the expected length of time until he reaches safety?

Y(X= x - Bin(n-x,
P4 +Pz

E(((X = x) = in - x) .I
E(X) = E [ # [X 147]

↳
5+ E[X]

/#
= [x 1 Y = 1) . P(Y= 11 + E/ * /Y= 2) . P(Y=2)

3
=

+ E[X/Y= 3) . P(Y= 3)= -

(
7+ E[X]

E(x) = 3 :5 + (5+ E(X), + ( + (x)) + - ((x) =D
,

5 hr * = length of time

-
until safety

a : E[X] =?

Ii 3 hr

7 Safety

Y = 1 with prob. ↳

G 4 2
4/

3
The s



hy)= E(X(Y = y = 2x · fx((ly) => a function
*

-
Ase

of y

ESX 14] = h(Y) : a RV
.

hold for

E [X] = E([X/Y)] & any
RVs

# <X . Y) = EL Y . E[XIY]]

Var(X) = E[Var(X/Y)] + Var) E(x/Y))

E(X + Y] = E[X) + ECY]

E [X . Y) = E[X] E/Y] when X
,
4 Indep

Var(x + 4) = E((x + k5) - (t(x+y))
-

= E [X2 + 2xY +y4 - (E(x)) - 2[x]E(Y]
- ((YJP

= Var(X) + Var(Y) + 2 Cor(x , Y)

If X , 4 indep .

then Cor(x , ) = 0
,

Var (x + Y) = Var(X) + Varly)



Section 4.

Bivariate Distributions of the

Continuous Type



Joint PDF

Definition

An integrable function f (x , y) is the joint probability density function of two

random variables X ,Y if

• f (x , y) � 0

•
RR

f (x , y) dxdy = 1

• P((X ,Y ) 2 A) =
RR

A f (x , y) dxdy

The marginal density functions for X ,Y are

fX (x) =

Z
f (x , y) dy , fY (y) =

Z
f (x , y) dx .

Pat

yA/Y---x



Joint PDF

Example

Let X and Y have the joint PDF

f (x , y) =
4

3
(1� xy)

for 0 < x , y < 1. Find fX , fY , and P(Y  X
2 ).

y

A -

iii. support
ofis e

· !

fx(x = (f(x ,y)dy = ( (1- xy) by
= ((y - !xy2)] = ( - -x)

f((y) = (f(x ,y)dX = ) (1- xy)dx
- ((x - tyx) = + (1 - ty)



P(Y - ) = J fixyldy &x -
--

1

= SS Fix
.ydxdy

↳ -A

= IP) (X , Y) E Al

·= f) = (1 - xy) dyd -
O O

&

= 5 [(y - - . y2sJ dx

= [ - * ]dx = .) - *
-# . ( - -2)



Joint PDF

Example

Let X and Y have the joint PDF

f (x , y) =
3

2
x2(1� |y |)

for �1 < x , y < 1.

Find E[X ] and E[Y ].

X .
Y have the joint PDF f(x ,y)

#[u(X , Y (7 = () U(x ,y) f(x ,y)dxdy

# [x] = S) x · f(x . y)dxdy

# (1) = S) y - fk ,y)dxdy .

-

# (X] = )) x · f(x
,y)dxdy

= (f) x . = . x2 . (1 1y))kx dy
I

=3) , (1 1yK((
+
x3dx) dy

= 0

-
= o

·Fin
# (1) = /! S! y . x ( + (1)

&x dy

= ((x= dx)(Siy(1- 1yKdy)



Independent random variables

Definition

Two random variables X ,Y with joint pdf are independent if and only if

f (x , y) = fX (x)fY (y).

.
=

.
2 . (6, x2 dx)o

Y - (t (4) = >/(+
- y) if 37.

I
Y(c +y) if ya

+⑭y

Note
Each RV has PDF

-

↓ If X
,
Y Indep .

conti
.
RVs,

then

there is a joint PDF f(x
,y) = fx(x) · fuly)

.

& In general
,

there is a case that

we have

X
. Y are continuous RV (fxX , fyly)

but there is no joint PDF
.



