Chapter 2. Discrete Distributions

Math 3215 Summer 2023

Georgia Institute of Technology

Section 1.
Random Variables of the Discrete Type

$$
\begin{aligned}
& S(x)=\{0,1\} \Leftrightarrow \quad x=S \rightarrow \mathbb{R} \quad \text { set. } \quad X= \begin{cases}0, & \text { Heads } \\
1, & \text { Tails }\end{cases} \\
& \text { Ex Tossing âcoin } \begin{aligned}
\text { fair }^{\prime} & =\{H, T\} \\
\text { Events } & =\delta,\{H\},
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \{Outcomes }\}=\text { Sample space. } \\
& S=[0,1] \\
& \text { Subsets } \$ \text { Events. } \\
& \begin{cases}a & \mathbb{P}(A) \geqslant 0 \\
0 & \mathbb{P}(S)=1 \\
x_{0} & A_{1}, A_{2}, \cdots, A_{k}\end{cases} \\
& \text { mutually exclusive } \\
& \mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{K}\right) \\
& =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)+\ldots+\mathbb{P}\left(A_{k}\right)
\end{aligned}
$$

Random variables

Definition

Given a random experiment with a sample space S, a function X that assigns one and only one real number $X(s)=r$ to each elements in S called a random variable.

The space of X is the set of real numbers $\{x: X(s)=x, s \in S\}$ and denoted by $S(X)$.

Example
A rat is selected at random from a cage and its sex is determined.
The set of possible outcomes is female and male. Thus, the sample space is $S=\{$ female, male $\} .=\{F, M\}$

$$
\begin{aligned}
& \text { \{Events }\}=\{\phi,\{F\},\{M\}, S\} \\
& \mathbb{P}(\phi)=0, \quad \mathbb{P}(S)=1 \\
& \mathbb{P}(\alpha F\})=\frac{1}{2}=\mathbb{P}\left(\{ (M \}) \quad \left\{F_{1}, 1\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
X(F)=\frac{1}{2}, \quad X(M)=-\frac{1}{2} \\
X=\left\{\begin{array}{cc}
\frac{1}{2}, & \text { Female } \\
-\frac{1}{2}, & \text { Male } \\
S(X)=\left\{\frac{1}{2},-\frac{1}{2}\right\}
\end{array}\right.
\end{gathered}
$$

Example
Consider a random experiment in which we roll a six-sided die.
The sample space associated with this experiment is
$S=\{1,2,3,4,5,6\}$.

$$
\{\text { Events }\}=\{\phi, \alpha 1\}, \ldots\}
$$

Let $X(s)=s$. Compute $\mathbb{P}(2 \leq X \leq 4)$.

$$
\begin{aligned}
& \mathbb{P}(x=2,3,4)=\mathbb{P}(\{2,3,44) \\
&=\frac{3}{6}=\frac{1}{2} \\
& \mathbb{P}(\{2,3,4\})=\frac{5}{2} \\
& 2
\end{aligned}
$$

Discrete random variables

Definition
Let X be a random variable defined on a sample space S.
If S consists of finite outcomes or countable outcomes, then X is called a discrete random variable.

The probability mass function of X is

$$
f(x)=\mathbb{P}(X=x)
$$

$$
f(x)=\mathbb{P}(x=x)
$$

Discrete random variables
$S(x)=$ the space of x
Properties of PMF
The mf $f(x)$ of a discrete random variable X is a function that satisfies the following properties:

$\bullet \sum_{x \in S(X)} f(x)=1$, and $\leftarrow \quad \mathbb{P}(\mathbb{S})=1$

- $\mathbb{P}(X \in A)=\sum_{x \in A} f(x) . \quad \begin{aligned} & x\left(a_{1}\right) X\left(f_{2}\right) \quad X\left(a_{n}\right)\end{aligned}$

$$
\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \cdots, x_{n}^{\prime \prime}\right\} \subseteq S(x)
$$

$$
\begin{aligned}
\mathbb{P}\left(x \in \ddot{\prime}^{\prime \prime}\right) & =\mathbb{P}\left(\left\{a_{1}, \cdots, a_{n}\right\}\right) \\
& =\mathbb{P}\left(\left\{a_{1}\right\}\right)+\mathbb{P}\left(\left\{a_{2}\right\}\right)+\cdots+\mathbb{P}\left(\left\{a_{n}\right\}\right) \\
& =\mathbb{P}\left(X=x_{1}\right)+\cdots+\mathbb{P}\left(X=x_{n}\right)^{5} \\
& =\sum f\left(x_{i}\right)
\end{aligned}
$$

$$
f(x)=\mathbb{P}(x=x) \quad \because \quad p m f
$$

Discrete random variables
(d.f.)

The cumulative distribution function of X is

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F(x)=0 \\
& \lim _{x \rightarrow \infty} F(x)=1
\end{aligned}
$$

F : increasing 6 function.
Ex $\quad X=\left\{\begin{array}{ccc}1, & H \\ -1 ; & T\end{array}\right.$
right continuous

left contr.

Discrete random variables

$$
S=\{1,2,3,4,5,6\}
$$

$f: \mathbb{R} \rightarrow \mathbb{R}$
Example
Roll a die, let X be the outcome.
Find the mf and the pdf of X.

$$
\begin{aligned}
& f(x)=\mathbb{P}(x=x)= \begin{cases}\frac{1}{6} & \text { when } x=1,2, \cdots: 6 \\
0, & \text { otherwise }\end{cases} \\
& F(x)=\mathbb{P}(x \leqslant x)= \begin{cases}0, & x \in(-\infty, 1) \\
\frac{1}{6}, & x \in[1,2)^{7} \\
\frac{2}{6}, & x \in[2,3)\end{cases}
\end{aligned}
$$

Discrete random variables

Example
Roll a fair four-sided die twice.

$$
S=\{(1,1),(1,2)
$$

$$
x: s t \rightarrow \mathbb{R}
$$

$$
(1,1) \longmapsto 1
$$

$$
(1,2) \longmapsto 2
$$

Let X equal the larger of the two outcomes if they are different and the common value if they are the same.

