Chapter 4. Bivariate Distributions

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Bivariate Distributions of the Discrete Type

Motivation

Suppose that we observe the maximum daily temperature, X, and maximum relative humidity, Y, on summer days at a particular weather station.

We want to determine a relationship between these two variables.
For instance, there may be some pattern between temperature and humidity that can be described by an appropriate curve $Y=u(X)$.

PMF (Prob. Mass Function): $f(x)=\mathbb{P}(X=x)$

Joint distribution
discrete
Let X and Y be two random variables defined on a discrete sample space.
Let S denote the corresponding two-dimensional space of X and Y, the two random variables of the discrete type.

Definition
The function $f(x, y)=\mathbb{P}(X=x(Y=y)$ is called the joint probability mass function (joint PMF) of X and Y.

$$
f(x, y)=\mathbb{P}(\{x=x\} \cap\{Y=y\})
$$

Joint distribution

$$
\text { Joint PMF }=\text { "prob." }
$$

Note that

$$
=\mathbb{P}(\longrightarrow)
$$

- $0 \leq f(x, y) \leq 1 \quad P(\xi)$
- $\sum_{(x, y) \in S} f(x, y)^{s}=1$
- $\mathbb{P}((X, Y) \in A)=\sum_{(x, y) \in A} f(x, y)$

Joint distribution

Example ($\&$ faced)

Roll a pair of fair dice.
Let X denote the smaller and Y the larger outcome on the dice.
Find the joint PMF of (X, Y).

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{16} & ,(x, y)=(1,1) \\
\frac{1}{8} & (1,2) \\
\frac{1}{8} & (1,3) \\
\frac{1}{8} & 11,4) \\
\frac{1}{16} & , \\
\vdots & \\
\vdots & \\
& \\
& (2,2) \\
& (3,4) \\
& (3,3) \\
& (4,4)
\end{array}\right.
$$

Definition
Let X and Y have the joint probability mass function $f(x, y)$.
The probability mass function of X, which is called the marginal probability mass function of X, is defined by

$$
\begin{aligned}
f_{X}(x) & =\sum_{y} f(x, y)=\mathbb{P}(X=x) . \\
f_{X}(x) & =\mathbb{P}(X=x) \\
& =\sum_{\text {all }}^{1} \mathbb{P}\left(\frac{p o s s i b l e}{y}\{x=x\} \cap\{Y=y\}\right) \\
& =\sum_{y}^{1} f(x, y) \\
f_{y}(y) & =\sum_{x} f(x, y)
\end{aligned}
$$

Def X, Y RVs

General
Indep. if

$$
\begin{aligned}
& =\mathbb{P}(x \in A) \mathbb{P}(\gamma \in B)
\end{aligned}
$$

for all possible A, B.

Definition ($X, Y:$ discrete)
We say X and Y are independent if
Joint PMF $=\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)=$ Puduct of for all $(x, y) \in S$.

Equivalently, $f(x, y)=f_{X}(x) f_{Y}(y)$ for all x, y.
Otherwise, we say X and Y are dependent.

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}
$$

for $x=1,2,3$ and $y=1,2$.
Find the marginal PMFs of X and Y.
Determine whether they are independent.

$$
\begin{aligned}
f_{X}(x)= & \mathbb{P}(x=x)=\sum_{y} f(x, y)=f(x, 1)+f(x, 2) \\
= & \frac{1}{21}(x+1)+\frac{1}{21}(x+2)=\frac{1}{21}(2 x+3) \\
f_{Y}(y)= & P(Y=y)=\sum_{x} f(x, y)=f(1, y)+f(2, y)+f(3, y) \\
= & \frac{1}{21} \cdot((y+1)+(y+2)+(y+3))=\frac{1}{21}(3 y+6)=\frac{1}{7}(y+2) \\
& f(x, y)=\underset{x}{f(x)-f_{Y}(y)}
\end{aligned}
$$

$$
\frac{1}{21}(x+y) \underset{\text { why? }}{\neq \frac{1}{21}(2 x+3) \cdot \frac{1}{7}(y+2)}
$$

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x y^{2}}{30}=(\text { a function of } x) \cdot(\text { function of })
$$

for $x=1,2,3$ and $y=1,2$.
Find the marginal PMFs of X and Y.
Determine whether they are independent.

$$
\begin{aligned}
f_{X}(x)= & f(x, 1)+f(x, 2)=\frac{x \cdot r^{2}}{30}+\frac{x \cdot 2^{2}}{30} \\
f_{Y}(y)= & \frac{x}{30} \cdot(5)=\frac{x}{6} \\
= & \frac{1 \cdot y^{2}}{30}+\frac{2 \cdot y^{2}}{30}+\frac{3 \cdot y^{2}}{30}=\frac{6}{30} \cdot y^{2}=\frac{y^{2}}{5} \\
& f(x, y)=f_{X}(x)-f_{Y}(y) \\
& \frac{x y^{2}}{30}=\frac{x}{6} \cdot \frac{y^{2}}{3}
\end{aligned}
$$

Expectations

Definition
Let X_{1} and X_{2} be random variables of the discrete type with the joint PMF $f\left(x_{1}, x_{2}\right)$ on the space S. If $u\left(X_{1}, X_{2}\right)$ is a function of these two random variables, then

$$
\underline{\mathbb{E}\left[u\left(X_{1}, X_{2}\right)\right]}=\sum_{\left(x_{1}, x_{2}\right) \in S} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) .
$$

In particular, if $u\left(x_{1}, x_{2}\right)=x_{1}$, then

$$
\mathbb{E}\left[u\left(X_{1}, X_{2}\right)\right]=\mathbb{E}\left[X_{1}\right]=\sum_{\left(x_{1}, x_{2}\right) \in S} x_{1} f\left(x_{1}, x_{2}\right)=\sum_{x_{1}} x_{1} f_{X_{1}}\left(x_{1}\right) .
$$

Ex $u\left(x_{1}, x_{2}\right)=x_{1} \rightarrow \mathbb{E}\left[x_{1}\right]=\sum_{x_{1}, x_{2}} x_{1} f\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& " \quad x_{2} \longrightarrow E\left[x_{2}\right]=\sum_{x_{1}, x_{2}}^{f} x_{2} f\left(x_{1}, x_{2}\right) \\
& \prime \quad=x_{1}+x_{2} \rightarrow \mathbb{E}\left[x_{1}+x_{2}\right] \\
& =x_{1} \cdot x_{2}=\sum_{x_{1}, x_{2}}^{t}\left(x_{1}+x_{2}\right) f\left(x_{1}, x_{2}\right) \\
& E\left[x_{1} \cdot x_{2}\right] \\
& =\sum_{x_{1}, x_{2}} x_{1} \cdot x_{2} \cdot f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Example
There are eight similar chips in a bowl: three marked $(0,0)$, two marked $(1,0)$, two marked $(0,1)$, and one marked $(1,1)$.

