Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example
AF . for large k.

But: multiplying two n x n matrices requires roughly n® computations. Is
there a more efficient way to compute A*?
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Topics and Objectives

Topics
1. Diagonal, similar, and diagonalizable matrices

2. Diagonalizing matrices

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.

2. Apply diagonalization to compute matrix powers.
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prosf b = db (AD) € T h=PeP o pt
- 3
- det ( PBP T P @-PY) =p-z-P
< def (P-(B-nT)-P)
= dot (P) - et (R-AZ)- det (PT)
= detP) Lt (Y - dpo0) = dp(A)
_ : def-(P-#1)
Similar Matrices der-( T) o) = et (B ~ AT )
— L -

— Definition T N
Two - xn matrices A and B are similar if there is a matrix P so that
A=PBP-!

~— Theorem \

If A and B similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

e Our textbook introduces similar matrices in Section 5.2, but doesn't
have exercises on this concept until 5.3.

e Two matrices, A and B, do not need to be similar to have the same
eigenvalues. For example,

A=(8 (1)) and (8 8):B ot ey svad
Gp= N dg =N~
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Additional Examples (if time permits)

1. True or false.
a) If Ais similar to the identity matrix, then A is equal to the identity

matrix.
b) A row replacement operation on a matrix does not change its

eigenvalues.
2. For what values of k£ does the matrix have one real eigenvalue with

algebraic multiplicity 27
-3 k
2 —6
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Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the
main diagonal.

The following are all diagonal matrices.

b2 @y

We'll only be working with diagonal square matrices in this course.
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Powers of Diagonal Matrices

If A is diagonal, then A* is easy to compute. For example,

2R
3 o 3 O (3 O 7
2 __ =
A7 = (o 1(=> ( o %) 0 (—i’j
ab= 300
(o (—5‘>
a,qL D
@)
But what if A is not diagonal? )
-]
Q A s §Tm?la\r P Qﬁfmg,ﬁ’“‘l”@ : A= ? - D P

A= (P-D-PYy(P.D-P)

53 s . PD-(PP)-DPF = P-DDPF
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Diagonalization

Suppose A € R™"*™, We say that A is diagonalizable if it is similar to a
diagonal matrix, D. That is, we can write

A=PDP!

CQ - \/\)(\XN\ Comn (e JTagd’bJ(\%‘Q A— ?

Q How
feR , VYR VLR PU eTainrlues
’Léi 1(5_ NIY., . Q,?(e]f/r\-\/w{vfs
AUy = AWy
Al 2t N Mok epn = 1 Epobon.
AV, = MU
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AP=PD| = A=Pppt




Diagonalization P (w---w)
P te merdible
S

Theorem (ZX e
[_If A is diagonalizable < A has n linearly independent eigenvectors. ]

Note: the symbol < means “ if and only if ".

Also note that A = PDP~! if and only if

A1
Ao ,
A:['Ul UQ""Un] - [fvl UQ"'Un]
An
where U1, ..., U, are linearly independent eigenvectors, and Aq,..., A\,

are the corresponding eigenvalues (in order).

Q: When do we  hane ) Im. r“mleP_ @gwm\&'i
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Example 1

Diagonalize if possible.
2 6
(5
o-xn ¢
O et pO0- dtaman= de (1)

= RN — @™ «(Qm-69d
- XN —-%-a =o

A=,
@ LT&%@K@ .
=34 \Eﬂ%e £, = Nuol (A-2T)
Section 5.3 Slide 29 A -LT = ( 0 é> - <"2‘{;>
O —3
V= [i]
P 5o £, = NIOA-0-T)

A+ T = 3 (\ S ’3*> NEESTEN
(0 °> ° = K= 2y



( -2 d4— }i\h_ T(f\%hi/g?.
fo] [ | J S A r Q[,Ndejm,ﬂ:},\lh

A= POF [ j[@*i 1]

drs ek
NDH gu,P])Q,g@ Ng / No L %Tgﬁ/y\ UG\/' VVAS

s 3

= Vg VU o, }TMG\V\L/ TMJ%D _

Gond
P(/\Db§ YASQQU’MQ Q\EL + EWA. — 0O ( a, %352

o o o b oM e beth  Chald be
R

- Suppost b ko

s=A (o b)) = oA + B@
Ov(/\ﬂ_ Ui + Jos\b_lg\ =S
"\’{ n A1 Uy + 109\&%1 —

O ~+ L) (/\L—AD'TD_ =0
EAR

= Vs =0 ' O%ﬂ_}rOQFC%M )



Distinct Eigenvalues

Theorem

If A is n X n and has n distinct eigenvalues, then A is
diagonalizable.

Why does this theorem hold?
—TWV\ M ,>\L ST N &IQJLTM# OTJJ/Y\WWQ

( [ (
o Bo -—Un = /{m_;—-‘m(}; {?m,‘h%‘

—

Is it necessary for an n X n matrix to have n distinct eigenvalues for it to
be diagonalizable?
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Re Cou(,l

A € fR”h (&S &Taao‘s\oﬁ?%mLLa

i;—? There existc an Toertible  madrix P andl
et o Q(?o\@maﬁ martrex D Coocln Ao

A= PDP

gup(?@g{ AL, e, T, An u—~L @Tﬁmw[«/@s C/J/ ue,,}wvec*ﬁr/&

D\(L , ’U\’.\_,‘ — Um / Hran
v - U] = [Male M5 --- AR
-~
M
’ N fwi"‘ m] Ay O
\/—\/~—/ o N
P M
K/—V—-/
AP =PD O
Q- T P 'r\V\Ué/H:/L)LC?

e B e Chun (V2T B fnead dep

O T A, % awe disng, Hea dUn o w)
oxfo [Tr\p,oufl\lo ﬂ/\dlp - % AT csiogcrerH-?vlo(*@, ;

bt Ut o o T ek



T.—E— )j dim U;ZX = 9

+Hen we Coon Cﬂl\mS—b\
N [TMou/L/ Taalep.  elgmucctng |

£t <paspoes

S At dugaediasbe,

Non-Distinct Eigenvalues

Theorem. Suppose

e Aisnxn

e A has distinct eigenvalues \1,...,  \x, k< n

o a; = algebraic multiplicity of \;

e id; = dimension of \; eigenspace ( “geometric multiplicity”)
Then

1. d; < a; for all 7

2. A is diagonalizable < >d; = n < d; = a; for all ¢

3. A is diagonalizable < the eigenvectors, for all eigenvalues, together
form a basis for R",
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o
Q4> ™ |l »
@ O X3 )
J
9

Example 2

Diagonalize if possible.

