MATH 461 LECTURE NOTE WEEK 13

DAESUNG KIM

1. COVARIANCE (SEC 7.4)

Covariance The covariance	between X and Y is defined by
	$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$
Proposition 1. (ii) We have	(i) $\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$, $\operatorname{Cov}(X,X) = \operatorname{Var}(X)$, and $\operatorname{Cov}(aX + b,Y) = a\operatorname{Cov}(X,Y)$.

$$Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j).$$

In particular,

$$\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2\sum_{i < j} \operatorname{Cov}(X_i, X_j).$$

Correlation coefficient

The correlation between *X* and *Y* is defined by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

We say *X* and *Y* are uncorrelated if $\rho(X, Y) = 0$.

Remark 2. If *X* and *Y* are independent, then $\rho(X, Y) = 0$. Does the converse hold?

Proposition 3. (i) $-1 \le \rho(X, Y) \le 1$. (ii) For a > 0, $\rho(aX + b, Y) = \rho(X, Y)$. (iii) If $\rho(X, Y) = \pm 1$, then Y = aX + b.

Example 4. Toss a fair coin 3 times. Let *X* be the number of heads, and *Y* be the number of tails. Find Cov(X, Y).

Example 5. Let X_1, X_2, \cdots be independent random variables with common mean μ and common variance σ_2 . Set $Y_n = X_n + 2X_{n+1}$ for $n \ge 1$. For $j \ge 0$, find $Cov(Y_n, Y_{n+j})$ and $\rho(Y_n, Y_{n+j})$.

REFERENCES

[SR] Sheldon Ross, A First Course in Probability, 9th Edition, Pearson

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address:*daesungk@illinois.edu