A player selects a chip at random.
Let X_{1} and X_{2} represent those two coordinates.
Find the joint PMF.
Compute $\mathbb{E}\left[X_{1}+X_{2}\right]$.

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \begin{cases}3 / 8,\left(x_{1}, x_{2}\right)=(0,0) \\
2 / 8, & (1,0) \\
2 / 8, & (0,1) \\
1 / 8 & (1,1)\end{cases} \\
& \mathbb{E}\left[x_{1}+x_{2}\right]=\sum_{1}\left(x_{1}+x_{2}\right) f\left(x_{1}, x_{2}\right) \\
&=(0+0) \cdot \frac{3}{8}+(1+8)-\frac{2}{8}+(0+1) \cdot \frac{2}{8}+(1+1) \frac{1}{8} \\
&=0+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4} .
\end{aligned}
$$

Trinomial distribution

Example

In manufacturing a certain item, it is found that in normal production about 95% of the items are good ones, 4% are "seconds," and 1% are defective.

A company has a program of quality control by statistical methods, and each hour an online inspector observes 20 items selected at random, counting the number X of seconds and the number Y of defectives.

Suppose that the production is normal.
Find the probability that, in this sample of size $n=20$, at least two seconds or at least two defective items are discovered.

Exercise

Roll a pair of four-sided dice, one red and one black.
Let X equal the outcome of the red die and let Y equal the sum of the two dice.
Find the joint PMF.
Are they independent?

Section 2.
The Correlation Coefficient

Covariance and Correlation coefficient

$$
\begin{array}{ll}
\mathbb{E}[x]=\mu_{x} & \mathbb{E}[Y]=\mu_{Y} \\
\operatorname{Var}(x)=\sigma_{x}^{2} & , \quad \operatorname{Var}(Y)=\sigma_{Y}^{2}
\end{array}
$$

Definition
The covariance of X and Y is X, Y discrete

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\sum_{x, y}^{+}\left(x-\mu_{x}\right)\left(y-\mu_{Y}\right) f(x, y)
$$

The correlation coefficient of X and Y is

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \cdot=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Special cases
(i) $\quad X=Y: \operatorname{Cov}(x, x)=\mathbb{E}\left[\left(x-\mu_{x}\right)^{2}\right]=\operatorname{Var}(x)=\sigma_{x}^{2}$

$$
\rho=\frac{\operatorname{cov}(x, x)}{\sigma_{x} \cdot \sigma_{x}}=1
$$

(ii) $\quad X=-Y: \operatorname{Cov}(x,-x)=-\mathbb{E}\left[\left(X-\mu_{x}\right)^{2}\right]=-\sigma_{x}^{2}$

$$
\rho=-1
$$

$f_{X}(x) \cdot f_{y}(y)$
(iii) X, Y indep. $\operatorname{Cov}(x, y)=\sum_{x, y}\left(x-\mu_{x}\right) \cdot\left(y-\mu_{y}\right) \cdot f(x, y)$

$$
f(x, y)=f_{x}(x) f_{y}(y)=\left(\sum_{x}^{x, y}\left(x-\mu_{x}\right) f_{x}(x)\right)-\left(\sum_{y}\left(y-\mu_{y} f_{y}(y)\right)\right.
$$

$$
=\underbrace{\mathbb{E}\left[x-\mu_{x}\right]}_{\substack{\| \\ 0}} \cdot \mathbb{E}[\underbrace{}_{s_{0}}\left[-\mu_{Y}\right]=0
$$

Covariance and Correlation coefficient

Properties

1. If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.
2. $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
3. $-1 \leq \rho \leq 1$.
(2)

$$
\left.\begin{array}{rl}
\operatorname{Cov}(x, Y)= & \mathbb{E}[\underbrace{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)}] \\
& =X Y-\mu_{X} \cdot Y-\mu_{Y} \cdot X \\
= & \mathbb{E}[X Y]-\mu_{x} \cdot \mu_{Y} \\
\mu_{X} \mathbb{E}[Y] \\
\mu_{Y}
\end{array} \mu_{Y} \frac{\mathbb{E}[X]}{\mu_{Y}^{\prime}}+\mu_{X} \mu_{Y}\right)
$$

(3) $-1 \leqslant \rho \leqslant 1$

$$
\rho^{2} \leqslant 1
$$

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)-\operatorname{Var}(Y)}}
$$

$$
\Leftrightarrow \quad \operatorname{Cov}(x, Y) \leqslant \operatorname{Var}(x) \cdot \operatorname{Var}(y)
$$

$$
\Leftrightarrow\left(\mathbb{E}\left[\left(x-\mu_{x}\right)-\left(Y-\mu_{Y}\right)\right]\right)^{2} \leqslant \mathbb{E}\left[\left(x-\mu_{x}\right)^{2}\right] \mathbb{E}\left[\left(\gamma-\mu_{Y}\right)^{2}\right]
$$

Cauchy - Schovartz Inequality.

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x+2 y}{18}
$$

for $x=1,2$ and $y=1,2$.
Compute $\operatorname{Cov}(X, Y)$ and ρ.

$$
\begin{aligned}
\operatorname{Cov}(x, Y)= & \mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
\mathbb{E}[X \cdot Y]= & \sum_{x, y}^{-1} x \cdot y \cdot f(x, y) \\
= & 1 \cdot 1 \cdot f(1,1)+1-2 f(1,2)+2 \cdot 1 \cdot f(2,1) \\
& +2 \cdot 2 f(2,2) \\
= & 1 \cdot \frac{(1+2)}{18}+2 \cdot \frac{(1+4)}{18}+2 \cdot \frac{(2+2)}{18}+4 \cdot \frac{(2+4)}{18} \\
= & \frac{1}{18}(3+10+8+24)=\frac{45}{18}=\frac{5}{2} \\
\mathbb{E}[X]= & \sum_{x, y} x \cdot f(x \cdot y) \\
= & 1 \cdot \frac{(1+2)}{18}+1 \cdot \frac{(1+4)}{18}+2 \cdot \frac{(2+2)}{18}+2 \cdot \frac{(2+4)}{18}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{18} \cdot(3+5+8+12)=\frac{28}{18}=\frac{14}{9} \\
\mathbb{E}[Y] & =\sum_{x, y} y f(x, y) \\
& =1 \cdot \frac{(1+2)}{18}+2 \cdot \frac{(1+4)}{18}+1 \cdot \frac{(2+2)}{18}+2 \cdot \frac{(2+4)}{18} \\
& =\frac{1}{18}(3+10+4+12)=\frac{29}{18} \\
\operatorname{Cov}(X, Y) & =\frac{5}{2}-\frac{14}{9} \cdot \frac{29}{18}
\end{aligned}
$$

The Least Squares Regression Line

Suppose we are trying to see if there is a pattern or a certain relation between two random variables X and Y.