Find the mf and the pdf of X.
(1) $\quad f(x)=\{1,2,2,4\}$
(2) $f(x)=\mathbb{P}(x=x)= \begin{cases}1 / 16 & x=1 \\ 3 / 16 & x=2 \\ 5 / 16 & x=3 \\ 7 / 16 & x=4 \\ 0 & \text { otherwise }\end{cases}$
(3) $F(x)=\ldots$

Exercise
Let X be a discrete random variable with mf $f(x)=\log _{10}\left(\frac{x+1}{x}\right)$ for $x=1,2, \cdots, 9$. (a) Verify that $f(x)$ satisfies the conditions of a pmf.
(b) Find the cdf of X.

$$
\begin{aligned}
f(x) & \left\{\begin{array}{ccc}
\log _{10} \frac{2}{1} \geqslant 0 & x=1 & \left(\log _{10} t \geqslant 0 \text { when } t \geqslant 1\right) \\
l_{y_{10}} \frac{3}{2} & x=2 & \log _{10} \frac{2}{1}+\log _{10} \frac{3}{2}+\operatorname{ly}_{10} \frac{4}{3}+\ldots+\log _{10} \frac{10}{9} \\
\vdots & & \log _{10}\left(\frac{4}{1}\left(\frac{3}{2} \cdots \cdots\right)\right. \\
& =\log _{10} 10=1
\end{array}\right)
\end{aligned}
$$

(b)

$$
F(x)=\mathbb{P}(x \leqslant x)=\left\{\begin{array}{cc}
0 & x<1 \\
\frac{\log _{10} 2}{\log _{10} 3} & 1 \leqslant x<2 \\
\log _{10} k & k \leqslant x<3 \\
1 & k-1 \leqslant x<k, k=1, \cdots ; 10 \\
1 \geqslant 10
\end{array}\right.
$$

Recall $X:{\underset{11}{ }}_{S_{1} \rightarrow \mathbb{R}: \text { a random variable. }}$
\{outcomes\}
X is a discrete RV if S is finite

$$
\begin{cases}\text { inf: } & f(x)=\mathbb{P}(x=x)- \begin{cases}: & f(x) \geqslant 0, \\ & \sum f(x)=1 \\ & \mathbb{P}(x \in A)=\sum_{x \in A} f(x) \\ c d f: & F(x)=\mathbb{P}(x \leqslant x)-0 \leqslant F(x) \leqslant 1, \text { non-decreasing }\end{cases} \end{cases}
$$

Bar graph, Probability histogram, relative frequency histogram

$$
S=\{\underbrace{(2,1)}_{(1,1)}, \frac{(1,2)}{(2,2)},(1,3),(1,4),
$$

Example
A fair four-sided die with outcomes $1,2,3$, and 4 is rolled twice.
Let X equal the sum of the two outcomes.

$$
S(x)=\text { the space of } x=\{2,3,4, \underline{4}, \cdots, 8\}
$$

MF:

Bar Graph

Prob. Histogram.

$x=2,8$
$x=3,7$
$x=4,6$
$x=5$ otherwise

Bar graph, Probability histogram, relative frequency histogram

Example

Two fair four-sided dice are rolled. Write down the sum of the two outcomes. Repeat this 1000 times.

Section 2.

Mathematical Expectation

Example
Consider the following game. A player roll a fair die.
If the event $A=\{1,2,3\}$ occurs, he receives one dollar; if $B=\{4,5\}$ occurs, he receives two dollars; and if $C=\{6\}$ occurs, he receives three dollars.

If the game is repeated a large number of times, what is the average payment?

Average of $x=$ Expectation of $x=\mathbb{E}[x]$

$$
\begin{aligned}
& =1 \cdot \mathbb{P}(x=1)+2 \cdot \mathbb{P}(x=2)+3 \cdot \mathbb{P}(x=3) \\
& =\sum_{x \in S(x)}^{1} x \cdot \frac{\mathbb{P}(x=x)}{\operatorname{pmf}}=\sum_{x \in S(x)}^{1} x \cdot f(x)
\end{aligned}
$$

Definition
If $f(x)$ is the emf of a discrete random variable X with the space $S(X)$, and if the summation

$$
\sum_{x \in S(X)} u(x) f(x)
$$

exists, then the sum is called the mathematical expectation or the expected value of $u(X)$, and denoted by $\mathbb{E}[u(X)]$.

$$
\mathbb{E}[u(x)]=\sum_{x \in S(x)}^{-1} u(x) \cdot f(x)
$$

$$
\text { Ex):u(x)}=\begin{aligned}
u(x) & =X \\
\cdot u(x) & =x^{2} \\
u(x) & =x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[x]=\sum x f(x) \\
& \mathbb{E}\left[x^{2}\right]=\sum x^{2} \cdot f(x) \\
& \mathbb{E}\left[e^{x}\right]=\sum^{x} \cdot f(x)
\end{aligned}
$$

$$
f(k)=\frac{C}{k^{2}}=\begin{aligned}
& \mathbb{P}(X=k) \\
& , \quad k=1,2,3, \ldots
\end{aligned}
$$

Howr to determine c ?

$$
\begin{gathered}
1=\sum_{k=1}^{\infty} f(k)=\underline{=} \cdot \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \\
\mathbb{E}[x]=\sum_{k=1}^{\infty} k \cdot f(k)=\sum_{k=1}^{\infty} 1 \frac{c}{k^{2}}=c \cdot \sum_{\substack{\infty} \frac{1}{k}}^{1}+\frac{1+\frac{1}{2}+\frac{1}{6}+\frac{1}{4}+\cdots}{\downarrow} \\
\infty
\end{gathered}
$$

Example
Let the random variable X have the mf $f(x)=\frac{1}{3}$ for $x \in\{-1,0,1\}=S(X)$.

Let $Y=u(X)=X^{2}$. Find the pmf of Y and $\mathbb{E}[Y]=\mathbb{E}\left[X^{2}\right]$.
(1)

$$
\begin{aligned}
\mathbb{E}[Y]=\mathbb{E}\left[u(x)^{\prime \prime} x^{2}\right. & =\sum_{x=-10,1}^{1} x^{2} \cdot f(x) \\
& =(-1)^{2} \cdot f(-1)^{-\frac{1}{3}}+0^{2} \cdot f(0)^{1 / \frac{1}{3}}+1^{2} \cdot f(1)^{-\frac{1}{3}} \\
& =\frac{2}{3}
\end{aligned}
$$

(2)

$$
\begin{gathered}
Y=x^{2} \text { aRV } \quad f_{Y}(y)=\mathbb{P}(Y=y)=\left\{\begin{array}{l}
\frac{1}{3}, y=0 \\
S(Y)=\{0,1\} \\
\frac{2}{3}, y=1
\end{array}\right. \\
\mathbb{E}[Y]=\sum_{1} y \cdot f_{Y}(y)=0 \cdot \frac{1}{3}+1 \cdot \frac{2}{3}=\frac{2}{3} .
\end{gathered}
$$

Linearity.
Properties of Expectation
In particular

$$
\mathbb{E}[a X+b]=a \mathbb{E}[X]+b
$$

Theorem

1. If c is a constant, then $\mathbb{E}[c]=c$.
2. If c is a constant and u is a function, then $\mathbb{E}[c u(X)]=c \mathbb{E}[u(X)]$.
3. If c_{1} and c_{2} are constants and u_{1} and u_{2} are functions. then

$$
\nabla \mathbb{E}\left[c_{1} u_{1}(X)+c_{2} u_{2}(X)\right]=c_{1} \mathbb{E}\left[u_{1}(X)\right]+c_{2} \mathbb{E}\left[u_{2}(X)\right] .
$$