Independent random variables

Example

Let X and Y have the joint pdf f (x , y) = 2 for 0 < x < y < 1.

Compute P(0 < X ,Y < 1
2).

Are they independent?

3 inequalities ->
Define

a region

X=0

x=y E x = y

P)0(X ,Y(E) = # · y= 1

↓

I f= 2
give

-

/ i/
y=

I
/ Yoa/
to

I

·
>

x



Conditional densities and Conditional Expectation

Definition

The conditional density of Y given X = x is defined by

fY |X (y |x) =
f (x , y)

fX (x)
.

As in the discrete case, the conditional expectation and the conditional variance are

defined by

E[Y |X = x ] =

Z
yfY |X (y |x) dy ,

Var(Y |X = x) = E[(Y � E[Y |X = x ])2|X = x ].= E(y2X= x] - (t(Y(=xE)

# u(Y)/X= x) = (u(y) Fyx 'y(x) by



Conditional densities and Conditional Expectation

Example

Let X and Y have the joint PDF f (x , y) = 2 for 0 < x < y < 1.

Then, fX (x) = 2(1� x) for 0 < x < 1 and fY (y) = 2y for 0 < y < 1.

Find E[X |Y = y ] and E[Y |X = x ].

--y1

*-
.
F&x -- -

-

I
I ·-->

.
i

musy ? 1 ?

# ( X / 4= 1) =

/x Ally + . (xxx = 5 ./E.= S *

O

E #

#(4(X = x] = /y - Fy)x(y(x)dy
= S'y. dy

x

=* [ * ] = # . . (1 - x)

= In



Conditional densities and Conditional Expectation

Example

Let X be U(0, 1), and let the conditional distribution of Y , given X = x be U(x , 2x).

Find E[Y ] and Var(Y ).

E(X/Y]=, [YIX) -

Y
-D

--· ④Yot 2X

YIX ~ Unif

E(Y) = E [E[Y/X)]

= E ** J = E[X) = . E=



Recall
· X ,

Y have joint PDF if

f(x ,y) > 0

4 ( f(x
, y) dxdy = 1

PC (X
. Y ( = Al = (S

A
F(x , y) dxdy

· E(u(X ,Y)] U(X , y) = x o y or x2
, y, xy

= S) u(x
,y) f(x , ys dxdy

* Conditional density : fylx(q(x) - PDF of Y /X = x

= Exite
fx(x) = ) f(x , y)dy

# [ 1(X = x) = y . Fu(x(y( by



Exercise

Let f (x , y) = 2e�x�y , 0 < x  y < 0 , be the joint pdf of X and Y .

Find fX (x) and fY (y). Are X and Y independent?

·

- -

304x > y} defines a region where f(x
,y)7o

Consists of two ineq. x > 0
X=0

-

yx

y =

* y-axis
EiX = D

4
>°

define the boundary
m

fx() = ( f(x ,y)dy
⑭

4 -
m

fixed

= 25
*

-Hdy = 25
* J, dy

E

4
25

* Fet] = 25*.* = Le
**

for X > D

/

O for X 20



fixed
↓

- x jyfy(y) = (Wf(x ,y)4x = (2* - 3
&x = 22/ - e

-

= 24(1 - et) for y > 0 Rxd
-4

O for yo

-

Rall X
, Y indep if and only if

f(x
,y)

= Fx(x) · fyly)

f(x
,y) = 2

*-y # 2**eliei = Exx fly)
X

. Y Not indep .

Recall X -Exp(x) f(x) = x
**

,

x > 0
-



Section 5.

The Bivariate Normal Distribution



Motivation

Let X be a random variable.

We construct a random variable Y in the following way:

The conditional distribution of Y given X = x satisfies

1. it is normal for each x

2. E[Y |X = x ] is linear in x

3. Var(Y |X = x) is constant in x

* ~N(M .
- (M = mean = E(X), +

=

= Var(x))

- M
f(x) = e ,

- xXs0

& : Normal
,
Gaussian

=> E(Y(X= x) = bx + c = p. (x-Mx) +My

- Var(Y(x=x = MY (1- PY

Use Var(() = #[Var(Y(X)) + Var(ESY(X])

Y(X = x- N(p(x-Mx) +My , kj(tpY)
-(px(x-Mx) +M

Fyxyie)= e 24(tp2)



Motivation

Then, Y |X = x is normal with mean µY + ⇢�Y
�X

(x � µX ) and variance �2
Y (1� ⇢2).