One of natural ways is to consider a linear relation between X and Y, that is, to figure out the best possible slope b such that $Y-\mu_{Y}=b\left(X-\mu_{X}\right)$ has small errors.

We measure the error by $\mathbb{E}\left[\left(\left(Y-\mu_{Y}\right)-b\left(X-\mu_{X}\right)\right)^{2}\right]$.
minimize in b
$Y=b X+c:$ Linear relation

minimize
"error"

$$
P=\frac{\operatorname{Cov}(x, y)}{\sigma_{X} \sigma_{y}}
$$

The Least Squares Regression Line

One can see by some calculus that the error is minimized when

$$
b=\rho \frac{\sigma_{Y}}{\sigma_{X}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \cdot \frac{\sigma_{Y}}{\sigma_{X}}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}
$$

and the minimum error is $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$.
The line $Y-\mu_{Y}=\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)$ is called the line of best fit, or the least squares regression line.

$$
\begin{aligned}
& Y-\mu_{Y} \approx \rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
& y-\mu_{Y}=\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(\mathbb{X}-\mu_{X}\right)
\end{aligned}
$$

Trinomial

The Least Squares Regression Line

Example
Let X equal the number of ones and Y the number of twos and threes when a pair of fair four-sided dice is rolled.

Then X and Y have a trinomial distribution.
Find the least squares regression line.

$$
y=\rho \cdot \frac{\sigma_{x}}{\sigma_{x}}\left(x-\mu_{x}\right)+\mu_{y}
$$

$$
Y=\left\{\begin{array}{l}
0 \\
1 \\
2
\end{array}\right.
$$

$$
\mu_{x}=
$$

$$
\sigma_{x}=
$$

$$
\mu_{Y}=\quad \sigma_{Y}=
$$

$$
x \sim \operatorname{Bin}\left(2, \frac{1}{4}\right)
$$

$$
\underline{Y} \sim \operatorname{Bin}\left(2, \frac{1}{2}\right)
$$

Exercise

$$
f(x, y)=\left\{\begin{array}{c}
\left(\frac{1}{4}\right)^{2} \\
2 \cdot\left(\frac{1}{4}\right)^{1}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{4}\right)^{1}
\end{array}\right.
$$

$$
\begin{aligned}
& x=, \quad y=0 \\
& x=1, y=0 \\
& x=2, y=0 \\
& x=0, y=1
\end{aligned}
$$

Trinomial distribution

$$
p_{1}+p_{2}+p_{3}=1
$$

Consider an experiment with three outcomes, say perfect, seconds, and defective.
Let p_{1}, p_{2}, p_{3} be the corresponding probabilities.
Repeat the experiment n times and let X, Y be the numbers of perfect and seconds.
We say (X, Y) has the trinomial distribution.

$$
\begin{aligned}
& \binom{n}{x} \cdot(\begin{array}{c}
n-x \\
y \leqslant
\end{array} \underbrace{n!y!(n-x-y)}_{\text {Among } \quad n \text { times }} p_{1}^{x} \cdot p_{2}^{y} \cdot p_{3}^{n-(x+y)} \\
& f(x, y) \text { trials }
\end{aligned}
$$

x many perfect, y many seconds $n-x-y$ many def.

Uncorrelated

Note X, Y indep $\Rightarrow \quad P=0=\operatorname{Cov}(X, Y)$

We say X, Y are uncorrelated if $\rho=0$.
If X, Y are independent then they are uncorrelated.

However, the converse is not true.
There exist X, Y such that
$\operatorname{Cov}(X, Y)=0 \quad$ but
X, Y dependent.
Exercise: Find an example P

$$
f_{X}(0)=\frac{1}{3} \quad f_{Y}(1)=\frac{2}{3}
$$

Uncorrelated
Index $\Leftrightarrow f(x, y)=f_{x}(x)-f_{y}(y)$
$f(0,1)=\frac{1}{3} \neq \frac{1}{3} \cdot \frac{2}{3} \quad$ Not indep:
Example
Let X and Y have the joint mf $f(x, y)=\frac{1}{3}$ for $(x, y)=(0,1),(1,0),(2,1)$.

$$
\begin{aligned}
& \mathbb{E}[X Y]\left.=0 \cdot 1 \cdot f_{(0,1}\right)+1 \cdot 0 \cdot f(1,0) \\
&=\frac{2}{3} \\
& \mathbb{E}[X]=\underbrace{2 \cdot 1 \cdot f(2,1)} \\
& \mathbb{E}[Y]=0 f(0,1)+1 f(1,0)+2 \cdot f(2,1)=1 \\
& \operatorname{Cov}(X, Y)=\mathbb{E}[X Y)-\mathbb{E}[X] \mathbb{E}(Y] \\
&=\frac{2}{3}-1-\frac{2}{3}=0
\end{aligned}
$$

X, Y uncorrelated.

Exercise

The joint pmf of X and Y is $f(x, y)=\frac{1}{6}, 0<x+y<2$, where x and y are nonnegative integers.

Find the covariance and the correlation coefficient.

Section 3.

Conditional Distributions

Definition
The conditional probability mass function of X, given that $Y=y$, is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

$$
\begin{aligned}
f_{X \in Y}(x \mid y) & =\mathbb{P}(X=x \mid Y=y) \\
& =\frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(Y=y)}
\end{aligned}
$$

$$
=\frac{f(x, y)}{f_{Y}(y)} \leftarrow \text { joint PMF }
$$

Example
Let the joint mf of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}
$$

for $x=1,2,3$ and $y=1,2$. We have shown that

$$
f_{X}(x)=\frac{2 x+3}{21}, \quad f_{Y}(y)=\frac{3 y+6}{21}
$$

Find the conditional PMFs.

$$
\begin{aligned}
& f_{X(Y}(x \mid y)=\frac{f(x, y)}{f_{Y(y)}}=\frac{(x+y) / 21}{(3 y+6) / 21}=\frac{x+y}{3 y+6} \\
& f_{Y \mid X}(y \mid x)=\frac{f_{(x, y)}}{f_{X}(x)}=\frac{(x+y) / 21}{(2 x+3) / 21}=\frac{x+y}{2 x+3}
\end{aligned}
$$

$$
\text { In general } \mathbb{E}[u(Y) \mid X=(x)]=\sum_{(y)}^{1} u(y) \cdot f_{Y \mid X}(y \mid x)
$$