(2)

$$
\begin{aligned}
\mathbb{E}[c \cdot u(x)] & =\sum^{\infty}(0 \cdot u(x) \cdot f(x) \\
& =c \cdot \sum_{1}^{\infty} u(x) \cdot f(x)=c \cdot \mathbb{E}[u(x)]_{14}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \mathbb{E}\left[c_{1} \cdot u_{1}(x)+c_{2} u_{2}(x)\right] \\
= & \sum_{1}^{1}\left(c_{1} \cdot u_{1}(x)+c_{2} \cdot u_{2}(x)\right) f(x) \\
= & \sum_{1}^{\infty} c_{1} u_{1}(x) f(x)+\sum_{R} c_{2} u_{2}(x) f(x) \quad+c_{2} \mathbb{E}\left[u_{2}(x)\right] \\
= & c_{1} \sum_{1} u_{1}(x) \cdot f(x)+c_{2} u_{2}(x) f(x)=c_{1} \mathbb{E}\left[u_{1}(x)\right]
\end{aligned}
$$

Example
Let X have the mf $f(x)=\frac{x}{10}$ for $x=1,2,3,4$.
Find $\mathbb{E}[X], \mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}[X(5-X)]$.

$$
\begin{aligned}
\mathbb{E}[x]=\sum_{1}^{+} x \cdot f(x) & =1 \cdot f(1)+2 \cdot f(2)+3 \cdot f(3)+4 f(4) \\
& =1 \cdot \frac{1}{10}+2 \cdot \frac{2}{10}+3 \cdot \frac{3}{10}+4 \cdot \frac{4}{10} \\
& =3
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[x^{2}\right]=\sum_{1}^{+} x^{2} \cdot f(x) & =1^{2} \cdot f(1)+2^{2} \cdot f(2)+3^{2} \cdot f(3)+4^{2} f(4) \\
& =4^{2} \cdot \frac{1}{10}+2^{2} \cdot \frac{2}{10}+3^{2} \cdot \frac{3}{10}+4^{2} \cdot \frac{4}{10} \\
& =\frac{1+8+27+64}{10}=10
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[\underbrace{x(5-x)}] & =\sum^{t}(x(5-x)) \cdot f(x)=\cdots \\
& =\mathbb{E}\left[5 x-x^{2}\right]=5 \mathbb{E}[x]-\mathbb{E}\left[x^{2}\right]=5 .
\end{aligned}
$$

Note: : $\mathbb{E}[x \cdot(x-1)] \neq \mathbb{E}[x] \cdot \mathbb{E}[(x-1)]$

Properties of Expectation

Example

An experiment has probability of success $p \in(0,1)$ and probability of failure $q=1-p$.

This experiment is repeated independently until the first success occurs.
Let X be the number of trials. Find $\mathbb{E}[X]$.

Exercise

An insurance compan sells an automobile policy with a deductible of one unit. Let X be the amount of the loss having mf

$$
f(x)= \begin{cases}0.9 & x=0 \\ \frac{c}{x} & x=1,2,3,4,5,6\end{cases}
$$

where c is a constant. Determine c and the expected value of the amount the insurance company must pay.

$$
\begin{align*}
& 1=\frac{0.9}{}+\frac{c}{1}+\frac{c}{2}+\cdots+\frac{c}{6} \tag{1}\\
& \frac{1}{10}=c \cdot\left(1+\frac{1}{2}+\frac{5}{3}+\cdots+\frac{1}{6}\right), \quad c=\frac{1}{10 \cdot\left(\frac{1}{6}+\frac{1}{2}+\cdots+\frac{1}{6}\right)}{ }^{3}
\end{align*}
$$

(2) $\mathbb{E}[X]=\sum^{-1} \underline{x} \cdot f(x)$

$$
=\sum_{x=1}^{6} x \cdot \frac{c}{x}=6 \cdot C=\frac{6}{10 \cdot\left(1+\frac{1}{2}+\cdots+\frac{1}{6}\right)}
$$

Section 3.

Special Mathematical Expectations

Moments
$\begin{aligned} \text { First moment about } x=\underset{=}{b} & =\mathbb{E}[(X-b)] \\ & (2-b) \cdot \frac{1}{3}+(-1-b) \cdot \frac{2}{3} .\end{aligned}$

$$
\mu=\mathbb{E}[X]=\sum x f(x) .
$$

This is also called the first moment about the origin.
The first moment about the mean μ is $\mathbb{E}[X-\mu]=\mathbb{E}[X-\mathbb{E}[X]]$
If $b=\mu=\mathbb{E}[x], \quad=\mathbb{E}[x]-\mathbb{E}[x]=0$.

$$
\begin{aligned}
& X_{1} \quad \longrightarrow \quad Y_{1}=\frac{X_{1}-b_{1}}{X_{2}} \\
& Y_{2}=X_{2}-b_{2}
\end{aligned}
$$

$1^{\text {st }}$ moment of x out $b=\mathbb{E}[(x-b)]$.

The second moment of X about b is $\mathbb{E}\left[(X-b)^{2}\right]$.

$$
\mathbb{E}[x]
$$

If $b=\mu$, it is also called the variance of X and denoted by $\operatorname{Var}(X)=\sigma^{2}$.
Its positive square root is the standard deviation of X and denoted by $\operatorname{Std}(X)=\sigma$.

Example
Roll a fair die and let X be the outcome.
Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.

$$
\begin{aligned}
& \mathbb{E}[x]=\sum^{-1} x \cdot \underset{\sim}{f(x)}=\frac{1}{6} \cdot(1+2+\cdots+6)=\frac{21}{6} \\
& \operatorname{Var}(x)= \mathbb{E}\left[\left(x-\frac{\mu^{\prime \prime}}{2}\right)^{2}\right] \\
&= \sum^{1}\left(x-\frac{7}{2}\right)^{2} \cdot f(x)=\mu \\
&= \frac{1}{6} \cdot\left(\left(1-\frac{7}{2}\right)^{2}+\left(2-\frac{7}{2}\right)^{2}+\left(3-\frac{7}{2}\right)^{\prime \prime}\right. \\
&\left.+\left(4-\frac{7}{2}\right)^{2}+\left(5-\frac{7}{2}\right)^{2}+\left(6-\frac{7}{2}\right)^{2}\right) \\
&= 2 \cdot \frac{1}{2} \cdot\left(\frac{t^{2}}{2}+\frac{3^{2}}{4}+\frac{1^{2}}{4}\right)=\frac{35}{12}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Theorem } \\
& \operatorname{Van}(x)=\sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[x))^{2} \\
& \text { Proof }) \quad \operatorname{Var}(x)=\mathbb{E}\left[((x-b)[x])^{2}\right] \\
& =\mathbb{E}\left[x^{2}-2 x \cdot \mathbb{E}[x]+\underline{\left.(E[x])^{2}\right]}\right] \\
& =\mathbb{E}\left[x^{2}\right]-2 \cdot \mathbb{E}[X \in \mathbb{E}[x]]^{\text {constant }}+(\mathbb{E}[x])^{2} \\
& \mathbb{E}[x] \mathbb{E}[x] \\
& =\mathbb{E}\left[x^{2}\right]-2 \cdot(\mathbb{E}[x])^{2}+(\mathbb{E}[x])^{2} \\
& =\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}
\end{aligned}
$$

