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Random variables

Definition

Given a random experiment with a sample space S , a function X that

assigns one and only one real number X (s) = r to each elements in S is

called a random variable.

The space of X is the set of real numbers {x : X (s) = x , s 2 S} and

denoted by S(X ).

1

3 Outcomes) = Sample space. S =1]
U

subsets & Events.
2
⑭(A)>, 0

P: SEvents]-> [0,1] E & P(S)) =1
-

To As,Asi-: AkY mutually exclusive
↑(A,UAzU ---vAk)

= P(A1) +P(A2)+- - - + IP(Ak)

X:S'- 1

&
-

I
17

outcome



Random variables

Example

A rat is selected at random from a cage and its sex is determined.

The set of possible outcomes is female and male. Thus, the sample

space is S = {female, male}.
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SEvents) =9 4, 3F3, 9M4, $'
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Random variables

Example

Consider a random experiment in which we roll a six-sided die.

The sample space associated with this experiment is

S = {1, , 2, 3, 4, 5, 6}.

Let X (s) = s. Compute P(2  X  4).

3

E

How many?
↓ -

=64.

SEvents) =20,917.--- 7
"

*
-

P(X =2,3,4) =()(44)

i =
=I.

S -

-0 -R-2

I
P(92,3,44) =P(2xx<4)



Discrete random variables

Definition

Let X be a random variable defined on a sample space S .

If S consists of finite outcomes or coutable outcomes, then X is called a

discrete random variable.

The probability mass function of X is

4

Natural numbers)
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Discrete random variables

Properties of PMF

The pmf f (x) of a discrete random variable X is a function that satisfies

the following properties:

• f (x) � 0 for all x ,

•
P

x2S(X ) f (x) = 1, and

• P(X 2 A) =
P

x2A f (x).
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Discrete random variables

The cumulative distribution function of X is

6
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Discrete random variables

Example

Roll a die, let X be the outcome.

Find the pmf and the cdf of X .
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Discrete random variables

Example

Roll a fair four-sided die twice.

Let X equal the larger of the two outcomes if they are di↵erent and the

common value if they are the same.

Find the pmf and the cdf of X .
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Exercise

Let X be a discrete random variable with pmf f (x) = log10(
x+1
x ) for

x = 1, 2, · · · , 9. (a) Verify that f (x) satisfies the conditions of a pmf.

(b) Find the cdf of X .
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~

f(x) I log, X=1 Clog,t 50 when to 1)
-

S ly,en log,I +l,*Hyst--. Hy,

=log,t;-.)
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1 X >, 10



Bar graph, Probability histogram, relative frequency histogram

Example

A fair four-sided die with outcomes 1, 2, 3, and 4 is rolled twice.

Let X equal the sum of the two outcomes.
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Bar graph, Probability histogram, relative frequency histogram

Example

Two fair four-sided dice are rolled. Write down the sum of the two

outcomes. Repeat this 1000 times.

The sum of two outcomes 2 3 4 5 6 7 8

Number of Observations 71 124 194 258 177 122 54

10

↑n =x
relative

frequency
=obeene

-
IP(X = 2) P(X=3)
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Section 2.

Mathematical Expectation



Definition of Expectation

Example

Consider the following game. A player roll a fair die.

If the event A = {1, 2, 3} occurs, he receives one dollar; if B = {4, 5}
occurs, he receives two dollars; and if C = {6} occurs, he receives three

dollars.

If the game is repeated a large number of times, what is the average

payment?
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E

n

xlut
-

Repeat in times u =a+b +c

A happened a times --$9.1
B 1 b times -$$b.2
C " c times ->$2.3

-1a +2-b +3.C
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Definition of Expectation

Definition

If f (x) is the pmf of a discrete random variable X with the space S(X ),

and if the summation X

x2S(X )

u(x)f (x)

exists, then the sum is called the mathematical expectation or the

expected value of u(X ), and denoted by E[u(X )].
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Average of X =Expectation of X =EQX]

= 1 .P(X =1) +2 .P(X =2) +3.P(X =3)

=2! x.P* =2! x- f(x)
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Ex)
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· U(x) =e
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Definition of Expectation

Example

Let the random variable X have the pmf f (x) = 1
3 for

x 2 {�1, 0, 1} = S(X ).