Conditional distribution

Definition

The conditional expectation of Y given $X=x$ is defined by

$$
\mathbb{E}[Y \mid X=x]=\sum_{y} y f_{Y \mid X}(y \mid x)
$$

The conditional variance of Y given $X=x$ is defined by

$$
\begin{aligned}
\operatorname{Var}(Y \mid X=x) & =\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right] \\
& =\mathbb{E}\left[Y^{2} \mid X=x\right]-(\mathbb{E}[Y \mid X=x])^{2}
\end{aligned}
$$

Let X.Y be RVS with joint PMF.
$\alpha \mid Y=y \quad$ conditional PMF $\quad f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{f(x, y)}{f_{Y(y)}}$

$$
Y \mid X=x
$$

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

Conditional Expectation

$$
\begin{aligned}
& \mathbb{E}[u(X) \mid Y=y]=\sum_{x}^{1} u(x) \cdot f_{X \mid Y}(x \mid y) \\
\operatorname{Var}(X \mid Y=y)= & \mathbb{E}\left[(X-\mathbb{E}[X \mid Y=y])^{2} \mid Y=y\right]
\end{aligned}
$$

Conditional distribution

$$
=\mathbb{E}\left[X^{2} \mid Y=y\right]-(\mathbb{E}[X \mid Y=y])^{2}
$$

Example
Let the joint PMF of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21} \quad f_{Y \mid X}(y \mid \underline{x})=\frac{x+y}{2 x+3}
$$

for $x=1,2,3$ and $y=1,2$.
Find $\mathbb{E}[Y \mid X=3]$ and $\operatorname{Var}(Y \mid X=3)$.

$$
\begin{aligned}
& \mathbb{E}[Y \mid x=3]=\sum_{\sim}^{2} y \cdot y \cdot f_{Y \mid x}(y \mid 3) \\
&=1-\frac{3+1}{6+3}+2 \cdot \frac{3+2}{6+3}=\frac{4+10}{9} \\
&=\frac{14}{9} \cdot \\
& \begin{aligned}
\mathbb{E}\left[Y^{2} \mid X=3\right] & =\sum_{w}^{2} y^{2} \cdot f_{Y \mid x}(y \mid 3) \\
& =1^{2}-\frac{3+1}{6+3}+2^{2} \cdot \frac{3+2}{6+3}=\frac{4+20}{9}=\frac{24}{9} \\
\operatorname{Var}(Y \mid X=3) & =\mathbb{E}\left[Y^{2} \mid X=3\right]-(\mathbb{E}[Y \mid X=3])^{2}=\frac{24}{9}-\left(\frac{14}{9}\right)^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[Y \mid X=x]=\underbrace{\sum_{y} y \cdot f_{Y x}(y \mid x)}_{\text {no } y, \text { still have } x} \leftarrow \text { a function of } x \\
&=h(x) \\
& \text { Consider } \quad \begin{aligned}
h(X) & \& a \text { new random variable } \\
& =\mathbb{E}[Y \mid X]_{\text {notation }}
\end{aligned}
\end{aligned}
$$

Contional expectation as a function and a random variable

One can consider $\mathbb{E}[Y \mid X=x]$ as a function of x.
Say $h(x)=\mathbb{E}[Y \mid X=x]$
We define a random variable $\mathbb{E}[Y \mid X]=h(X)$.

$$
\begin{aligned}
& \mathbb{E}[Y] \sum_{y} y \cdot f_{Y}(y) \\
&=1 \cdot f_{Y(1)}+2 \cdot f_{Y(y)} \\
&=1 \cdot \frac{3}{7}+2 \cdot \frac{4}{7}=\frac{11}{7} \\
& \mathbb{E}\left[\mathbb{E}[Y[X]]=\frac{33}{21}\right.
\end{aligned}
$$

Contional expectation as a function and a random variable

$$
\begin{aligned}
& f_{X}(x)=\frac{2 x+3}{21} \quad f_{Y \mid X}(y \mid x)=\frac{x+y}{2 x+3} \\
& \text { Example } \\
& \text { Let the joint pmf of } X \text { and } Y \text { be defined by } \\
& \qquad f(x, y)=\frac{x+y}{21} \\
& \text { for } x=1,2,3 \text { and } / y=1,2 \text {. One can see that } \mathbb{E}[Y \mid X=1]=\frac{8}{5} \mathbb{E}[Y \mid X=2]=\frac{11}{7}
\end{aligned}
$$

$$
\mathbb{E}[Y \mid X=3]=\frac{14}{9}
$$

Find the PMF of $\mathbb{E}[Y \mid X]$ and $\mathbb{E}[\mathbb{E}[Y \mid X]]$.
$Z=\mathbb{E}[Y \mid x]$ as a RV.
What is the PMF of $\mathbb{E}[Y \mid X]$?

$$
f_{Z}(z)=\mathbb{P}(\mathbb{E}[Y \mid X]=z)=
$$

$$
z=1,2,3
$$

$$
\frac{8}{5}, \frac{11}{7}, \frac{14}{9}
$$

$$
\mathbb{P}\left(\mathbb{E}[Y \mid X]=\frac{8}{5}\right)=\mathbb{P}\left(h(X)=\frac{8}{5}\right)=\mathbb{P}(X=1)=\frac{5}{21}
$$

$$
\mathbb{P}\left(\mathbb{E}(Y \mid X]=\frac{11}{7}\right)=\mathbb{P}(X=2)=\frac{7}{21}
$$

$$
\mathbb{P}\left(\mathbb{E}[Y \mid X]=\frac{1 \nless}{9}\right)=\mathbb{P}(X=3)=\frac{9}{21}
$$

$$
\begin{aligned}
f_{z}(z)= \begin{cases}\frac{5}{21}, & z=\frac{8}{5} \\
\frac{7}{21}, & z=\frac{11}{7} \\
\frac{9}{21}, & z=\frac{14}{9} \\
\mathbb{E}[\underbrace{\mathbb{E}[Y \mid X]]} & =\sum_{x} \mathbb{E}[Y \mid X=x] \cdot f_{z}(x) \\
& =\frac{8}{5} \cdot \frac{\pi}{21}+\frac{11}{7} \cdot \frac{7}{21}+\frac{14}{9} \cdot \frac{-9}{21}=\frac{33}{21}\end{cases}
\end{aligned}
$$

Contional expectation as a function and a random variable

Theorem

1. $\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]$
"Conditioning"
2. $\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])$

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[Y \mid X]] & =\sum_{x}^{1} \mathbb{E}[Y \mid X=x] \cdot \mathbb{P}(X=x) \\
& =\sum_{x}(\sum_{y}^{+} y \cdot \underbrace{f_{Y(x}(y \mid x)}) \cdot f_{x}(x) \\
& =\sum_{x, y} y \cdot \frac{f_{(x, y)}}{f_{x}(x)} \cdot f_{x}(x) \\
& =\sum_{x, y}^{-1} y \cdot f(x, y)=\mathbb{E}[Y]
\end{aligned}
$$

Contional expectation as a function and a random variable
(Exp. RV mean $=4$ implies $\lambda=\frac{1}{4}$)
Example

$$
\lambda=4
$$

Let X have a Poisson distribution with mean 4, and let Y be a random variable whose conditional distribution, given that $X=x$, is binomial with sample size $n=x+1$ and probability of success p.