ﬁ(’ﬁ GhY-# 'ﬁ

D@ & : by = X — G +(F-10) ¢
o = W —dn+] = m~3 (O ?)
N=3 ik 04[5. ek @
@ Congpoe & = N (A 3D
1
e (o 1y e [ = (0] <l
QA o g e

dTm (EBB = 1 = Gem. My, £ Q
A Ts N§T d (‘agm@ Qodoke.
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Example 3

The eigenvalues of A are A = 3, 1. If possible, construct P and D such

that AP = PD.
74 16

A= 2 5 8

2 -2 -5

L, = N (A-T) " > M=)
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//\Y( /“\SL //F\S—B
= ] -4 1L o0
e [ Q} 'D?—[d)zoj
etbl o L Te e
A3
A= P.D.P
A
b = (A=1) (A=3Y
= {0 Ry B e
_ !
[ AT{L](B B [ZJ
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Additional Example (if time permits) &

i%
N ) Y
NOte that A G 3 > g (2 l‘ @
4

fk:[(l) ﬂfk_l, fO:H, k=123, ..

generates a well-known sequence of numbers.

=2
T 0T ([ < D)
L l " by (| b (>
Use a diagonalization to find a matrix equation that gives the n‘? = [;J

number in this sequence.

s 13
h [3&} " :[ ;?3 Kj“’[(s] /gt[m] T

g@rc,?ge_ .

oo =| A=A -1 -e
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Chapter 5 : Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues
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Topics and Objectives

Topics
1. Complex numbers: addition, multiplication, complex conjugate
2. Complex eigenvalues and eigenvectors.

3. Eigenvalue theorems

Learning Objectives

1. Use eigenvalues to determine identify the rotation and dilation of a
linear transform.

2. Rotation dilation matrices.
3. Find complex eigenvalues and eigenvectors of a real matrix.

4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question
What are the eigenvalues of a rotation matrix?
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Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square

roots of negative numbers. For example:
¥ xep , %X 7o.
> +1=0

The roots of this equation are: X" o
X

=

M

We usually write v/—1 as ¢ (for “imaginary”).
The seb of oawFLex nwbers = @

=Y 0 +br s aberf
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Addition and Multiplication

The imaginary (or complex) numbers are denoted by C, where

C={a+1bi|abinR} JO)*L;
We can identify C with R?: a + bi <> (a,b) Ll Q"“.L)/@/

\ICGiZf&m Q: 8—®©W'l’ﬁc WMWC‘]Q?

d |

We can add and multiply complex numbers as follows:

( l :
(2—3|2')—|—(—1—|—i): (20 + (E3)+)-2 = 4 =24
_J

(g—fﬂi(;,J 1Hi)= 260 « 2.4 + ()60 *@i‘@ = IL
-
=~ =2 423 +3X 43 vs Tt
U o —
= 4. 452

Section 5.5 Slide 4



Complex Conjugate, Absolute Value, Polar Form

ol peA
By
We can conjugate complex numbers: a+b1 = (O — by
Z = o+bs , w=cHdy e C 'I'\‘(w\ag,(\r\ﬂ\l/%r powrt=
Z =2 Haun ze R

é\ = Z ’ T—'F’ = N )
. © Z2-Z = (a+b)(a—=L) = A=)

Zi) = 2 + W s
- T o= S = a4l >0 ((If 23=0 dlun2=9)
The absolute value of a complex number: |a+bil=_Jz-Z7 = [¢5]"
Atbe
(
o>

We can write complex numbers in_polar form: a +ib = r(cos ¢ + i sin ¢)

2= o+h¢ N
c / Gt bt

b - -=
paun b
\[ L llcton  oith reGpect o
-k o N ot X — ouxTS
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Netwdin . 2= Obi . Reld= o | Tm(a)= b

Complex Conjugate Properties

If z and y are complex numbers, v € C", it can be shown that:
o (x4+y)=T+Y
o AU = AT Acr™" V= (T, W) LG e

Z —
o Im(zx) =0. (=*

x-x = O%L <f o =otbi )
Example True or false: if x and y are complex numbers, then

- E‘K‘@k(j% - "H‘/\g; X—= O\‘f-[ot , C(J:C—-Lcﬂ(:

(zy) =Ty
A
N Vs B ,\}_
N Aoy 1 :@'F _ (O '0&_' - ‘i
A </ | v AT SR
t t | I
o Lo T
aj; eR
(A = AV o= a
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Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Im(2) | z=x+y
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$ eR

e

¢ = Cog<ﬁ+l,€nq3£_

Z=a+bi = (G v Sme)
= re® = j2loe
Euler's Formula :  Geoynefric e ) o mw[HP(rcm%dv\,
Suppose z; has angle ¢1, and z2 has angle ¢s. z - 1z _eiféj_
= “Im(z) 2 (a e;qSL

i-(+45)
z 2, {(gll [%.L[s e q5¢

N e

0 Re(2)

The product z129 has angle ¢1 + ¢ and modulus |z| |w|. Easy to
remember using Euler’'s formula.

z=|2| e

The product z;1 25 is:
23 = 2120 = (|21] 1) (|20]€2) = |21 |2o| €'(P1T92)
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2
(3) g) = X —2%—3 =0
Complex ers and Polynomials

Theorem: Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counting
multiplicity.

%Q‘(‘S G0 '>\| r>\l -t >\mgr &:
ba () = (AIOEN) -~ Byh Y=o

~— Theorem

L. If A€ Cis a root of a real polynomial p(z), then the conjugate
A is also a root of p(x).

2. If Xis an eigenvalue of real matrix A with eigenvector @, then \
is an eigenvalue of A with eigenvector v.

J

P (N = det A-DL) = 0, - N w0, A eom v Oa-A

+ T T
Fea,,  nunber< ( t

g\!wb&e ZeC 15 o reb  ob qg&(k\ =5
E{ép((%E —O

Op- 2 + Oy 2 o FOL 2+ O =O
Qn- (Y + Oy (F) ¢-- <07 +95 = O 07 ER

N —\" —
0n - () + 0, () = +a -2 + 0 =0



G&ACE\):Q Tht 3¢ B S S o

Re call €C=3 oa+bt v a . ber
2= o+b Re(2de ¢, TImlxy=b
Z = a-bi (Lopjugade)
(2l = o4 = J2-®
24+ = T +W f W =T % -w
Ae R r Ay = Ug,ﬁ— - A-T
ve &
d&mM = O
Sppose Ae ™ , = ;,LJ o o topk of qﬁp:m = deH(A~AT)
Him 2 s alss o oot of $a ) =0
Furfrornenc i T %o Ko eipmecdhe
= Awv= 2
AT - 3T
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Example AcR”’

Hﬂv( v o

l/ —

Four of the eigenvalues of a 7 x 7 matrix are =2, 4 + 4, =4 =4, and/i.
What are the other eigenvalues? Y Y {
f40 X 3

" i o

A-n 4+ ~ A

-

(

A <R S 7 elanees e malp fretien
ot nagt 7.