The conditional density is

fY |X (y |x) =
1

�Y
p
2⇡
p

1� ⇢2
exp

 
�
(y � (µY + ⇢�Y

�X
(x � µX )))2

2�2
Y (1� ⇢2)

!

t

X- N(Mx , - (

=> (X .YL Bivariate Normal
.

f(x
, y = Fyx(yIn) - fy()
-

*-Me



Bivariate normal distribution

If X itself has normal distribution, (X ,Y ) is called a bivariate normal random

variables.

X ~N(Mx ,
Ox L

-

--
-



Bivariate normal distribution

Definition

We say (X ,Y ) has a bivariate normal distribution with mean vector

 
µX

µY

!
and

covariance matrix

 
�2
X ⇢�X�Y

⇢�X�Y �2
Y

!
if its joint pdf is given by

f (x , y) =
1

2⇡�X�Y
p

1� ⇢2
exp

✓
� 1

2(1� ⇢2)

✓
x̄2

�2
X

� 2
⇢x̄ ȳ

�X�Y
+

ȳ2

�2
Y

◆◆

where x̄ = x � µX and ȳ = y � µY .

multivariate (Ex(X1. Xc
,

--

-Xn Normal

-j =(- 2 p. +) +I
Cov(X , X) Cor(X

,Y)
-AL I = <i 3) /r Orig &CorlY

,
x) Cor(Y

. Y)

T): Bivariate Normal

= E
Y(X = x : Normal

* : Normal



Bivariate normal distribution

Example

Let us assume that in a certain population of college students, the respective grade

point averages, say X and Y , in high school and the first year of college have a

bivariate normal distribution with parameters µX = 2.9, µY = 2.4, �X = 0.4,

�Y = 0.5, and ⇢ = 0.6.

Find P(2.1 < Y < 3.3|X = 3.2).

"(
IX= x = PAC-MA,

&

Y(X = x ~ N(p .* (x- x +My , -j(t-pY(

Y I X = 3
.
2 ~ N) 0

.625(3 .

2- 2
.9) + 2

.4
,
(0.

55 (+ 0
.3.

--
-

52
m

S

P(2 . ) > Y <3
.3/X = 3

.

2) W

= RISW13.3) WeAmis10.
= P2jmzine - WN(0 , )

-use the table.



Bivariate normal distribution

Theorem

If X and Y have a bivariate normal distribution with correlation coe�cient ⇢, then X

and Y are independent if and only if ⇢ = 0.

Recall x , 4 are uncorrelated if Cork4)- E
p = 0

Fact
-

. If X
. Y indep - X

. I uncorrelated

· The converse is not true in general

In other words
,

CX . Y( independent # (X
.Y) uncorrelated

.

-(x
. y)=its EXPt2py (tpEr+ )

if p = 0

-
. Ep, exp
7t .) +l

= Fx(x) . 84(Y)



Exercise

For a female freshman in a health fitness program, let X equal her percentage of body

fat at the beginning of the program and Y equal the change in her percentage of body

fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with

µX = 24.5, µY = �0.2, �X = 4.8, �Y = 3, and ⇢ = �0.32.

Find P(1.3 < Y < 5.8), E[Y |X = x ], and Var(Y |X = x).

=> YwN(My , KY)

Y- N) -2.
2 13

-

--
-

IP(1
.
3) Y < 5 . 8)

* 0
.2)
~No

= IP) '=50. 2) < z <E.
= P( + /z < - = P(0 . 5 z (2)

= &(2) - (0 . 5) ( Use the table (

E(Y(X = x] = P. (x -Mx) +My

Var(Y)(X= =⑭( P2)
doesnot depend



0