Find $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.

$$
\begin{aligned}
Y \mid X & =x \sim B_{\operatorname{Tn}}(x+1, p) \\
\mathbb{E}[Y] & =\mathbb{E}[\underbrace{\mathbb{E}[Y \mid x]}]=\mathbb{E}[(X+1) \cdot p] \\
& =p \cdot(\mathbb{E}[x]+1)=5 \rho . \\
\operatorname{Var}(Y) & =\mathbb{E}[\underbrace{\operatorname{Var}(Y \mid x)}]+\operatorname{Var}(\mathbb{E}[Y \mid x]) \\
& =\mathbb{E}[(X+1) \cdot p \cdot(1-p)]+\underset{\operatorname{Var}((X+1) \cdot p)}{ } \\
& =p \cdot(1-p) \underbrace{(\underbrace{}_{4}[x]}_{4}+1)+p^{2} \cdot \underbrace{\operatorname{Var}(X)} \\
& =\mathbb{5} p(1-p)+4 p^{2}
\end{aligned}
$$

If $\mathbb{E}[Y \mid X=x]=a+b x$
$\mathbb{E}[Y \mid X]=a+b X, \quad X \cdot \mathbb{E}[Y \mid X]=a X+b X^{2}$

$$
\begin{aligned}
\mu_{Y} & =\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[a+b X]=a+b \cdot \mathbb{E}[X]=a+b \mu_{X} \\
\mathbb{E}[X Y] & =\mathbb{E}[\mathbb{E}[X Y \mid X]]=\mathbb{E}\left[[X \mathbb{E}[Y \mid X]]=\mathbb{E}\left[a X+b X^{2}\right]=a \mathbb{E}[X]+b \mathbb{E}\left[X^{2}\right]\right.
\end{aligned}
$$

Linear case

Suppose $\mathbb{E}[Y \mid X=x]$ is linear in x, that is, $\mathbb{E}[Y \mid X=x]=a+b x$.
Then we have $\mu_{Y}=a+b \mu_{X}$ and $\mathbb{E}[X Y]=a \mu_{X}+b \mathbb{E}\left[X^{2}\right]$.
Solving for a, , we have

$$
a=\mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}, \quad b=\rho \frac{\sigma_{Y}}{\sigma_{X}} .
$$

Thus,
what is this?
os e what is this?

$$
\mathbb{E}[Y \mid X=x]=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)
$$

$$
\begin{aligned}
& \mathbb{E}\left[x^{2}\right]=\operatorname{Var}(x)+(\mathbb{E}[x])^{2}=\sigma_{X}^{2}+\mu_{X}^{2} \\
& \operatorname{Cov}(X, Y)=\mathbb{E}[X \cdot Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
& \mathbb{E}[X Y]=\underline{\operatorname{Cov}(X, Y)}+\mu_{X}+\mu_{Y Y}=\rho-\sigma_{X} \cdot \sigma_{Y}+\mu_{X} \mu_{Y}
\end{aligned}
$$

$Y \approx a+b X \rightarrow$ minimize errors

$$
\rightarrow \quad\left(Y-\mu_{y}\right) \approx \rho \cdot \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)
$$

$y-\mu_{Y}=\rho \cdot \frac{\sigma_{Y}}{\sigma_{x}}\left(x-\mu_{x}\right): \quad$ line of best fit least square regression

Linear Algebra:

Conditional Expectation $=$ "Projection.

Linear case

$$
\binom{n}{x, y}=\frac{n!}{x!y!(n-x-y)!}=\binom{n}{x} \cdot\binom{n-x}{y}
$$

Example
Let X and Y have the trinomial distribution with parameters n, p_{X}, p_{Y}, that is, the joint mf is given by

$$
f(x, y)=\binom{n}{x, y} p_{X}^{x} p_{Y}^{y}\left(1-p_{X}-p_{Y}\right)^{n-x-y} .
$$

Find $\mathbb{E}[Y \mid X=x]$.

$$
f_{x}(x)=\sum_{y} f(x, y)=\binom{n}{x} \cdot p_{x}^{x}\left(1-p_{x}\right)^{n-x}
$$

Each experiment has three results

Repeat n times

$$
\begin{gathered}
A, B_{1}, C \\
P_{x} P_{y} P_{z} \\
\left(P_{x}+P_{y}+P_{z}=1\right)
\end{gathered}
$$

$$
\begin{aligned}
& X=\# \text { of } A, Y=\# \cdot f B \\
& \mathbb{E}[Y \mid X=x]=\frac{\sum_{y}^{1} y \cdot f_{Y(X}(y \mid x)=\sum_{Y} y \cdot \frac{f(x, y)}{f_{X}(x)}}{\left(\frac{n}{x}\right.} \frac{\left(\frac{n}{x}\right)\binom{n-x}{y} p_{X}^{x} \cdot p_{Y}^{y} \cdot\left(1-p_{X}-p_{Y}\right)^{n-x-y}}{(n-x-y)+y} \\
& f_{Y \mid X}(y \mid x)=\frac{p_{X}}{(n-x)-y} \\
&=\binom{n-x}{y} \cdot\left(\frac{p_{Y}}{1-p_{X}}\right)^{y}\left(1-\frac{p_{Y}}{1-p_{X}}\right)^{(n-x}
\end{aligned}
$$

$$
\begin{aligned}
& Y \left\lvert\, X=x \sim \operatorname{Bin}\left(n-x, \frac{P_{Y}}{1-P_{X}}\right)\right.: \frac{P_{Y}}{P_{Y}+P_{Z}} \\
& \mathbb{E}\left[Y(X=x]=(n-x) \cdot \frac{P_{Y}}{1-P_{X}} \quad\right. \\
& \mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]] \\
& =\mathbb{E}[X \mid Y=1] \cdot \mathbb{P}\left(Y=1^{\prime \prime \frac{1}{3}}+\mathbb{E}[\ddot{X} \mid Y=2) \cdot \mathbb{P}(Y=2)^{\prime \prime}\right. \\
& 3=
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& \mathbb{E}[x]=3 \cdot \frac{1}{3}+(5+\mathbb{E}[x]) \cdot \frac{1}{3}+(7+\mathbb{E}[x]) \cdot \frac{1}{3} \Rightarrow \mathbb{E}[x]= \\
& A \text { miner is trapped in a mine containing } 3 \text { doors. }
\end{aligned}
$$

The first door leads to a tunnel that will take him to safety after 3 hours of travel.
The second door leads to a tunnel that will return him to the mine after 5 hours of travel.