Properties
(1)

$$
\begin{aligned}
\operatorname{Var}(c \cdot X) & =\mathbb{E}\left[(c x)^{2}\right]-(\mathbb{E}[(x)])^{2} \\
& =c^{2} \cdot \mathbb{E}\left[X^{2}\right]-c^{2} \cdot(\mathbb{E}[x])^{2} \\
& =c^{2} \cdot\left(\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}\right)=c^{2} \cdot \operatorname{Var}(x)
\end{aligned}
$$

Moments

$$
\begin{aligned}
& \operatorname{Var}(\underset{\lambda}{c})=\mathbb{E}\left[c^{2}\right]-(\mathbb{E}[C])^{2}=c^{2}-c^{2}=0 \\
& \text { Constant } \\
& \text { Theorem } \\
& \sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

(2) $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$ Exercise.

Moments

In general, the r-th moment of X about b is $\mathbb{E}\left[(X-b)^{r}\right]$.

Definition

Index of skewness is defined by

$$
\gamma=\mathbb{E}\left[(X-\mu)^{3}\right] / \sigma^{3} .
$$

$$
\mathbb{E}[x-b]
$$

Example
Let $f(x)=\frac{\frac{4-x}{6}}{\underline{c}}$ for $x=\underline{1,2,3}$ be the emf of X. Compute the index of skewness.

$$
\begin{aligned}
& f(x)=\left\{\left.\begin{array}{cl}
\frac{1}{2} & x=1 \\
\frac{1}{3} & x=2 \\
\frac{1}{6} & x=3
\end{array} \right\rvert\,=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{3}+3 \cdot \frac{1}{6}=\frac{5}{3} .\right.
\end{aligned}
$$

$$
=\frac{27}{5 \sqrt{5}} \cdot\left(\left(-\frac{8}{27}\right)^{4} \cdot \frac{1}{4}+\frac{1}{27} \cdot \frac{1}{3}+\frac{64^{32}}{27} \cdot \frac{1}{6_{3}}\right)
$$

skew to right.
If <0
Skews to left
Moment generating functions

Definition
Let X be a discrete random variable and assume that there exists $h>0$ such that

$$
M(t)=\mathbb{E}\left[e^{t X}\right]=\sum e^{t x} f(x)
$$

is finite for all $t \in(-h, h)$. Then, $M(t)=\mathbb{E}\left[e^{t X}\right]$ is called the moment generating function (mgf).

$$
\begin{aligned}
M(0) & =1 \\
M^{\prime}(0) & =\left.\frac{d}{d t} M(t)\right|_{t=0}=\left.\frac{d}{d t} \mathbb{E}\left[e^{t x}\right]\right|_{t=0}=\left.\mathbb{E}\left[x e^{t x}\right]\right|_{23} \\
& =\mathbb{E}[x] \\
M^{\prime \prime}(0) & =\mathbb{E}\left[x^{2}\right]
\end{aligned}
$$

$M G F$ of $X=M(t)=\mathbb{E}\left[e^{t x}\right]=\sum_{x}^{1} e^{t x} \cdot f(x)$

$$
\text { for } \quad t \in(-h, h) \quad, \quad h>0 .
$$

$$
\begin{aligned}
& \text { pip of } x \\
& =f(x)=\mathbb{P}(x=x)
\end{aligned}
$$

(1) $M(0)=\mathbb{E}\left[e^{0 \cdot X}\right]=\mathbb{E}[1]=1$
(2) $\left.\left.\left.M^{\prime}(t)\right|_{t=0} \frac{d}{d t} \mathbb{E}\left[e^{t x}\right]\right|_{t \in 0} \frac{d}{d t} \sum_{\lambda} \sum^{t x} f(x)\right|_{t=0}=\left.\sum_{i}^{1} \frac{d}{d t}\left(e^{t x} f(x)\right)\right|_{t=0}$

$$
=\left.\sum x \cdot e^{t x} f(x)\right|_{t=0}=\sum x f(x)=\mathbb{E}[x] .
$$

$M^{\prime}(0)=\mathbb{E}[x] \quad \leftarrow$ first moment of X about θ

Moment generating functions

Properties

1. $M(0)=1$
2. $M^{\prime}(0)=\mathbb{E}[X]$
3. $M^{\prime \prime}(0)=\mathbb{E}\left[X^{2}\right]$
4. In general, $M^{(r)}(0)=\mathbb{E}\left[X^{r}\right]$.

Geometric RV.
Example

$$
x=1,2, \cdots
$$

Let $f(x)=q^{x-1} p$ where $p \in(0,1)$ and $q=1-p . \Rightarrow \quad p=1-q$.
Compute $M(t)$.
(1) If $f(x)$ a PMF?

$$
\begin{aligned}
\sum_{x=1}^{\infty} \underbrace{f(x)} & =q^{1-1} \cdot p+q^{2-1} \cdot p+q^{3-1} \cdot p+\cdots \\
& =p \underbrace{p}_{x q} \cdot \underbrace{}_{x q}+q^{2} \cdot p+\cdots \quad \& \text { Geometric } \\
& =\frac{\text { First term }}{1-\text { Ratio }}=\frac{p}{1-q}=1
\end{aligned}
$$

(2)

$$
\begin{aligned}
M(t) & =\mathbb{E}\left[e^{t x}\right]=\sum_{x=1}^{\infty} e^{t x} \cdot q^{x-1} \cdot p \\
& =e^{t \cdot 1} \cdot q^{1-1} \cdot p+e^{t \cdot 2} \cdot q^{2-1} \cdot p+e^{t-3} \cdot q^{3-1} \cdot p+\cdots \\
& =e^{t} \cdot p+e^{2 t} \cdot q \cdot p+e^{3 t} \cdot q^{2}-p+\cdots \\
& =\frac{e^{t} \cdot p \times e^{t}-q}{1-e^{t} \cdot q} \ll e^{t} q
\end{aligned}
$$

Ex

$$
E[x]=\sum_{x=1}^{\infty} x \cdot p \cdot q^{x-1}=?
$$

$$
\frac{1}{\text { Exercise }} \sum_{k=0}^{b} f(k)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{2}\right)^{n} \left\lvert\, \begin{aligned}
& \text { Binomial The } \\
& (a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} \cdot b^{n-k} \\
& a=b=\frac{1}{2}
\end{aligned}\right.
$$

Find $\mathbb{E}[X]$ and $\mathbb{E}[X(X-1)]$ for a discrete random varialbe X with the pm

$$
\begin{aligned}
& \mathbb{E}\left[x^{2}\right]^{\prime \prime}-\mathbb{E}[x] \\
& f(k)=\binom{4}{k}\left(\frac{1}{2}\right)^{4} \leftrightarrow n=4 .
\end{aligned}
$$

for $k=0,1,2,3,4$.