Let Y = u(X ) = X 2. Find the pmf of Y and E[Y ] = E[X 2].
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x2
&E(Y] =E(u(x)3 =2x2 f(x)

x =-1,0,1 -
= (-15f(-x +

0?f*
+

12.f*
=.

& Y =x- aR -fy(y) =P(Y=y)
=[

S(Y) =30,17

E(Y] =ziy, fy(y) =0.5 +1.3 =5.



Properties of Expectation

Theorem

1. If c is a constant, then E[c] = c .

2. If c is a constant and u is a function, then E[cu(X )] = cE[u(X )].

3. If c1 and c2 are constants and u1 and u2 are functions. then

E[c1u1(X ) + c2u2(X )] = c1E[u1(X )] + c2E[u2(X )].

14

x
Linearity.

E(ax +b] =aE(X) +b.

1
particular

-

-

& E(c.n(x)] =2! Duix) ·f(x)
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=(C-U,(x)+c- UnixT f(x)
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&

=2! aux) f(x) +1&2 u2(x) f(x) +(E(uX)-

=(u,(x).fx) +c !!u2 f(x) =c,E(n,(x)]



Properties of Expectation

Example

Let X have the pmf f (x) = x
10 for x = 1, 2, 3, 4.

Find E[X ], E[X 2] and E[X (5� X )].
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E(X) =IX. f(x) =1 - f(x) +2-f(z) +3 -f(3) +4f(4)

=1-6 +2-5 +3.8 +4-

I 3
/

E(x =Ix2f(x) =12f(x) +22f(2) +5.f(3) +4f(4)

=12+ +22 +3 +4.

=1+64
=

10,

E(1x)] = =(X(5-x)) f(x) = ...

=E(5X - x2 =5((X) - E(x2) =5.



Properties of Expectation

Example

An experiment has probability of success p 2 (0, 1) and probability of

failure q = 1� p.

This experiment is repeated independently until the first success occurs.

Let X be the number of trials. Find E[X ].

16

#

ECX.(x-1)] FECX). E(X-D3.



Exercise

An insurance compan sells an automobile policy with a deductible of one

unit. Let X be the amount ofthe loss having pmf

f (x) =

8
<

:
0.9 x = 0,
c
x x = 1, 2, 3, 4, 5, 6,

where c is a constant. Determine c and the expected value of the

amount the insurance company must pay.

3

D1 =1 +1 +2 +.. +I

t =c.(1 +4 +5 + - +5), -,it+6)
8 E(X] = !x.f(x)

=x =6.c =(it+-+6)



Section 3.

Special Mathematical Expectations



Moments

The expectation or mean of a random variable X is

µ = E[X ] =
X

xf (x).

This is also called the first moment about the origin.

The first moment about the mean µ is E[X � µ] =

17

* =

5.4withprob.E
(-1)

- 5
x3 5.2

- 7

E(x) =Moment = 5.2 +(-1) =0

Firstmoment about x= b = E((X-b)]
(Ex)
=

(2- b) -5 +(-1 - b).5.

-

E(X -)]
If b =m

=E(X), =E(X] - E(X) =0.

X, -> Y, =1,
X
2 Yz =Xz - b2
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Moments

The second moment of X about b is E[(X � b)2].

If b = µ, it is also called the variance of X and denoted by Var(X ) = �2.

Its positive square root is the standard deviation of X and denoted by

Std(X ) = �.

18

1st moment of X about b =E((X-b)].

[X]

E(x) =M

VarIX) =E((X-M13 =02

Std(x) =Nax) = I

#x varix)=/X =
.1w/prob.

ANE5(x)= 10000 100I E(z)z =2- 100

iresist It->I
- 100



Moments

Example

Roll a fair die and let X be the outcome.