> AL Q,\thg ™ -, ¢r8 . HLER . EN
Qwﬂ‘ﬂm

(\+2) O~y
P, (N = CoUn—=(2D) (X = (4rad) (N —(a=2)) -~ -

=CLA+x)( N — IXN+17) (XN +8N +716) (?\Z+i>
fT\
Fogm Cofoch LRPONETD C = C’ig = -1 ( Execise by
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Example

The matrix that rotates vectors by ¢ = 7/4 radians about the origin, and
—_— . .
then scales (or dilates) vectors by r = /2, is

AT 0| [cosp —sing
|0 r| |sing cos¢

What are the eigenvalues of A? Find an eigenvector for each eigenvalue.

|
SRS AR B N
é} > o = . ‘
det(A)y  p——
2 [ S
DN = A= g A < (0 - 2T 290 £4 =6
1-4—-(1%-1 [ |

+(A)
|
ng\ ~'(' O[Tagcmmué
Section 5.5 Slide 11 ( %ﬁ[@ = \,i — 1 vi
[ o)

Ml = 4 o —a

— (A< —94 —;l) i
A—(1ea)T = Eq ] = ‘
{ 1— (4 +a) 1 -4



—qq(«}—o Y= —ax
MERSAEESE N

—[—] egﬁmuemtw coreggndng b k= T4

[j @(WCJN I N = {—a



Example

The matrix in the previous example is a special case of this matrix:

a —b
(5 )
Calculate the eigenvalues of C' and express them in polar form.

PotN = N — wAN L g

o ?
= ‘f\Lﬁlo\/\ +(,2_\9:+JDL> = O
IS —
2 >
(x=0) = (N —2ax+g) = (2
~——
-0 = ba o —L-q
= O £ Lt
L {\_ _othe oftht = ¥ QAj‘
pd 6
/4 (I W o—Ly = r-€
Section 5.5 Slide 13 NN
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Example

Find the complex eigenvalues and an associated complex eigenvector for
each eigenvalue for the matrix.

D f = der(p-nr) = N — (LeDN+ (13- C2-L)

= N —4aXN +& =0
. Tl
(N=2)"= —1 N
2 —
%—9\ = :L o _—
AN = D f oy
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Section 6.1 : Inner Product, Length, and
Orthogonality

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics
1. Dot product of vectors
2. Magnitude of vectors, and distances in R™
3. Orthogonal vectors and complements
4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude)
of a vector, (c) distance between two points in R™, and (d) angles
between vectors.

2. Apply theorems related to orthogonal complements, and their
relationships to Row and Null space, to characterize vectors and
linear systems.

Motivating Question
For a matrix A, which vectors are orthogonal to all the rows of A? To
the columns of A7
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The Dot Product

The dot product between two vectors, 4 and ¥ in R™, is defined as

(u\uwmiéﬂ” .
L o ara v2
u-U:% v:[ul Uy -+ - un] | =uivr +ugvg + - -+ up vy -
NN UQ,CST‘{ _’Un_
I xn
Example 1: For what values of k is @ - v = 07
—1 4
o 3 5 2
k|’ 1
2 -3

W= [ 374 2

—
3

Section 6.1  Slide 3 = @‘f— 31’? + %i +D,/K53 =q
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Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits
linear properties.

~— Theorem (Basic Identities of Dot Product) \

Let @, v, w be three vectors in R™, and ¢ € R.

1. (Symmetry) 4 - W = X

— - —5
2. (Linear in each vector) (¥ + &) - &= _VU-% + & U
3. (Scalars) (cu) - w = _C - (0-W) = U-(cw)

L
4. (Positivity) @ - @ > 0, and the dot product equals _ Y14 "7 U

\ J

—3 ul
4. Tw o= UNw = (&T.w) < W (D) = WS-
u U
(ABY = BN (AT-n VT
Section 6.1 Slide 4
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The Length of a Vector

~— Definition

The length of a vector w € R" is

|d|| = Vi -4 =/ud +ud+-+u2

\

Example: the length of the vector ﬁ’ IS
V12432 +22 =4/14

xs3

== P(1,3,2) =15
0 L
1 S J,/3 X2

Z1
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Example

Let i, 7 be two vectors in R™ with ||| = 5, ||7]| = /3, and i-7=—1.
Compute the value of |4 + ]|

L

" = (Uet - (U

| W+ U-U + U U
— ] .

= £ 4 g.(-0) £ (\Eﬁ

1
&
+
-
ﬁ
—(-.
7
<
+
N
%

= 05 -2 43 =246

b utv il = Jog
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v-us v o~ Dol
Length of Vectors and Unit Vectors o

Note: for any vector ¢ and scalar ¢, the length of cv is

letll = fef |]21]

Definition
[_If v € R™ has length one, we say that it is a unit vector.

For example, each of the following vectors are unit vectors.

1
. (1 L1 (/1 . 1o
“=\o ) YT m\2) T A1
1
& . —
“L?’:[z] ol = (T T e <({)
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Distance in R"

— Definition

For u,v € R™, the distance between « and ¥ is given by the formula

T I W B

\

Example: Compute the distance from u = (I) and v = (3>

2

s s N}\{i} - {_J




v —
W u%

The Cauchy-Schwarz Inequality

Theorem: Cauchy-Bunyakovsky—Schwarz Inequality
For all @ and ¥ in R",
ZS

@ - o] < [l@||9]]

—

|G- = I oz
Equality holds if and only if ¥ = aui for o = —.
u-u

\

Proof: Assume u # 0, otherwise there is nothing to prove.