$$
\binom{4}{k}=\frac{4!}{k!(4-k)!}
$$

$$
f(k)=\binom{n}{k}\left(\frac{1}{2}\right)^{n} \quad k=0,1, \cdots, n
$$

$$
\begin{aligned}
\mathbb{E}[x] & =\sum_{k=0}^{n} k \cdot\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{n} \\
& =\sum_{k=1}^{n} n \cdot\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

(n) $\frac{(n-1)!}{n!}$

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k \cdot\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{n}=\sum_{k=\phi}^{n} k_{1} \frac{k \cdot}{k!(n-k)!}\left(\frac{1}{2}\right)^{n}
$$

$$
=\sum_{k=1}^{n} n-\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n} \quad(k-1=j) \quad k!=k \cdot(k-1)!
$$

$$
=n\left(\sum_{k=0}^{n-1}\binom{n-1}{j}\left(\frac{1}{2}\right)^{n-1}\right) \cdot\left(\frac{1}{2}\right)=\frac{n}{2}
$$

$$
\begin{aligned}
M(t) & =\mathbb{E}\left[e^{t x}\right]=\sum_{k=0}^{n} e^{t k}\binom{n}{k}\left(\frac{1}{2}\right)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} \cdot\left(\frac{e^{t}}{2}\right)^{k} \cdot\left(\frac{1}{2}\right)^{n-k}=\left(\frac{1}{2}+\frac{1}{2} e^{t}\right)^{n}
\end{aligned}
$$

Section 4.

The Binomial Distribution

Bernoulli random variables

A Bernoulli experiment, more commonly called a Bernoulli trial, is a random experiment with two outcomes.

Say $S=\{$ success, failure $\}$ and $\mathbb{P}($ sucess $)=p$ for some $p \in(0,1)$. Then $\mathbb{P}($ failure $)=q=1-p, \quad p+q=1$

A random variable X is a Bernoulli random variable with success probability p is $X=1$ if success and 0 otherwise.

$$
x=\left\{\begin{array}{lll}
1, & \text { with prob. } & p \\
0, & \text { with } & \text { prob. }
\end{array} 11-p=q=\$\right.
$$

$$
x=\left\{\begin{array}{ccc}
1 & w \cdot p \cdot & p \\
0 & w \cdot p & q=1-p
\end{array} \quad f(x)= \begin{cases}p & \text { if } x=1 \\
q & \text { if } x=0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Theorem
Let X be a Bernoulli random variable with success probability p.

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{x}^{-1} x \cdot f(x)=0 \cdot f(0)+1-f(1)=0 \cdot q+1 \cdot p=p . \\
& \operatorname{Var}[X]=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}=p-p^{2}=p \cdot(1-p)=p q . \\
& \mathbb{E}\left[x^{2}\right]=\sum_{x} x^{2} f(x)=0^{2} \cdot f(0)+1^{2} \cdot f(1)=p \\
& M(t)=\mathbb{E}\left[e^{t x}\right]=\sum_{x}^{1} e^{t x} f(x)=e^{t \cdot 0} f(0)+e^{t \cdot 1} f(1) \\
&=1-q+e^{t} \cdot p=1-p+e^{t} p \\
&=1+\left(e^{t}-1\right)-p .
\end{aligned}
$$

Consider a sequence of independent Bernoulli experiments with success probability p.

Let X be the number of success trials in the first n experiments.
This is called a binomial random variable with the number of trials n and success probability p.

We use the notation $X \sim b(n, p)=\operatorname{Bin}(n, p)$.
(1) If $n=1$, Binomial $=$ Bernalli
(2) $X \sim \operatorname{Bin}(n, p), \quad x=x_{1}+x_{2}+\cdots+x_{n}$

Binomial random variables

Theorem
Let X a binomial random variable with the number of trials n and success probability p.
The pmf of X is $\quad f(k)=\binom{n}{k} p^{k} \cdot(1-p)^{n-k}, k=0,1, \cdots, n$

$$
\begin{aligned}
& \mathbb{E}[X]=n \cdot p \\
& \operatorname{Var}[X]=n \cdot p \cdot(1-p)=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2} \\
& M(t)=\mathbb{E}\left[e^{t x}\right]=\sum_{k=0}^{n} e^{t k}\binom{n}{k} p^{k} \cdot q^{n-k} \\
&=\sum_{k=0}^{n} 1\binom{n}{k} \cdot\left(p e^{t}\right)^{k}(q)^{n-k}{ }^{n} \\
&=\left(p e^{t}+q\right)^{n}= \\
& M^{\prime}(t)=n\left(p e^{t}+q\right)^{n-1}-\left(p e^{t}+q\right)^{\prime}=n\left(p e^{t}+q\right)^{n-1}-p \cdot e^{t} \\
& M^{\prime}(0)=n \cdot(p+q)^{n-1}-p \cdot e^{0}=n \cdot p \cdot=\mathbb{E}[x]
\end{aligned}
$$

Example
Out of millions of instant lottery tickets, suppose that 20% are winners. If eight such tickets are purchased, what is the probability of purchasing two winning ticket?

$$
\begin{gathered}
\# \text { of trials }=8 \\
\text { success prob }=0.2 \\
X=\# \text { of winning tickets } \sim \operatorname{Bin}(8,0.2) \\
\mathbb{P}(X=2)=\binom{8}{2}(0.2)^{2}(0.8)^{6}
\end{gathered}
$$

Binomial random variables

Example

H5N1 is a type of influenza virus that causes a severe respiratory disease in birds called avian influenza (or "bird flu").

Although human cases are rare, they are deadly; according to the World Health Organization the mortality rate among humans is 60%.

Let X equal the number of people, among the next 25 reported cases, who survive the disease.

$$
\begin{aligned}
& \# \text { of trials }=25 \\
& \text { success prob, }=0,4
\end{aligned}
$$

Assuming independence, the distribution of X is $\underline{b(25,0.4)}$. What is the probability that ten or fewer of the cases survive?

$$
\begin{aligned}
\mathbb{P}(X \leqslant 10) & =\sum_{k=0}^{10}\binom{25}{k} \cdot(0.4)^{k} \cdot(0.6)^{25-k} \\
& \cong 0.5858
\end{aligned}
$$

Binomial random variables

Theorem

The mgr of a binomial random variable X is

$$
\begin{aligned}
M(t) & =\left(q^{\prime \prime}+p e^{t}\right)^{n} \\
& =\left(1+\left(e^{t}-1\right) p\right)^{n}
\end{aligned}
$$

Binomial random variables

Exercise

It is believed that approximately 75% of American youth now have insurance due to the health care law.

Suppose this is true, and let X equal the number of American youth in a random sample of $n=15$ with private health insurance.