The third door leads to a tunnel that will return him to the mine after 7 hours.
If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?

$$
x=\text { length } \cdot f \text { time }
$$ until safety

Q: $\mathbb{E}[x]=$?

$$
3 \mathrm{hr}
$$

$$
Y=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right.
$$

with

$$
\begin{aligned}
& h(y)=\mathbb{E}[x \mid Y=y]=\sum_{x} x \cdot \underbrace{f_{X \mid Y}(x \mid y)}=\frac{f(x, y)}{f_{Y(y)}}= \\
& \mathbb{E}[X \mid Y]=h(Y): a \operatorname{RV} \text {. } \\
& \mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]] \\
& \mathbb{E}[X \cdot Y]=\mathbb{E}[Y \cdot E[X \mid Y]] \\
& \operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[X \mid Y]) \\
& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
& \mathbb{E}[X \cdot Y]=\mathbb{E}[X] \mathbb{E}[Y] \text { whem } X, Y \text { indep } \\
& \operatorname{Var}(X+Y)=\mathbb{E}[(\underbrace{(X+Y})^{2}]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[x^{2}+2 x y+y^{2}\right]-(\mathbb{E}[x])^{2}-2 \mathbb{E}[x] \mathbb{E}[Y] \\
& -(\mathbb{E}[Y])^{2} \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

If x, y indep. then $\operatorname{cov}(x, y)=0$,

$$
\operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var} \mid Y)
$$

Section 4. Bivariate Distributions of the Continuous Type

Joint PDF

Definition

An integrable function $f(x, y)$ is the joint probability density function of two random variables X, Y if joint PDF

- $f(x, y) \geq 0$
- $\iint f(x, y) d x d y=1$
- $\mathbb{P}((X, Y) \in A)=\iint_{A} f(x, y) d x d y$

The marginal density functions for X, Y are

$$
f_{X}(x)=\int f(x, y) d y, \quad f_{Y}(y)=\int f(x, y) d x .
$$

Joint PDF

Example

Let X and Y have the joint PDF

$$
f(x, y)=\frac{4}{3}(1-x y)
$$

for $0<x, y<1$. Find f_{X}, f_{Y}, and $\mathbb{P}\left(Y \leq \frac{X}{2}\right)$.

$$
\begin{aligned}
f_{x}(x) & =\int f(x, y) d y=\int_{0}^{1} \frac{4}{3}(1-x y) d y \\
& =\left[\frac{4}{3}\left(y-\frac{1}{2} x y^{2}\right)\right]_{0}^{1}=\frac{4}{3}\left(1-\frac{1}{2} x\right)
\end{aligned}
$$

$$
f_{Y}(y)=\int f(x, y) d x=\int_{0}^{1} \frac{4}{3}(1-x y) d x
$$

$$
=\left[\frac{4}{3}\left(x-\frac{1}{2} y x^{2}\right)\right]^{0}=\frac{4}{3}\left(1-\frac{1}{2} y\right)
$$

$$
\begin{aligned}
& \mathbb{P}\left(Y \leqslant \frac{x}{2}\right)=\int_{0}^{1} \int_{0}^{\frac{x}{2}} \cdot f(x, y) d y d x \\
& =\mathbb{P}((x, Y) \in A) \\
& =\int_{0} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{\frac{x}{2}} \frac{4}{3}(1-x y) d y d x \\
& =\int_{0}^{1}\left[\frac{4}{3}\left(y-\frac{x}{2} \cdot y^{2}\right)\right]_{0}^{\frac{x}{2}} d x \\
& \left.=\int_{0}^{1}\left[\frac{4}{3}\left(\frac{x}{2}-\frac{x^{3}}{8}\right)\right] d x=\frac{4}{3} \cdot\left(\frac{x^{2}}{4}-\frac{x^{4}}{32}\right)\right]_{0}^{1}
\end{aligned}
$$

X have the joint PDF $f(x, y)$

$$
\begin{aligned}
\mathbb{E}[u(x, Y)] & =\iint u(x, y) f(x, y) d x d y \\
\mathbb{E}[x] & =\iint x \cdot f(x, y) d x d y \\
\mathbb{E}[Y] & =\iint y-f(x, y) d x d y
\end{aligned}
$$

Joint PDF

Example
Let X and Y have the joint PDF

$$
f(x, y)=\frac{3}{2} x^{2}(1-|y|)
$$

for $-1<x, y<1$.
Find $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

$$
\begin{aligned}
\mathbb{E}[x] & =\iint x \cdot f(x, y) d x d y \\
& =\int_{-1}^{1} \int_{-1}^{1} x \cdot \frac{3}{2} \cdot x^{2} \cdot(1-|y|) d x d y \\
& =\frac{3}{2} \int_{-1}^{1}(1-|y|)(\underbrace{\int_{-1}^{1} x^{3} d x}_{-1}) d y=0 \\
\mathbb{E}[Y] & =\int_{-1}^{1} \int_{-1}^{1} y \cdot \frac{3}{2} \underbrace{-1}(1-|y|) \\
& =\frac{3}{2}\left(\int_{-1}^{1} x^{2} d x\right) d y
\end{aligned}
$$

Independent random variables

Definition
Two random variables X, Y with joint pdf are independent if and only if $f(x, y)=f_{X}(x) f_{Y}(y)$.

Note
(1) If X, Y indep. Confi, $R V_{S}$, then there is a joint PDF $\quad f(x, y)=f_{X}(x) \cdot f_{Y}(y)$.
(2) In general, there is a case that X, Y are continuous RV (we have $\left.f_{X}(x), f_{Y}(y)\right)$ but there is no joint PDF.

