Midterm 2 Lecture Review Activity, Math 1554

1. (3 points) T_{A} is the linear transform $x \rightarrow A x, A \in \mathbb{R}^{2 \times 2}$, that projects points in \mathbb{R}^{2} onto the x_{2}-axis. Sketch the nullspace of A, the range of the transform, and the column space of A. How are the range and column space related to each other?

2. Indicate true if the statement is true, otherwise, indicate false.

3. If possible, write down an example of a matrix or quantity with the given properties. If it is not possible to do so, write not possible.
(a) A is $2 \times 2, \operatorname{Col} A$ is spanned by the vector $\binom{2}{3}$ and $\operatorname{dim}(\operatorname{Null}(A))=1 . A=\left(\begin{array}{ll}2 & -2 \\ 3 & -3\end{array}\right)$

(c) A is in RREF and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. The vectors u and v are a basis for the range of T.

$$
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \left.A=\left(\begin{array}{lll}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 0
\end{array}\right) \quad=\quad=C_{0} \right\rvert\,(A) .
$$

Dimension The $\quad A \in \mathbb{R}^{m \times n}$

Def T is 1-1 if $\begin{aligned} & A \vec{x}=A \vec{y} \text { imptres } \vec{x}=\vec{y} \\ & \vec{z}=\vec{x}-\vec{y} \quad A(\vec{x}-\vec{y})=0 \text { imphes } \vec{x}-\vec{y}=0\end{aligned}$

$$
\begin{aligned}
\Delta(\vec{z}) & =0 \quad \text { implies } \quad \vec{z}=0 \\
\operatorname{Nal}(A) & =\{\vec{z}: A \vec{z} \Rightarrow \overrightarrow{0}\} \\
& =\{\overrightarrow{0}\}
\end{aligned}
$$

4. Indicate whether the situations are possible or impossible by filling in the appropriate circle.

$A \vec{u}=\lambda \vec{u}$	possible impossible
$A \vec{v}=\mu \vec{v}$	

4.i) Vectors \vec{u} and \vec{v} are eigenvectors of square matrix A, and $\vec{w}=\vec{u}+\vec{v} \not \mathscr{}$ is also an eigenvector of A.
4.ii) T_{A}

$$
\begin{aligned}
A(\vec{u}+\vec{v}) & =A \vec{u}+A \vec{v}=\lambda \vec{u}+\mu \vec{v} \\
& =0 \cdot(\vec{u}+\vec{v}) \quad \text { only when } \lambda=\mu
\end{aligned}
$$

5. (2 points) Fill in the blanks.
(a) If A is a 6×4 matrix in RREF and $\operatorname{rank}(A)=4$, what is the rank of A^{T} ? \square
(b) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^{2} clockwise by π radians about the origin, then scales their x-component by a factor of 3 , then projects them onto the x_{1}-axis. What is the value of $\operatorname{det}(A) ?$ \qquad
6. (3 points) A virus is spreading in a lake. Every week,

- 20% of the healthy fish get sick with the virus, while the other healthy fish remain healthy but could get sick at a later time.
- 10% of the sick fish recover and can no longer get sick from the virus, 80% of the sick fish remain sick, and 10% of the sick fish die.

Initially there are exactly 1000 fish in the lake.
a) What is the stochastic matrix, P, for this situation? Is P regular?
b) Write down any steady-state vector for the corresponding Markov-chain.

Midterm 2. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (3 points) Find the value of h such that the matrix

$$
A=\left(\begin{array}{ll}
5 & h \\
1 & 3
\end{array}\right)
$$

has an eigenvalue with algebraic multiplicity 2.

$$
h=\square
$$

6. (3 points) Let \mathcal{P}_{B} be a parallelogram that is determined by the columns of the matrix $B=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right)$, and \mathcal{P}_{C} be a parallelogram that is determined by the columns of the matrix $C=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$. Suppose A is the standard matrix of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps \mathcal{P}_{B} to \mathcal{P}_{C}. What is the value of $|\operatorname{det}(A)|$?

$$
|\operatorname{det}(A)|=\frac{1}{2}
$$

Midterm 2 Make-up. Your initials: \qquad
9. (6 points) Show all work for problems on this page.

Consider the Markov chain $\vec{x}_{k+1}=P \vec{x}_{k}, k=0,1,2, \ldots \quad P \cdot v_{3}=1 \cdot v_{3}$ Suppose P has eigenvalues $\lambda_{1}=0, \lambda_{2}=1 / 2$ and $\lambda_{3}=1$. Let \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} be eigenvectors corresponding to λ_{1}, λ_{2}, and λ_{3}, respectively:

$$
\vec{v}_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)
$$

Note: you may leave your answers as linear combinations of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(i) If $\vec{x}_{0}=\frac{1}{6} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}+\frac{1}{2} \vec{v}_{3}$, then what is \vec{x}_{2} ?

$$
\begin{aligned}
\vec{x}_{1} & =P \cdot \vec{x}_{0}=P \cdot\left(\frac{1}{6} \vec{v}_{1}+\frac{1}{3} \overrightarrow{v_{2}}+\frac{1}{2} \vec{v}_{3}\right) \\
& =\frac{1}{6} \cdot \frac{P \overrightarrow{v_{1}}}{n_{0}}+\frac{1}{3} \frac{P \vec{v}_{2}}{\frac{1}{2} \sqrt[v]{2}^{2}}+\frac{1}{2} \frac{P \overrightarrow{v_{3}}}{\sqrt{3}} \\
& =\frac{1}{6} \sqrt[v]{2}^{2}+\frac{1}{2} \sqrt[v]{3} \\
\text { (ii) If } \vec{x}_{0} & =\left(\begin{array}{l}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right), \text { then what is } \vec{x}_{1} \text { ? }
\end{aligned}
$$

Hint: write \vec{x}_{0} as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
\square

$$
\begin{aligned}
\vec{x}_{2} & =P \vec{x}_{1}=P \cdot\left(\frac{1}{6} \vec{v}_{2}+\frac{1}{2} \sqrt{3}\right) \\
& =\frac{1}{6}-\frac{1}{2} \overrightarrow{v_{2}}+\frac{1}{2} \cdot 4 \cdot \vec{v}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{0}=a \cdot \vec{v}_{1}+b \overrightarrow{v_{2}}+c \cdot \vec{v}_{3} \quad \text { Find } a, b, c \cdot \vec{x}_{1}= \\
& {\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
\frac{1}{4}
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
-1 & 0 & 1 & \frac{1}{4} \\
1 & -1 & 1 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{4}
\end{array}\right]} \\
& \text { ii) If } \underset{\vec{x}_{0}}{ }=\left(\begin{array}{l}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right), \text { then what is } \vec{x}_{k} \text { as } k \rightarrow \infty ?
\end{aligned}
$$

\vec{x} : prob. vector, \Rightarrow P. $\vec{x}=$ a prob. vector

$$
\begin{aligned}
x_{0} & =\frac{a \cdot v_{1}}{}+b \cdot v_{2}+c \cdot v_{3} \\
\vec{x}_{k}=p^{k} x_{0} & =b \cdot\left(\frac{1}{2}\right)^{k} \cdot v_{2}+c \cdot 1 \cdot v_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \vec{x}_{k}=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right]} \\
& \text { prob. vector } \Rightarrow C=\frac{1}{2} .
\end{aligned}
$$