How is X distributed? Find the probability that X is at least 10. Find the mean, variance, and standard deviation of X.

$$
\begin{aligned}
& x \sim \operatorname{Bin}(15,0.75) \\
& \mathbb{E}[x]=n \cdot p=15 \cdot \frac{3}{4}=\frac{45}{4} \\
& \operatorname{Var}[x]=n \cdot p \cdot q=n \cdot p \cdot(1-p)=15 \cdot \frac{3}{4} \cdot \frac{1}{4}=\frac{45}{16}^{33} . \\
& \operatorname{Sfd}(x)=\sqrt{n p q}=\sqrt{\frac{45}{16}}=\frac{3 \sqrt{5}}{4} \\
& \mathbb{P}(X \geqslant 10)=\sum_{k=10}^{15}\binom{15}{k}(0.75)^{k} \cdot(0.25)^{15-k}
\end{aligned}
$$

Section 5.

The Hypergeometric Distribution

The Hypergeometric Distribution

There is a collection of N_{1} red balls and N_{2} blue balls.
Sample n balls at random without replacement ($n \leq N_{1}+N_{2}$).
Let X be the number of red balls chosen.
$0 \leqslant x \leqslant \min \left\{n, N_{1}\right\}$
Then, X is called a hypergeometric random variable with parameters N_{1}, N_{2}, n_{1} and denoted by $\operatorname{HG}\left(N_{1}, N_{2}, n\right)$.

The Hypergeometric Distribution

Example

In a small pond there are 50 fish, ten of which have been tagged.
If a fisherman's catch consists of seven fish selected at random and without replacement, and X denotes the number of tagged fish, what is the probability that exactly two tagged fish are caught?

With replacement $\rightarrow \quad \#$ of rids $=7$
Bin. Success prob $=\frac{N_{1}}{N}=\frac{10}{50}=\frac{1}{5}$

The Hypergeometric Distribution

$$
\begin{aligned}
& \text { Theorem } \\
& \mathbb{P}(X=k)=\quad \frac{\binom{N_{1}}{k}\binom{N_{2}}{n-k}}{\binom{N}{n}} \\
& \mathbb{E}[X]=n \frac{N_{1}}{N_{1}+N_{2}} \\
& \operatorname{Var}[X]=n \frac{N_{1}}{N_{1}+N_{2}} \frac{N_{2}}{N_{1}+N_{2}}
\end{aligned}
$$

without replacement $\rightarrow H G\left(N_{1}, N_{2} n\right)$ with replacement $\rightarrow \operatorname{Bin}\left(n, \frac{N_{1}}{N_{1}+N_{2}}\right)$

36

$$
\begin{aligned}
\mathbb{E}[X] & =n \cdot \frac{N_{1}}{N_{1}+N_{2}} \\
\operatorname{Var}[X] & =n \cdot \frac{N_{1}}{N_{1}+N_{2}} \cdot \frac{N_{2}}{N_{1}+N_{2}}
\end{aligned}
$$

1. Bernoulli RV: 2 outcomes $\{$ Success, Failure $\}=\$$

$$
\begin{aligned}
& \mathbb{P}(\text { Success })=p \in(0,1) \\
& \mathbb{P}(\text { Failure })=1-p=q
\end{aligned}
$$

$x= \begin{cases}1 & \text { if Success } \\ 0 & \text { otherwise }\end{cases}$
2. Binomial RV: Repeat Bernoulli Exp. n times

Count $\underbrace{\# \text { of Success }}$
\# of success x : Binomial. RV
PMF $\quad f(k)=\mathbb{P}(X=k)$

$$
=\binom{n}{k} p^{k} \cdot(1-p)^{n-k}
$$

$$
\mathbb{E}[x]=n \cdot p \quad \operatorname{Var}(x)=n \cdot p \cdot q=n \cdot p(1-p) .
$$

3. Hyper Geometric RV:

count \# of red $=X$: HGRV.
PMF $f(k)=\frac{\binom{N_{1}}{k}\binom{N_{2}}{n-k}}{\binom{N}{n}}+n$ balls att of N balls

$$
X=0,1, \ldots, \underline{\min \left\{n, N_{1}\right\}}
$$

$$
X \sim H G\left(N_{1}, N_{2}, n\right)
$$

The Hypergeometric Distribution

$$
H G-<\begin{aligned}
& \text { total population }<\frac{\text { two kinds }}{r / b} \\
& \text { sample } n<\text { without replacement. } \\
& \text { with replacement. } \rightarrow \text { Bin. }
\end{aligned}
$$

In a lot (collection) of 100 light bulbs, there are five bad bulbs.
s without rephncemut
An inspector inspects ten bulbs selected at random.
Find the probability of finding at least one defective bulb.

$$
\begin{aligned}
\frac{\mathbb{P}(X \geqslant 1)}{9} & =\sum_{k=1}^{10 ? 5} \mathbb{P}(X=k)
\end{aligned} \sum_{k=1}^{\sum_{k=1}^{5}} \frac{\binom{5}{k} \cdot\binom{95}{10-k}}{\binom{100}{10}}
$$

Section 6.

The Negative Binomial Distribution

Binomial : repeat n time $\rightarrow \#$ of success, Geometric : repeat until first success $\rightarrow \# \frac{\text { of trials }}{4}$

Consider a sequence of independent Bernoulli trials with success probability

Let X be the number of trials until the first success.
This random variable is called a geometric random variable.

$$
H \rightarrow \text { success }
$$

Repeat Bernoulli Exp. with success prob. $P \in(0,1)$ until first success.

$$
\begin{aligned}
& \text { MF } f(k)=\mathbb{P}(x=k) \\
& =P(F F F F \\
& =\underbrace{(1-p)^{k-1} \cdot p} \quad \underbrace{k \text { fines }} \\
& k=1,2, \cdots
\end{aligned}
$$

Geometric random variables

Theorem
The pmf of X is $\quad f(k)=(1-p)^{k-1}-p$ for $k=1,2,3, \ldots$

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{1}{p} \\
& \operatorname{Var}[X]=\frac{q}{p^{2}}=\frac{c-p}{\rho^{2}} \\
& M(t)=\frac{p e^{t}}{1-(1-p) e^{t}}
\end{aligned}
$$

(1) $\sum_{k=1}^{\infty} f(k)=1$

In the same way
(2) $\mathbb{E}[x]=\sum_{k=1}^{\infty} k \cdot f(k)=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p$

$$
\begin{aligned}
\mathbb{E}[x]^{\prime}= & \underbrace{1 \cdot(1-p)^{0} \cdot p+(2) \cdot(1-p) \cdot p+(3)(1-p)^{2} p+4(1-p)^{2} \cdot p^{+\cdots}} \\
& (1-p) \mathbb{E}[x]^{+1}= \\
& \left.(1-(1-p) \cdot p+2) \cdot(1-p)^{2} p+3 \cdot(1-p)^{3} \cdot p^{+\cdots}\right) \mathbb{E}[x]=(1-p)^{0} \cdot p+(1-p) \cdot p+(1-p)^{2} \cdot p+\cdots
\end{aligned}
$$

Geom. Series

$$
p \cdot \mathbb{E}[x]=\frac{p}{1-(1-p)}=1
$$

$$
\therefore \mathbb{E}[x]=\frac{1}{P} .
$$

Geometric random variables

Example
Some biology students were checking eye color in a large number of fruit flies.