Independent random variables

Example

3 Thequalities \rightarrow Define
Let X and Y have the joint pdf $f(x, y)=2$ for $0<x<y<1$.
a region
Compute $\mathbb{P}\left(0<X, Y<\frac{1}{2}\right)$.
Are they independent?

$$
\mathbb{P}\left(0<X, Y<\frac{1}{2}\right)=\frac{1}{4}
$$

Conditional densities and Conditional Expectation

Definition
The conditional density of Y given $X=x$ is defined by

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

As in the discrete case, the conditional expectation and the conditional variance are defined by

$$
\begin{aligned}
& \mathbb{E}[Y \mid X=x]=\int y f_{Y \mid X}(y \mid x) d y \\
& \operatorname{Var}(Y \mid X=x)=\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right]=\mathbb{E}\left[Y^{2} \mid X=x\right]-(\mathbb{E}[Y \mid x=x])^{2} \\
& \mathbb{E}[u(Y) \mid X=x]=\int u(y) f_{Y \mid x}(y \mid x) d y
\end{aligned}
$$

Conditional densities and Conditional Expectation

Example

x
Let X and Y have the joint PDF $f(x, y)=2$ for $0<x<y<1$.
Then, $f_{X}(x)=2(1-x)$ for $0<x<1$ and $f_{Y}(y)=2 y$ for $0<y<1$.
Find $\mathbb{E}[X \mid Y=y]$ and $\mathbb{E}[Y \mid X=x]$.

$$
\begin{aligned}
\mathbb{E}[x \mid Y=y] & =\int_{x} x \cdot \frac{f_{X \mid Y}(x \mid y)}{y m n} d x \\
& =\int_{0}^{x} \frac{2}{z \cdot y)} d x=\frac{1}{y} \cdot \int_{0}^{y} x d x=\frac{1}{4} \cdot\left[\frac{x^{2}}{2}\right]_{0}^{Y} \\
& =\frac{y}{2} \\
\mathbb{E}[Y \mid x=x] & =\int_{x} y \cdot f_{Y \mid x}(y \mid x) d y \\
& =\int_{x}^{1} y \cdot \frac{\not 2}{2(1-x)} d y \\
& =\frac{1}{1-x}\left[\frac{y^{2}}{2}\right]=\frac{1}{1-x} \cdot \frac{1}{2} \cdot\left(1-x^{2}\right) \\
& =\frac{1+x}{2}
\end{aligned}
$$

$$
\mathbb{E}[X \mid Y]=\frac{Y}{2} \quad, \mathbb{E}[Y \mid X]=\frac{X+1}{2}
$$

Conditional densities and Conditional Expectation

Example
Let X be $U(0,1)$, and let the conditional distribution of Y, given $X=x$ be $U(x, 2 x)$. Find $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[\mathbb{E}[Y \mid X]] \\
& =\mathbb{E}\left[\frac{x+2 x}{2}\right]=\frac{3}{2} \cdot \mathbb{E}[x]=\frac{3}{2} \cdot \frac{1}{2}=\frac{3}{4} .
\end{aligned}
$$

Recall

- X, Y have joint PDF if

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
f(x, y) \geqslant 0 \\
\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) d x d y=1 \\
\mathbb{P}((x, Y) \in A)=\iint_{A} f(x, y) d x d y
\end{array}\right. \\
\mathbb{E}[u(x, y)] \quad u(x, y)=x \text { or } y \text { or } x^{2}, y^{2}, x y
\end{array}\right\}
$$

Conditional density: $\quad f_{Y \mid X}(y \mid x) \leftarrow$ PDF of $Y \mid X=x$

$$
\begin{aligned}
& =\frac{f(x, y)}{f_{X}(x)} \\
& f_{X}(x)=\int f(x, y) d y \\
& E[Y \mid X=x]=\int y \cdot f_{Y \mid X}(y(x) d y
\end{aligned}
$$

Let $f(x, y)=2 e^{-x-y}, 0<x \leq y$, be the joint pdf of X and Y.
Find $f_{X}(x)$ and $f_{Y}(y)$. Are X and Y independent?
$\{0<x \leqslant y\}$ defines a region where $f(x, y)>0$ Consists if two inez. $\left\{\begin{array}{l}x>0 \\ y \geqslant x\end{array}\right.$
$\left\{\begin{array}{l}x=0 \text {-axis } \\ y=x\end{array}\right.$ define the boundary

$$
\begin{aligned}
f_{x}(x) & =\underbrace{\int_{f_{i x e d}}^{\infty} f(x, y) d y} \\
& =\int_{x}^{\infty} 2 e^{-x-y} d y=2 e^{-x} \int_{-x}^{\infty} e^{-y} d y \\
& =\left\{\begin{array}{l}
2 e^{-x}\left[-e^{-y}\right]_{x}^{\infty}=2 e^{-x} \cdot e^{-x}=2 e^{-2 x} \text { for } x>0, \\
0
\end{array} \quad \text { for } \quad x \leqslant 0\right.
\end{aligned}
$$

$$
=\left\{\begin{array}{cc}
2 e^{-y}\left(1-e^{-y}\right) & \text { for } y>0 \\
0 & \text { for } y<0
\end{array}, y><5\right.
$$

Recall X, Y indep if and only if

$$
\begin{gathered}
f(x, y)=f_{x}(x) \cdot f_{y}(y) \\
f(x, y)=2 e^{-x-y} \neq 2 e^{-2 x} \cdot 2 e^{-y}\left(1-e^{-y}\right)=f_{x}(x) \cdot f_{y}(y)
\end{gathered}
$$

X, Y Not Tndep.

Recall

$$
x \sim E_{x p}(\lambda) \quad f(x)=\lambda e^{-\lambda x}, x>0
$$

Section 5.

The Bivariate Normal Distribution

$$
\begin{gathered}
x \sim N\left(\mu, \sigma^{2}\right) \quad\left(\mu=\text { mean }=\mathbb{E}[x], \sigma^{2}=\operatorname{Var}(x)\right) \\
f(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
\end{gathered}
$$

X : Normal , Gaussian

Let X be a random variable.
We construct a random variable Y in the following way:
The conditional distribution of Y given $X=x$ satisfies

1. it is normal for each x
2. $\mathbb{E}[Y \mid X=x]$ is linear in $x \Rightarrow \mathbb{E}[Y \mid X=x]=b x+c=\rho \cdot \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}$
3. $\operatorname{Var}(Y \mid X=x)$ is constant in $x \Rightarrow \quad \operatorname{Var}(Y \mid X=x)=\sigma_{Y}^{2}\left(1-p^{2}\right)$

Use $\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y(x)]+\operatorname{Var}(\mathbb{E}[Y \mid x])$

$$
\begin{aligned}
& Y \left\lvert\, X=x \sim N\left(\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}, \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right)\right. \\
& f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi}-\sigma_{Y} \sqrt{1-\rho^{2}}} e^{-\frac{\left(y-\left(\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{x}\right)+\mu_{1}\right)^{2}\right.}{2 \sigma_{Y}^{2}\left(1-\rho^{2}\right)}}
\end{aligned}
$$

Motivation

Then, $Y \mid X=x$ is normal with mean $\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)$ and variance $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$.
The conditional density is

$$
\begin{gathered}
f_{Y \mid x}(y \mid x)=\frac{1}{\sigma_{\gamma} \sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(-\frac{\left(y-\left(\mu_{Y}+\rho_{\sigma_{x}}\left(x-\mu_{X}\right)\right)\right)^{2}}{2 \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\right) \\
+ \\
\quad \times \sim N\left(\mu_{X}, \sigma_{x}^{2}\right) \\
\Rightarrow \quad(x, y) \quad \text { Bivariate Normal } . \\
f(x, y)=f_{Y \mid X}(y \mid x)-\underbrace{f_{X}(x)}_{\frac{1}{\sqrt{2 \pi} \cdot \sigma_{x}}} e^{-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}}
\end{gathered}
$$

Bivariate normal distribution

$$
x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)
$$

If X itself has normal distribution, (X, Y) is called a bivariate normal random variables.