Set a = rL_L, —. Observe that @ - (el — ¥) = 0. So
U -
0 < ||t — ¥||* = (au — ) - (ol — V)
= i - (ozu—v) U (ot — V)
= —v- (au—v)
I o s
]|
Section 6.1 Slide 9 m
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S sy
=a. u=[ o) 3
&
(w-u] = ( LT + th )
2 2
(U7 LU )

e = (u+u [
o o) () - (Uil
(uwwmw—IUU‘] U v w) (e a7

N—




(WJV T +M@G{>
(w2 U

(W —2- () - (W) + (WY~

A~
( WUz —ww) (7o
2

DTREE AV

I(

(ul it 2 [T u-v) .
Egultty  holds & Uz = b
U U - o)
w5 = Ti( 3.0, _3,7)‘ O~

parallo |



A a
\ > o +bhl>)C
e
b Jis at+b = C =
oL < c

The Triangle Inequality

— Theorem: Triangle Inequality

For all @ and ¥ in R™,

Il + vlie= [laf| + ]9]].

Proof: — 7

@+ 3)]* = (@+7) - (@ +7) B
= [|a]* + |17]* + 2 - ¥
< Jlall® + 1191 + 2) 1]
= (| + [191)®

UV @ 1ul -

Section 6.1  Slide 10 /I\
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Angles

—ul- v < u-v § hul -

CC-S)
N\
&) - —i\< CO%Q’ =

—

—  —
WU

Fufl - il

i@ =0 o~

Theorem

\

a b= |d| |l;| cosf. Thus, if @-b=

/l
0,

\

then:

e @ and/or b are _&  vectors, or

o @and b are _@[&\d&wlwﬁ,

For example, consider the vectors below.

Section 6.1

Slide 11
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Orthogonality

— Definition (Orthogonal Vectors) \

Two vectors @ and w are orthogonal if & -w = 0. This
Is equivalent to:

lZ+a)2=  qul + (wi

\ S

P YO~
Note: The zero vector in R™ is orthogonal to every vector in R™. But we
usually only mean non-zero vectors.

P+l = Iul + W 2 Uw

()
O
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Example

Sketch the subspace spanned by the set of all vectors @ that are

orthogonal to v = (;’)
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Orthogonal Compliments

~— Definitions \

Let W be a subspace of R". Vector 2 € R" is orthogonal to W if 2
is orthogonal to every vector in W.

The set of all vectors orthogonal to W is a subspace, the orthogonal
compliment of W, or W= or ‘W perp.’

Wt ={ZeR" : 7-% =0 for all G € W}

J

Vg
__b .
Regall T = [ug --- uq[\ = UUi+-- + Ulw

- — U,
U s cvrjrlf\baaomﬂ += ’Ul "

Section 6.1 Slide 14 2
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Example

1
)

o ColA is the span of a; = <;>

N =

Example: suppose A = (

—

o (ColA* is the span of 7 = ( 2

I

|t

%)

ARSI

Sketch NullA and NullA+ on the gri

L2
A

dep -

d’bm

Z2
T ColA
> X1
N Mr
= {[31 > CY?]'[D_]:O
v ol cc—lP}

r

> L1

(I
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Example

Example: suppose A — (; 2) A
o ColA is the span of &, — (;) ’ |
o ColA™ is the span of ¥ = (_21) .
- (Aiketch NullA and NullA* on the /g\nd t;zl\olv < LD e
={[1: alg)=o / /: §W§[§1]}L
“—ﬂx]i[lg][é]wﬁ ~ /Z\ 3 . - Nl ([3 -11)
@yt T e e ()
§= -5

Section 6.1 Side 15 / ‘ggxw(( } [ 1)
BN (R e R R (ST

= G ([0 -l (A7)
Y™ < Rl (KT NJLTAY = Gol( AT) = Reuld)

R
%NA [&1 ol (:Q



Example

1
Line L is a subspace of R3 spanned by ¥ = | —1 |. Then the space L+
2
is a plane. Construct an equation of the plane L=.
z
L AN
v
|
z/ _____ 1 y
x

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

Section 6.1 Slide 16



RowA

Definition
[—ROWA is the space spanned by the rows of matrix A. ]

We can show that
o dim(Row(A)) = dim(Col(A))
e a basis for RowA is the pivot rows of A

Note that Row(A) = Col(AT), but in general RowA and ColA are not
related to each other

COAYT

Nl (AY

Section 6.1 Slide 17

M xn

AeR
Fer™

= Null AT

= G (ATY = Rave [ A)
_ Pk (A)

T
5 dne (Nl ) + die (G = 1

S e (NG (A7) & S (GOl (AT))
Rue (&)

(1

m



Example 3 e R

Describe the Null(A) in terms of an orthogonal subspace.

A vector £ is in Null A if and only if

L = = e
1. Af= 8§ & [ A ] ['i
“_/()"‘Z)-_- . (
\a"‘m_ X,

2. This means that ¥ is 6(\#\@0]@
d

o Hoqonal) to Null A.
J

A
R ®) = (Nl (8))

4. The dimension of Row A plus the dimension of Null A equals

Section 6.1 Slide 18




ol CATY

(/
For any A € R™*" the orthogonal complement of Row A is

Null A, and the orthogonal complement of Col A is Null AT

Theorem (The Four Subspaces)

The idea behind this theorem is described in the diagram below.

Col(A)
R™ R™

Null(AT)

Section 6.1 Slide 19



Looking Ahead - Projections

Suppose we want to find the closed vector in Span{b} to @.

—

g-ﬂ——fSpan{Z}

- - a =projzd

e Later in this Chapter, we will make connections between dot
products and projections.

e Projections are also used throughout multivariable calculus courses.

Section 6.1 Slide 20



Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics
1. Orthogonal Sets of Vectors

2. Orthogonal Bases and Projections.

Learning Objectives
1. Apply the concepts of orthogonality to

a) compute orthogonal projections and distances,

b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of R™, and

d) construct orthonormal bases.

Motivating Question
What are the special properties of this basis for R3?

3 ~1 ~1
1| /V11, | 2 |/v6, |-4|/V66
1 1 7

Section 6.2 Slide 22



Orthogonal Vector Sets

Definition

A set of vectors {u1,...,u,} are an orthogonal set of vectors
if for each j # k, u; L .

Example: Fill in the missing entries to make {1, us, w3} an orthogonal
set of vectors.