For the individual fly, suppose that the probability of white eyes is $1 / 4$ and the probability of red eyes is $3 / 4$, and that we may treat these observations as independent Bernoulli trials.

$$
\begin{aligned}
& \text { hat we may treat these } \\
& \text { \# sf trials }=x \sim G \operatorname{com}\left(\frac{1^{\prime \prime}}{4}\right)
\end{aligned}
$$

What is the probability that at least four flies have to be checked for eye color to observe a white-eyed fly?

$$
\begin{aligned}
\mathbb{P}(X \geqq & \underbrace{p+(1-p) \cdot p+}_{\text {Success } p=\frac{1}{4}} \\
& =\underbrace{\sum_{k=4}^{\infty}(1-p)^{k-1} \cdot p}_{(1-p)^{2} \cdot p .}=\sum_{k=1}^{3+1}(1-p)^{k-1} \cdot p
\end{aligned}
$$

$X \sim \operatorname{Geom}(p)$

- $\mathbb{P}(X>k)=(1-p)^{k}$
memoryless property.
- $\mathbb{P}(x>a+b \mid x>a)=\mathbb{P}(x>b)$
$X \sim \operatorname{Geom}(p): \#$ of trials until first success
$X=\#$ of triads until $r^{\text {th }}$ success.
S
Negative Binomial (r, p)
Negative Binomial random variables
$=$ Index. Sum of Geometric RV's.

Consider a sequence of independent Bernoulli trials with success probability

Let X be the number of trials until the r-th success.
This random variable is called a negative binomial random variable.

Negative Binomial random variables

Theorem
The mf of X is

$$
f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

for $k=r, r+1, \cdots$ and otherwise zero.
$\mathbb{E}[X]=\frac{r}{p}=r \cdot \frac{1}{P}$ Expectation of Geometric $P V$ $\operatorname{Var}[X]=\frac{r q}{p^{2}}=r \cdot \frac{q}{p^{2}}$
 $X_{i} \sim \operatorname{Gesm}(\phi)$

Negative Binomial random variables

A negative binomial random variable can be written as a sum of independent geometric random variables.

Negative Binomial random variables

Example
Suppose that during practice a basketball player can make a free throw 80% of the time.

Furthermore, assume that a sequence of free-throw shooting can be thought of as independent Bernoulli trials.

Let X equal the minimum number of free throws that this player must attempt to make a total of ten shots.

Find the mean of X.

$$
\begin{aligned}
& p=0.8 \quad X \sim \operatorname{NegBin}(10,0.8) \\
& \mathbb{E}[x]=r \cdot \frac{1}{p}=10 \cdot \frac{1}{0.8}=10 \cdot \frac{5}{4}=\frac{25}{2}=12.5 .
\end{aligned}
$$

$A \quad B \quad D_{=}$
Exercise
Coupon Collection Problem.
One of four different prizes was randomly put into each box of a cereal.
If a family decided to buy this cereal until it obtained at least one of each of the four different prizes, what is the expected number of boxes of cereal that must be purchased?

$$
\begin{aligned}
\mathbb{E}\left[1+x_{1}+x_{2}+x_{3}\right] & =1+\underbrace{\mathbb{E}\left[x_{1}\right]}+\mathbb{\mathbb { E } [x _ { 2 }]}+\mathbb{E}\left[x_{8}\right] \\
& =1+\frac{4}{3}+\frac{4^{2}}{7}+\frac{4}{1}=\frac{25}{3}
\end{aligned}
$$

Section 7.

The Poisson Distribution

Definition

Some experiments result in counting the number of times particular events occur at given times or with given physical objects.

Example

- the number of cell phone calls passing through a relay tower between 9 and 10 A.M.
- the number of flaws in 100 feet of wire
\& - the number of customers that arrive at a ticket window between noon and 2 P.M.
- the number of defects in a 100 -foot roll of aluminum screen that is 2 feet wide.

Definition

Counting such events can be looked upon as observations of a random variable associated with an approximate Poisson process, provided that the conditions in the following definition are satisfied.

Definition

Let the number of occurrences of some event in a given continuous interval be counted. Then we have an approximate Poisson process with parameter $\lambda>0$ if

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.

Under these assumption, consider the number of occurrences in a time interval $[0,1]$.

$$
\begin{aligned}
\mathbb{E}\left[X_{n}\right] & =n \cdot p \\
& =n \cdot \frac{\lambda}{n}=\lambda
\end{aligned}
$$

Indep. $\left\langle\begin{array}{c}0 \text { event } \\ 1 \text { event }\end{array} \Rightarrow\right.$ Indep. Bernoulli. with

$$
p=\frac{\lambda}{n}
$$

$X=\#$ of event $\operatorname{Tn}[0,1] \approx \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)$ large n.
Definition
Split $[0,1]$ into n subintervales $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \cdots,\left[\frac{n-1}{n}, 1\right]$.
In each subinterval, at most one event occurs with probability $\frac{\lambda}{n}$.
Thus, the number of occurrences is a binomial random variable with n nad $\frac{\lambda}{n}$.

As $n \rightarrow \infty$, the random variable gets close to some random variable X.
We say X is a Poisson random variable with parameter λ if its mf is

$$
\begin{aligned}
\mathbb{P}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!} & =\lim _{n \rightarrow \infty} \frac{\mathbb{P}\left(x_{n}=k\right)}{\sim} \\
& =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}-\left(\frac{n-\lambda}{n}\right)^{n-k}
\end{aligned}
$$

for $k=0,1,2, \cdots$.
what is λ ? Occurrence rate
= mean.

