Midterm 3 Lecture Review Activity, Math 1554 1. Indicate **true** if the statement is true, otherwise, indicate **false**. | | true | false | |--|------------|------------| | a) If S is a two-dimensional subspace of \mathbb{R}^{50} , then the dimension of S^{\perp} is 48. | 0 | 0 | | b) An eigenspace is a subspace spanned by a single eigenvector. | \circ | \circ | | c) The $n \times n$ zero matrix can be diagonalized. | \bigcirc | \bigcirc | | d) A least-squares line that best fits the data points $(0, y_1), (1, y_2), (2, y_3)$ is unique for any values y_1, y_2, y_3 . | 0 | 0 | - 2. If possible, give an example of the following. - 2.1) A matrix, A, that is in echelon form, and dim $((\operatorname{Row} A)^{\perp}) = 2$, dim $((\operatorname{Col} A)^{\perp}) = 1$ - 2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenvalue $\lambda = 2$ is the line $x_1 = 2x_2$. The other eigenspace of the matrix is the x_2 axis. - 2.3) A subspace S, of \mathbb{R}^4 , that satisfies $\dim(S) = \dim(S^{\perp}) = 3$. - 2.4) A 2×3 matrix, A, that is in RREF. $(\operatorname{Row} A)^{\perp}$ is spanned by $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$. - 3. Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. For the situations that are possible give an example. - 3.1) A is $n \times n$, $A\vec{x} = A\vec{y}$ for a particular $\vec{x} \neq \vec{y}$, \vec{x} and \vec{y} are in \mathbb{R}^n , and dim((Row A) $^{\perp}$) $\neq 0$. possible impossible 3.2) A is $n \times n$, $\lambda \in \mathbb{R}$ is an eigenvalue of A, and $\dim((\operatorname{Col}(A - \lambda I))^{\perp}) = 0$. possible impossible 3.3) $\operatorname{proj}_{\vec{v}}\vec{u} = \operatorname{proj}_{\vec{u}}\vec{v}, \ \vec{v} \neq \vec{u}, \ \text{and} \ \vec{u} \neq \vec{0}, \ \vec{v} \neq \vec{0}.$ possible impossible 4. Consider the matrix A. $$A = \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ Construct a basis for the following subspaces and state the dimension of each space. - $4.1) (\operatorname{Row} A)^{\perp}$ - 4.2) Col A - 4.3) $(\operatorname{Col} A)^{\perp}$