L
4 —2 0
61: 0 ) /L_l:2: 0 ) _’3: 1
N N
—
G&- @ =0 _d;n- U; =o

I

4-2) w004 L) =0

Section 6.2 Slide 23



Linear Independence

Section 6.2

—

Theorem (Linear Independence for Orthogonal Sets)

Let {@i,...,u,} be an orthogonal set of vectors. Then, for

scalars c1, ..., ¢p, (P%G%m
— 77 2 i T
lextis + -+ + eptip||” = cilla|® + - - + |, |

In particular, if all the vectors ;- are non-zero, the set of vectors
{u1,...,1U,} are linearly independent.

Slide 24
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Orthogonal Bases

~— Theorem (Expansion in Orthogonal Basis) \

Let {u1,...,4,} be an orthogonal basis for a subspace W of
R™. Then, for any vector w € W,

@ = 1l + - + Cpilp.

g
gl

q

l
l

Above, the scalars are ¢, =

Q

q

\ S

For example, any vector 1 € R? can be written as a linear combination
of {€1, €, €3}, or some other orthogonal basis {1, s, U3 }.

us €3
U1 i,
51 52
‘_ro ")QW\:Q CC{T {
- — —> — =) —
u%f w = LAGF' ( (L Ug - + CoNUqF +———+CFULP>
= TR D
— Coq - Us-U -



MHA%/@M\Q S [(\h, kaﬁl

Example
> eV ra\//i
1 1 ~1 3
g=[1], d=|[-2], 7= 0 @t _4
1 1 1 1

Let W be the subspace of R3 that is orthogonal to Z.
a) Check that an orthogonal basis for W' is given by @ and .

b) Compute the expansion of s in basis .

e\l\)
¥ (
[j]‘[f]_—_ (wa&j4_%—:© &—Q{Tmza
> [
<\
< v TN
§ = (@5 +h- od o b
T3 T
- . e
TRy v
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am orbhogeel cef (Ui T o=o  Yixj)

gupposz W = C'TPH + clﬁL -t G TA?,
i  wmew

() Cq = “7—”(1;

L eTl™ + (GG +-—-+ 16T

@ el
~ QT e T

Projections

Let % be a non-zero vector, and let ¥ be some other vector. The
orthogonal projection of ¥ onto the direction of # is the vector in the

span of u that is closest to v.

o CRETEN

roj U = u.

The vector W = v — proj;v is .

orthogonal to u, so that v

U = proj;U + w 7
15]1* = llprojz7l|* + |||
h - - - —> > - - - Span{u}
projzv U
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ﬂoae,cfsﬂ“ &N

Projections

Rl

¢

Let % be a non-zero vector, and let ¥ be some other vector. The
orthogonal projection of ¥ onto the direction of # is the vector in the

span of u that is closest to v.

projzv =

The vector W = v — proj;v is
orthogonal to u, so that

U = proj;U + w

171" = [Iprojzdl* + ||w|*

Section 6.2 Slide 27

<y

£

S
Sl

£

<L

=

> - - - Span{u}

u

<L

projg



Example

J

L'AA D[TS:LNWGL
&~

~ ~~

Let L be spanned by 4 = N

' 17 - 7
U
=
1. Calculate the projection of = (—3,5,6,—4) o ine L.

2. How close is 4 to the line L7

xﬁaﬂ

—_ = = =

S X o I oy
1, Yy = VA = W =
PWJUT W@ 4 »
- D 4
N J—4 = [ -
2. &-(\S"LNW(,-Q, Lofwaan g O\M/l L e
= LY -y g0 - 1y

< (e aasteesy = 8
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U <— r-—CB@R\ o GP%(ﬁmo\q\ F_C\ﬂw" *Uj_ =q BE:%J
bo.svs o W % [ indep
5?0\1\/»5 \nJ
Definition

Definition (Orthonormal Basis)

0=

An orthonormal basis for a subspace W is an orthogonal basis
{uy, ..

.,Up} in which every vector i, has unitlength. In this
case, for each w € W,

W)y e (@ )T,
l@] = /(5 - 1) + - o+ (45 - )2
For every We W,
ESS = Cﬂ_ra. + Czag)_ + ~--F ij
U W3
Qrﬂ@m& S Co % CT @;TE
Section 6.2 Slide 29 I \/t%_”L Bd/\"H’\»ﬂQYV‘MLQ\
(\4/
(R = 1Qul+ -+ 1wl
- ci ¥ -+ C;—
N __).Q_ 2
CULy + ---=



Example s [é] c W ! [;J [(:} = Xfgtr=o

The subspac@ﬁis a subspace of R3 perpendicular to z = (1,1, 1).
Calculate the missing coefficients in the orthonormal basis for V.

1 W ‘
= | g v L |
vVa |- Ve |

O W= NI(CU 1D Sim (WY =9

@ U-\U = ¢ % K‘F\j"}—%:Q
K —22Z = 0 r)(z( Z= 41
_ 3—:_——2_
)(0
S
@ X m} ‘[(_]a'”-% nact W,Cl‘mﬁ.
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Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are
orthonormal.

E)Y‘-!'#\»Jonag« (P/ |-€Mgﬂ\ 4.

Theorem

i

An m x n matrix U has orthonormal columns if and only if UTU = I,,.

octheg el
Can U hav orthéﬁnormal columns i

@

&

Section 6.2

mxn

U = @ c R
= - Q_BL Gl
$ Ug_ sz’ - L)'V\ (( \)

5WMWAQ b) \Tr»eML/ TMLQP \

men
| AceR xe R ? @FRM
—
A ¢ 'l(__ E‘ va\ “2}/\ .
e® © R

g o) = Bpex



Theorem
WU =T

~— Theorem (Mapping Properties of Orthogonal Matrices) f———

Assume m x m matrix U has orthonormal columns. Then

1. (Preserves length) |UZ|| =| %]

2. (Preserves angles) (UZ) - (Uy) = ?'gﬁ

3. (Preserves orthogonality) Q?MO > Ux. Uy = ~o|

ng) = (U'U-7 = 2.7

U

(U= CUD- (URY = 5.5 —f[or™

Section 6.2 Slide 32




Example

Compute t@f the vector below.

12 2/\/@' o
1/2 1/v14 | [v2 )
bz e e
|1/2 0 |
&,_[{\/_/
( = U o M%Khw& Cokanins
AR =
[f} ) ﬁgﬁ = 6
! L

Comagh 4 (@/»&%/L
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Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

—

2

' Zj - Span{é’l, 52} — W

€1

Vectors €1 and é> form an orthonormal basis for subspace W'.
Vector 3/ is not in W.
The orthogonal projection of ¢ onto W =Span{é, éz} is 7.