$\underline{\underline{X}} \sim \operatorname{Poisson}(\lambda)=\#$ of occurrences PMF $\quad f(k)=e^{-\lambda} \frac{k}{k!}, \quad k=0,1,2, \ldots$

$$
1 \stackrel{?}{=} \sum_{k=0}^{\infty} f(k)=\sum_{e^{\lambda}}^{\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}}=e^{-\lambda} \cdot e^{\lambda}=1
$$

Definition
Fact:

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \Leftrightarrow e^{x}
$$

Theorem

$$
\begin{aligned}
& \mathbb{E}[X]=\lambda \\
& \operatorname{Var}[X]=\lambda \\
& M(t)= \\
& \mathbb{E}[x]=\sum_{k=\phi}^{\infty} k \cdot f(k)=\sum_{k=1}^{\infty}(k) e^{-\lambda} \cdot \frac{\lambda^{\lambda^{k}}}{h!}(k-1)! \\
& =\sum_{j=0}^{\infty}\left(e^{-\lambda} \frac{\lambda^{\lambda} \cdot \lambda}{j!}=\lambda e^{-\left.\lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}\right|_{50} ^{k-1=j}}=e^{\lambda}\right. \\
& =\lambda e^{-\lambda} \cdot e^{\lambda}=\lambda \\
& \begin{aligned}
\operatorname{Var}(x) & =\underbrace{\mathbb{E}\left[x^{2}\right]}-\underbrace{(\mathbb{E}(x))^{2}}=\lambda+\lambda^{2}-\lambda^{2} \in \lambda) \\
\mathbb{E}\left[x^{2}\right]_{/ \prime} & =\sum_{k=0}^{\infty} k^{2} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& k^{2} \cdot \frac{1}{k!}=\frac{\operatorname{le}^{k}}{k \cdot(k-1)+\cdots-\cdots-1} \\
& \begin{aligned}
\underbrace{\mathbb{E}[x(x-1)]}_{b} & =\sum_{k=\infty}^{\infty}+\frac{k(k-1)}{\lim _{n}} e^{-\lambda} \frac{\lambda^{k}}{4!}(k-2)! \\
& =\cdots \cdot \lambda^{2}
\end{aligned} \\
& \mathbb{E}\left[x^{2}-x\right]=\lambda^{2} \\
& \mathbb{E}\left[x^{2}\right]-\underbrace{\mathbb{E}}_{\| \lambda}[x]=\lambda^{2} \Rightarrow \mathbb{E}\left[x^{2}\right]=\lambda+\lambda^{2} \\
& M(t)=\mathbb{E}\left[e^{t x}\right]=\sum_{k=0}^{\infty}\left(e^{t)^{k}} e^{-\lambda} \frac{\lambda^{k}}{k!}\right. \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{k}}{k!} \\
& =e^{-\lambda} \cdot \underline{e}^{\lambda e^{t}}=e^{\lambda \cdot\left(e^{t}-1\right)}
\end{aligned}
$$

Exercise

$$
\frac{\operatorname{rcige}}{\mathbb{E}}\left[2^{x}\right]=\text { ? }
$$

Definition

Example

In a large city, telephone calls to 911 come on the average of two every 3 minutes.

If one assumes an approximate Poisson distribution, what is the probability of five or more calls arriving in a 9 minute period?

$$
X=\# \text { of calls in }[0,9] \sim \operatorname{Poisson}(6)
$$

$$
\mathbb{P}(x \geqslant 5)=\sum_{k=5}^{\infty} e^{-6} \frac{6^{k}}{k!}
$$

Poisson Approximation to Binomial
\# if triads success prob.
Supose X is a binomial random variable $b(n, p), n$ is large, and p is small but $n p$ converges to some constant, say λ.

In this case, X can be approximated by a Poisson random variable with parameter λ.

This approximation is quite accurate if $n \geq 20, p \leq 0.05$ or $n \geq 100$, $p \leq 0.1$.

$$
\begin{array}{ll}
\text { Ex } \quad & X \sim \operatorname{Bin}\left(100, \frac{1}{20}\right) \\
Y \sim \mathbb{P P}_{\text {orson }}(\lambda) & \lambda^{\wedge}=\underline{\mathbb{E}[X]}=n \cdot p=100-\frac{1}{80}=5 . \\
\mathbb{P}(X \leqslant 5) \approx \mathbb{P}(Y \leqslant 5)
\end{array}
$$

$x \sim \operatorname{Geom}(p)$
\# of trials until first success.
$f(k)=(1-p)^{k-1} \cdot p \quad$ for $k=1,2,3, \cdots$.

$$
X \sim \operatorname{Neg} B \operatorname{in}(r, p)
$$

\# of trials until $r^{\text {th }}$ success.

$$
f(k)=p \cdot p^{r-1} \cdot(1-p)^{k-r} \cdot\binom{k-1}{r-1} \quad \text { for } k=r, r+1, \cdots
$$

$k-1$ trials $k^{\text {th }}$ trial.

\leftrightarrow store II $x=\#$ of customers during $[0,1]$.
$\angle{ }^{-}$no overlap \rightarrow independence.

- Small interval: 0 or 1 customer prob $=\underline{\underline{\lambda}}$.(Size of interval)

$$
\begin{aligned}
x & \sim \text { Poisson }(\lambda) \\
f(k) & =e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \text { for } k=0,1,2, \cdots \\
\lambda & =\mathbb{E}[x]
\end{aligned}
$$

Poisson Approximation to Binomial

Example

A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs are defective.

$$
\pi \sim \operatorname{Bin}\left(10_{0}^{n} 0,0.02\right) \quad \begin{aligned}
& \text { Small } \\
& n \cdot p=2=\lambda
\end{aligned}
$$

Assuming independence, the number of defective bulbs in a box of 100 bulbs has a binomial distribution with parameters $\mathrm{n}=100$ and $\mathrm{p}=0.02$.

Find the probability that a box of 100 of these bulbs contains at most (three defective bulbs.

$$
\begin{align*}
\underbrace{\mathbb{P}(\underset{X}{X})}_{\sim} & =\sum_{k=0}^{3}\binom{100}{k}(0.02)^{k}(0.98)^{180-k} \\
& \left.\approx P(Y \leqslant 3)=\sum_{k=0}^{3} e^{-2} \frac{2^{k}}{k!}\right) \tag{53}\\
Y \sim \operatorname{Poisson}(\lambda=2) & =e^{-2} \cdot\left(1+\frac{2}{1}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}\right)
\end{align*}
$$

Exercise
Suppose that the probability of suffering a side effect from a certain flu vaccine is 0.005 . If 1000 persons are vaccinated, approximate the probability that (a) At most one person suffers. (b) Four, five, or six persons suffer.
$x=$ \# of people sufferry a side effect $\sim B_{\text {in }}(1000,0.005)$ $\begin{array}{cc}\uparrow & \uparrow \\ \text { larger } & \uparrow \text { small }\end{array}$
(a) $\mathbb{P}($ At most 1 person suffers $)$

$$
\begin{aligned}
& =\mathbb{P}(X \leqslant 1)=\sum_{k=0}^{1}\binom{1000}{k}(0.005)^{k} \cdot(1-0.005)^{1000-k} \\
& =1 \cdot 1 \cdot(0.995)^{1000}+1000 \cdot(0.005) \cdot(0.995)^{999} \\
& \approx \mathbb{P}(Y \leqslant 1)=\sum_{k=0}^{1} e^{-5} \frac{b^{k}}{k!}=e^{-5}(1+5)=6 \cdot e^{-5} \text {. } \\
& Y \sim \operatorname{Poisson}(\lambda) \\
& \lambda=n \cdot p=1000 \cdot 0,005=5
\end{aligned}
$$

Ex $\quad \mathbb{P}(Y \leqslant 4) \stackrel{\text { table. }}{=}$