Bivariate normal distribution
 covariance matrix $\left(\begin{array}{cc}\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\ \rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}\end{array}\right)$ if its joint pdf is given by

$$
\begin{aligned}
& f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\bar{x}^{2}}{\sigma_{X}^{2}}-2 \frac{\rho \bar{x} \bar{y}}{\sigma_{X} \sigma_{Y}}+\frac{\bar{y}^{2}}{\sigma_{Y}^{2}}\right)\right) \\
& \text { where } \bar{x}=x-\mu_{X} \text { and } \bar{y}=y-\mu_{Y} \text {. } \\
& =\left(\frac{\bar{x}}{\sigma_{x}}\right)^{2}-2 \rho \cdot\left(\frac{\bar{x}}{\sigma_{x}}\right) \cdot\left(\frac{\bar{y}}{\sigma_{y}}\right)+\left(\frac{\bar{y}}{\sigma_{y}}\right)^{2} \\
& =\left[\begin{array}{ll}
\bar{x} & \bar{y}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\operatorname{Cov}(X, X)}{} \begin{array}{l}
\operatorname{Cov}(X, Y) \\
\operatorname{Cov}(Y, X)
\end{array}\right] \\
& (X, Y): \text { Bivariate Normal } \\
& \Rightarrow\left\{\begin{array}{ll}
Y, Y)
\end{array}\right] \\
& X: X o r m a l
\end{aligned}
$$

Bivariate normal distribution

Example
Let us assume that in a certain population of college students, the respective grade point averages, say X and Y, in high school and the first year of college have a bivariate normal distribution with parameters $\mu_{X}=2.9, \mu_{Y}=2.4, \sigma_{X}=0.4$, $\sigma_{Y}=0.5$, and $\rho=0.6$.

Find $\mathbb{P}(2.1<Y<3.3 \mid X=3.2)$.

$$
\begin{aligned}
& Y \left\lvert\, x=x \quad \sim N\left(p \cdot \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}, \quad \sigma_{Y}^{2}\left(1-p^{2}\right)\right)\right. \\
& \begin{array}{c}
Y \left\lvert\, X=3.2 \sim N(\underbrace{0.6 \frac{0.5}{0.4}(3.2-2.9)}_{m}+2.4, \underbrace{\mathbb{S}(2.1 \leqslant Y<3.3 \mid X=3.2)}_{\left.S_{S^{2}}^{0.5)^{2}\left(1-0.6^{2}\right)}\right)} \underset{W}{w})\right.
\end{array} \\
& \begin{array}{ll}
=\mathbb{P}(2.1<w<3.3) & W \sim N\left(m, s^{2}\right) \\
=\mathbb{P}\left(\frac{2.1-m}{s}<z<\frac{3.3-m}{s}\right) & \frac{W-m}{s} \sim N(0.1)
\end{array} \\
& =\Phi\left(\frac{3.3-m}{s}\right)-\Phi\left(\frac{2.1-m}{5}\right) \\
& Z \sim N(0,1) \\
& =\text { Use the table. }
\end{aligned}
$$

Recall X, Y are uncorrelated if $\left\{\begin{array}{c}\operatorname{cov}(x, y)=0 \\ o r \\ P=0\end{array}\right.$
Fact : If X.Y indep \Rightarrow X.Y uncorrelated

- The converse is not true in general

Bivariate normal distribution

Theorem
If X and Y have a bivariate normal distribution with correlation coefficient ρ, then X and Y are independent if and only if $\rho=0$.
In other words,
(X, Y) independent $\Leftrightarrow(X, Y)$ uncorrelated.

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left(\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\bar{x}^{2}}{\sigma_{x}^{2}}-2 \rho \frac{\bar{x}}{\bar{\phi}_{x}} \frac{\bar{y}}{\sigma_{y}}+\frac{\bar{y}^{2}}{\sigma_{y}^{2}}\right)\right) \\
& i f \quad \rho=0 \\
& =\frac{1}{\sqrt{2 \pi} \cdot \sigma_{x}-\sqrt{2 \pi} \rho_{y}} \exp \left(-\frac{1}{2} \cdot\left(\frac{\bar{x}^{2}}{\sigma_{x}^{2}}+\frac{\bar{y}^{2}}{\sigma_{y}^{2}}\right)\right) \\
& =f_{x}(x) \cdot f_{y}(y)
\end{aligned}
$$

For a female freshman in a health fitness program, let X equal her percentage of body fat at the beginning of the program and Y equal the change in her percentage of body fat measured at the end of the program.

Assume that X and Y have a bivariate normal distribution with

$$
\Rightarrow \quad Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)
$$ $\mu_{X}=24.5, \mu_{Y}=-0.2, \sigma_{X}=4.8, \sigma_{Y}=3$, and $\rho=-0.32$.

Find $\mathbb{P}(1.3<Y<5.8), \mathbb{E}[Y \mid X=x]$, and $\operatorname{Var}(Y \mid X=x)$.

$$
Y \sim N\left(-0.2,3^{2}\right)
$$

$$
\begin{aligned}
& \mathbb{P}(1.3 \zeta Y(5.8) \\
& \quad=\mathbb{P}\left(\frac{Y-(-0.2)}{3} \sim N(0,1)\right. \\
& \quad=\mathbb{P}\left(\frac{1.5}{3}<z<\frac{6}{3}\right)=\mathbb{P}(0.5<z<2)
\end{aligned}
$$

$$
=\Phi(2)-\Phi(0.5) \quad \text { (Use the table) }
$$

$$
\mathbb{E}[Y \mid X=x]=P \cdot \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)+\mu_{Y}
$$

$$
\operatorname{Var}\left(Y(X=X)=\sigma_{Y}^{2}\left(1-p^{2}\right)\right.
$$

doesnot depend in