Section 6.3 Slide 34



Topics and Objectives

Topics
1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives
1. Apply concepts of orthogonality and projections to

a) compute orthogonal projections and distances,

b) express a vector as a linear combination of orthogonal vectors,
construct vector approximations using projections,
characterize bases for subspaces of R™, and
construct orthonormal bases.

o 0
~— — —

(@)

Motivating Question For the matrix A and vector b, which vector b in
column space of A, is closest to b7

12 [
A=|3 o, b=]1
4 -2 1

Section 6.3 Slide 35



Example 1

Let @1, ...,us be an orthonormal basis for R®. Let W = Span{, iz }.
For a vector i € R, write § = § + w*, where y € W and w+ € W+.
L
W e W

Section 6.3 Slide 36



@>=\S&1(@ VA N%gcwﬁ @ $u W

F@f —QG?C—W ( ?; C:LC?ﬂ, +C>—T’?) - QPTJ—@
C = ?"az A/

F=tp

pet G oﬂ%nwmi : M%JI =4 % J&b q
Orthogonal Decomposition Theorem Ce= y .U,
n o Z-W;ro
— Theorem .g z CR ‘%"L\A/' % ‘Vwékl\/

Let W be a subspace of R™. Then, each vector 4/ € R" has the
unique decomposition

& _
j=g+w:, geW, wtewt.

And, if 4y, ..., U, is any orthogonal basis for W,
A~ g. _’1 — ?7' /L_[:p —
y — — — ul —|_ e + — — up'

We say that ¥ is the orthogonal projection of i onto W.

\ v

If time permits, we will explain some of this theorem on the next slide.

Section 6.3 Slide 37 / #
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We can write

y
i

Then, w

Section 6.3 Slide 38
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Example 2a

=
4 2 0 UL’UZ
jg=10], @i=[2], @= 0 _
¢
3 0 ('

Lotz
Construct the decomposition i = 7 + w, where 7 is the orthogonalém\‘ﬂ‘ >
projection of ¢ onto the subspace W = Span{ul, U}

—_ ~ 7.0 -
A g»uz - Q'UL ) é.uﬂ"— g
\41 i —— U+ = - U = e
Ug ~Ua Ug ~Ug = 242 =8
U
— - — . 3
= _&"Gﬂ_ + iuL = g ¥3WU —[Z UN)
3 ! U\-z','uLzc i‘
D B -
= fz} = P (H)
3
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-

a: WANT To MEASURE Disdonce  boftveen tj o~d W
= mIntmann o &Tﬁ:}‘ (3(7\75

Best Approximation Theorem areny  BeW

~— Theorem \

Let W be a subspace of R™, i/ € R™, and ¥ is the orthogonal
projection of § onto W. Then for any w # y € W, we have

b 6wy = 15 =31 <115 -

That is, 7/ is the unique vector in W that is closest to ¥/.

(W 7s  cenvex)

" L -

(D’) -
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Proof (if time permits)

The orthogonal projection of § onto W is the closest point in W to .
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Example 2b

4 2 0
g: 0 ) 61: 2 ) 72)2: 0
3 0 1

What is the distance between 3 and subspace W = Span{uy,u>}? Note
that these vectors are the same vectors that we used in Example 2a.

N R

dis (30 w) = Iy-§u é)
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Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

—

q2

—

qd1 .
X1

Vectors Z1, X2, T3 are given linearly independent vectors. We wish to construct
an orthonormal basis {q1, g2, g3} for the space that they span.

Section 6.4 Slide 43



Topics and Objectives

Topics
1. Gram Schmidt Process

2. The QR decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR
decomposition, to construct an orthogonal basis.

2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of R*.
|dentify an orthogonal basis for .

1 0 0
. 1 . 1 S 0
xry = 11|’ Lo = 11|’ 3 — 1
_1_ _1_ _1_
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Example

The vectors below span a subspace W of R*. Construct an orthogonal

basis for . o o o
1 0 0
S 1 . 1 S 0
v Pl R Tl Y R Rl B
Y, b
|1 1 1
( ke
=)
XL — (\
-
I
Sl By
_—
fl Y =
) - ~
1= %g N A % Z
5 ( %L =

Slide 45
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The Gram-Schmidt Process

Given a basis {71, ..

., Zp} for a subspace W of R", iteratively define

—»:f ) N
1 1 L ?HU’(’%L)
S S 2 U1, 7 Ua -
Up = X2 — 5——= U1 - (x%3)
R W 5
R - 301, I3 - V2,
1 U1 V2 - V2
L L TpeU Tp-Up-1
Up = Tp — Z—= U1 — 0 — iy
U1 -1 Up—1 " Up—-1

Then, {71,
) ! —
W B @
S 2 - Y
(ST I ST ‘@Lf“
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...,Up} is an orthogonal basis for W.
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Geometric Interpretation

Suppose &1, T2, T3 are linearly independent vectors in R3. We wish to
construct an orthogonal basis for the space that they span.

We construct vectors v, U5, U3, which form our orthogonal basis.
W1 = Span{Ul}, W2 = Span{Ul,@’g}.
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Orthonormal Bases

Definition

A set of vectors form an orthonormal basis if the vectors are
mutually orthogonal and have unit length.

Example
The two vectors below form an orthogonal basis for a subspace W.
Obtain an orthonormal basis for W

3 —2
_)1 = |2 ’ 172 - 3
0 1

I et N U RN e I
3 -2

l] = [ %J ([ 15 W%mmi‘
& s
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®B = % 9?3_ &:_ L% \ basrs v
gﬂ, - ﬁ
—gi - X — Pf\:jﬁ&i
Ju
L - 0 ~ (%)
R
Q. = X — ?w" L—%l .
Jr b Jg(pwfgaﬂ o
/@: % \C']_q,, =~ ,y@(( Qr:HfoJ\MQ
U= dv /g,
C = °€ Uy ~- U%J\L G\CA‘L‘UWBY\V‘VW\O\



Grpam — Schmidc pmce%% .

1 X,

%d_ = (X-.d_.
(%12 = X,
g3 = %

E
g?: %p
% Ya
U,%_r- &

N
BN
X

ol

l

>

x

S(P = (KP U_(B
WA
A :[\ Tj_ )(:
— m
Ko € R

Ko 0 % lTeearly  Trckpendent
o basie % W= Spun SXaL X

— PN&-%,J_((X;') = X, - = gﬂ_

— prej Coc3) =« ( FaYs o Kb 4_>
S}m{gi_:gzll 3 8"31 gﬂ' yrg_\_ g

- FWJ [“qﬂ |

gi"”“ Y, i S 48 4

A y @r-ﬂqogma\Q

% ’? ui' - UF([ OTTJ"J'\FYW‘("V‘«&Q. .

> lpuy W vl al em—teud

: ;(8(5'%\; T+l Wal + Og-w U

¢

~

!

_tf: + (%P- - 0o+ - 4 (xr-ufﬁ} ) U,PPQI’ ‘E’f?owavm[mv
pE d

¢k () bouy 06U) G

— . —y Q (%) () Og-d

o XV\] - [W U, ~- UPJ 10 o Luy” ;

1 : : $
Mokt oY ‘ ‘ ( ¢
Q P: ) 61“34\;?:%& i/\bws © Q CZ Goas



QR Factorization

—

Theorem

\

Any m X n matrix A with linearly independent columns has the QR

factorization
A=QR

where
1. @ is m x n, its columns are an orthonormal basis for Col A.

2. R is n x n, upper triangular, with positive entries on its
diagonal, and the length of the j'* column of R is equal to the
length of the 5" column of A.

In

Section 6.4

the interest of time:

e we will not consider the case where A has linearly dependent
columns

e students are not expected to know the conditions for which A has a
QR factorization

Slide 50
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Example

—
% xS,
y; /4
3 —2
Construct the QR decomposition for A= |2 3
0 1
— e~ e
”?ﬂ_“ = \(3L+ Seom = (13
( TL. (=

| 5 +3+p = J1g
W

2 -2
U’j_ = —,. - = \l 3
\l(_g' > 2 (TL—{_

o 1
3 2

@ = E Uli UL] = ‘“—_31 - J(_qf
2~ 3
T 0w
/
o
(K1
R = (X‘ Kh§ (XJ:uL = m O
Section 6.4 Slide 52 0 (XL UL) O \(_Y_C(: -
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Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

R%0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
O GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT” THAN TO FIND NELJ CONSTELLATIONS ON IT.

https://xkcd.com /1725
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Topics and Objectives

Topics
1. Least Squares Problems

2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares
problems using the normal equations and the (QR decomposition.

Motivating Question A series of measurements are corrupted by
random errors. How can the dominant trend be extracted from the
measurements with random error?
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Inconsistent Systems

Suppose we want to construct a line of the form
y:mx{—b;—% 0,5 = m.a + L1
that best fits the data below. 1T =m-4 « L. |

2.8 =m-2 4 b

Y 3= m-3 + L-]
® From the data, we can construct the system:
°
(1 0] 0.5]
1 1|6 |1
1 2| |m| |25
* 1 3 3
l a i L © ]
x
Can we ‘solve’ this inconsistent system?
Section 6.5 Slide 55
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/;)( Iz< C~ [ east SO, 5 [ ?-SC

mn | AR —LIl = AR =TI
X

The Least Squares Solution to a Linear System

~— Definition: Least Squares Solution

Let A be a m x n matrix. A least squares solution to Ax = b
is the solution & for which

|6— Az | < ||b— AZ|

for all € R™.

—

e

uL/L, Q&,W,Arxad— \Q/wgﬁj\[? A=t

W= Col (A)

. ) - T
isd \/\rﬂ;> o

=4

Can G damt = @ ¢ W = Gl ()
AR =T
Mow  Fo Wch\,o\ /; 7

QQ\ e AT? = P\ﬂz] (E) &— CDV\STS‘J‘ONA'
ONI7\S)




A Geometric Interpretation

Col(A) 0

>
Ax

The vector b is closer to A% than to AZ for all other Z € ColA.

1. Ifbec ColA thenZis ...

2. Seek T so that AT is as close to b as possible. That is, 7 should
solve Ax = b where bis ...

Section 6.5 Slide 57

AR e CI(A)
T s € GIAY =Nal [AT)
L

v,

——

CO[CA) AT‘[,J: 0

/ 7 —E = AY 4+ w
> 41 N 1.
.7 = AVA-%x + A WQ

A’(w C C&H‘B«“G}L@vﬂ‘ N
L AAaRN =T

>
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The Normal Equations

Section 6.5

—

Theorem (Normal Equations for Least Squares)

The least squares solutions to Ar = b coincide with the
solutions to
ATAf — ATQ

Normal Equations

Slide 58




Derivation

b
Col(A) “ N
R"™ 7 A
The least-squares solution  is in R™.

1. 7 is the least squares solution, is equivalent to b— AT is orthogonal
to A.

2. A vector ¥ is in Null AT if and only if v = 0.

3. So we obtain the Normal Equations:
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AT = b this  helde  #
CrasTetent .

s R e s ¥ [AR-BI =ete w2 -

(7 Coluttn & AKX = prj (D)
Lonst 9%{/0%{,5 So]dTo~ «]L AX =1 '

I

b= A% 4 o we W= GIBY - Nal (A7)
AP - ATAR < ASTWQO AU s = ¢
Gi\ ATA /)<¥ = 7L\T - _l: < Normﬂl éwﬁ@/‘,
Lo
Note - /r [ d/OUa\&S Consis Fui . (%jlwy

3
RAX =MNT w0 congidant e @f c GI(ATA)
— - I

Col ( AT)

—



n<n

Remark. Cry AU-A % Sauwt ( AC—HQMM, A cr ™)
Gy AR s Gmmetdc (B TS symmdric TR
- B=RT)H
(o (A - AT (A = AAD
Example ) (A7) = Som of Jfﬁéj@f@ﬂﬂ 7 o
C longh F A = (H(5a )

—

Compute the least squares solution to AZ = b, where T
4 0 B 2
A= 10 2|, b= 1|0
1 1 11
(7 A
Solution: . 1 ,&_]
T 40 1] |2 Y £ 46 e A™ A0 +0-2. 4 (1
AT A= 0 2 1 0 21 = [ L, 2 J
2 -1 1 L0 +2411 s t3 & 17
. -2
. - . (
AT — 4 0 1 ol = A-> + - i C(
0 2 1] | -
: Bedgdn + O {

[ =7 f T
[( g} [jj:[”j
Section 65 Side 0 [j‘] _ f7-§l_1 ¢ r7j [ j

2

LLATAY = Sum ST Cqmeies T
enies T™h A



The normal equations AT A% = ATb become:

AVgS\)\NY\Q A Mb\é l{\f\éo\r{&f THQLQ?W\Q!UWF ('/@[U/W\,V\ S

= B -A"A T inverkble

—)

Pires§ M@MTETB (X)) = B:x TS {-1

B

B R =0 TmPL'QS Y =9
B.R= o has e @,\\\/ +h\/?<x[ QDJUJL{\M.

guﬂ)l}.&e (%72 = ATA& ? = O

5% GTAT) - (aR)- B3 =13

s X- AT = Mg )
Section 6.5 Slide 61 [ }ﬂ ar

= 3 Ala 5 nwblle
A

I 2

ATA-?=0 = Y e Nal ( ATA)

0 Nel (ATR) = Nl (&)
—5 N X € Nul (A Nl (6TAY = Ml caYE

% Col (ATA—> = Ggf Cp{l‘)



AR =T

oay = AB
A = A-b

[ES A ha IThe a&y mewiv Calummmt

A

i CATQ§1—AT—T

T
ﬁ/ (S AT A T edibe
Theorem

—

A=QR 5 p/% - @T?

~— Theorem (Unique Solutions for Least Squares) \

Let A be any m X n matrix. These statements are equivalent.

1. The equation A7 = b has a unique least-squares solution
for each b € R™.

2. The columns of A are linearly independent,

S
A =<
3. The matrix AT A is invertible. = X = CA AY -
And, if these statements hold, the least square solution is

T=(ATA)"TATb.

\ S

~

AT T

Useful heuristic: AT A plays the role of ‘length-squared’ of the matrix A.
(See the sections on symmetric matrices and singular value
decomposition.)
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A has, (s M(\/ Trdep . Goluming

N A
Ls KAt mubble S ATAX AL
L= (KA ATE

C A= Oxp o --- 0 Xad
Grape — Schndis S Q= C W - -- Q@ G“f‘}-l'\av\/smmd\
A=aQR Y - B
"~ upper —Hamgbls Q'Q = T
~— Theorem (Least Squares and QR) .

Let m X n matrix A have a QR decomposition. Then for each
b € R™ the equation AX = b has the unique least squares

solution

Rz = Q7.
(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

AR =D
AR X = b
A RY - QL
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Example 3. Compute the least squares solution to Ax = b, where

1 3 5 3
1 1 0 — 5
A= 1 1 2’ b= 7
1 3 3] | —3]
Solution. The QR decomposition of A is
R B AP
A=QR=1 0 2 3
1P o o 2
11 -1
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1 1 1 1 2
QTb=1%1 -1 -1 1 - =|-6
- 111 1] | 4
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Re call AX -L X ot leagh Couores  Salutim r—f-
I AX-BU = w1 ax Tl
x
T; ) Ax = P C-(LA\(-E)
; @) ATAX = ATD ( Novnal E?m{‘?m\

4 ”TZLQ If A s (mesry Tullp- o lumn g
Gl Oy ATA 7s  Tusfible, %= CATAY AT (wn sola

" A=gR AR-T 5 pp- P
qfa.=T ((A/‘;FUV W?qy'\&ujmr-.

Example

m he least squares solution to AZ = 5 where —
Compute the qu uti ﬁrﬁ&=-6~l+f+7

(1 —6] —1 =0
1 -2 - 2
A= 1 1] b= 1
1 7 6
= £k Nl - -
Ky Xy

Hint: the columns of A are orthogonal. 9 ‘Fmr‘7 ﬂ“’l’fﬂp ,

ATUA = 0 1 1 ::5:(4“9J
[‘é—l[‘/];f o 9o

K| = ( \
[—g _; (( 7}

L o X Q]
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-5
Y4 | = |
Ut = =i = 2 % K
)
%K _ I = ¥ o v rva
Uy, = 2 — %, U Uy § ovens
( ?L” %(f_d -)% 1 2
—3 — o
= U4 ] 2° 7
[ > Q _ 9(('“( X% - Uy - (! S
A = & R [ ) ( x J
0 X - U (”,LSI
— ——
2 3{is
K- Uqg = %o ﬁ - [l =X o [
(X o, (
i o — T'_"3
AR =} > Rx = Q4%

J ~
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Chapter 6 : Orthogonality and Least Squares
6.6 : Applications to Linear Models

5 S

4.5 L)

0 0.5 1 1.5 2
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Topics and Objectives

Topics
1. Least Squares Lines

2. Linear and more complicated models

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.

2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question
Compute the equation of the line y = By + S1x that best fits the data

x |2 5 7 8
y‘1143
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.
1. Black circles are data.

2. Blue line is the least squares line.
- foron o (
3. Lengths of red lines are the ditforerce e = e e

The least squares line minimizes the sum of squares of the  €pors

W o
r3{/{3”%
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Example 1 Compute the least squares line y = 5y + S1x that best fits

the data
x ‘ 2 5 7 8 ’i
Yy ‘ 1 1 4 3
/1 = %Q'&%q‘g\
We want to solve ) ) -
1 2 1 1 - B“ J_F'-g
1 5] |5 1
17 [51] 4 b =B b7
1 8] 3]
- ?J — %é + l%t 8
This is a least-squares problem : X3 = v/.
P
X R-B s »cT-gs

(2 s ag)
o) b ] 7 L)



The normal equations are

XTX—ll 1 1 1 ]

—_ =
I
[\W)
o
—_
[\)
W
MM
|

So the least-squares solution is given by

2 1) 3] - Lo

19

-5
9—50+51$—E+E$

As we may have guessed, 3y is negative, and (31 is positive.
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S =% hmex, =€

Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

y = co+c1fi(x) + cafo(w) + -+ + e fr().
If functions f; are known, this is a linear problem in the ¢; variables.

Example

Consider the data in the table below.
x | -1 0 0 1
y| 2 1 0 6

Determine the coefficients ¢; and ¢y for the curve y = cyz + coz? that
best fits the data.

Q@ — 2= -+ Ca g = >G N
A= T M T Ca
( = C-0 G-8 C(:D‘
O = (o0 cl-ei
o — 6 = (4 + Co
o e
o © [C‘ _ |
o 0 CJ B ©
( S




- oo % 4.
[[Oo s}O :[J

(2 (E] 2 L

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

WolframAlpha

linear fit {{z1,y1},{z2,¥2},.. ,{Tn,yn}}
Mathematica

LeastSquares[{{x1,z1,y1},{®2, 22,2}, .-, {Tn, Tn,Yn}}]

Almost any spreadsheet program does this as a function as well.
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