Find E[X ] and Var(X ).
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E(x) =2!*=5.)1
+2 +-..+6) =2

VanIx) =ES (X-*=)]
=I =M

=I!(x - )-f(x)
- -I

= .((+12-+13-z)
+ (4 - 25 +15 -2 +(6 - =))
-
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=
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Moments

Theorem

�2 = E[(X � µ)2] = E[X 2]� µ2

22

Var(x)= =E(x2)-E(x])2
(a - b)2

Mof) VarIx) =ECx3)"]
=E(X=2X.E(x) +xxx))]

↓
Constant

- E(xY -

2.)], + (E(x3)2
#

E]
=E(xY) - 2.(E(x) +x)2
-

= E(XY -(E(x))2 ⒔



Moments

Theorem

�2 = E[(X � µ)2] = E[X 2]� µ2

22

Properties
-

D Var(c.X) =E((x]-(*OXT
=c. E(x2) - c. (E[x])
=c (E(x7 -(E(x3)) =c2.Var(X)

Var(x =ESC -(ECCI) =
=

0.
↑
constant

② Vax+b) aVar(X)

Exercise.



Moments

In general, the r -th moment of X about b is E[(X � b)r ].

Definition

Index of skewness is defined by

� = E[(X � µ)3]/�3.

20

n
-

First momentECX-b]--I
mete



Moments

Example

Let f (x) = 4�x
6 for x = 1, 2, 3 be the pmf of X . Compute the index of

skewness.

21

--

-f(xg*
= #X =2

I X =3

m=E
E(X) =1 .t +2 -5 +3.5 =5.
kr(x) =E(x2) -(E(x))2 =(12 +2 -5 +325)-

= - =5 =02

Std(x) = =5,
Index of skewness

=A
- ((-+12-55 -5 +13 -35)



Moment generating functions

Definition

Let X be a discrete random variable and assume that there exists h > 0

such that

E[etX ] =
X

etx f (x)

is finite for all t 2 (�h, h). Then, M(t) = E[etX ] is called the moment

generating function (mgf).

23

4

=(7) ++5s)
7
-> fail skew toright.

If <O ⒔ skew to left

M(t) =

MC0) =1

M10 = Mi)+
=

=re-Exe*l
=E[X]

M"c0) =E(x']



Moment generating functions

Properties

1. M(0) = 1

2. M 0(0) = E[X ]

3. M 00(0) = E[X 2]

4. In general, M(r)(0) = E[X r ].

24

MGF of X =M(z) =E (etX] =et. f(x)

far IchihL,
h20.

~

(x
=x

d M10) =E(90X =E(17 =1.

② MitYEletTE!etfix)/-
=Ex.fx/=

0

=2!xfx) =E(X).

MCOL = E(X] &first moment of X about 0.



Moment generating functions

Example

Let f (x) = qx�1p where p 2 (0, 1) and q = 1� p.

Compute M(t).

25

Geometric RV.

↓ X =1,2,--

P =1- G.
-

D If f(x) a PMF?

*
=>

f(x) = qt1.p +q2.p +g4.p+---.
X=uso

ne
= P + G-p +9.p+--- E Geometric

- Series
-

-gtem* =Eerie I⒔

2 MH =ESetX] =Eet4.g**.p
=etgt.p +ete.g4.p +et.p+...

=et.p +etg.p + et-p+...
- -> -

t
xe.g xetg

=> epet.e --<I



Exercise

Find E[X ] and E[X (X � 1)] for a discrete random varialbe X with the

pmf

f (k) =

✓
4

k

◆✓
1

2

◆k

for k = 0, 1, 2, 3, 4.

4

-,
p

Ex E(X] =2,x.p.g+ =?

Why? Binomial Thin
↓
nf(K) =E(E) (t)" I (a +b)" =E(k) a*.b

n-k

1 - I
-

k=3
-

a =b =t

#(x2" - E(X] ④ 4
8 =4 ·

(2) =-k):
f(k) =(z) (t)" k =0,1,....n

E(x) =

aE-(k). (t)" =EEC (I)
!
-

"((x-(1)!

=n. (i) It)"
k! =b.(k-)!

(k- 1 =j(

=n)=
Mit =E(etXy =etk(r) I

n -k

=(r).(*.(2) =(+let)



Section 4.

The Binomial Distribution



Bernoulli random variables

A Bernoulli experiment, more commonly called a Bernoulli trial, is a

random experiment with two outcomes.

Say S = {success, failure } and P(sucess) = p for some p 2 (0, 1). Then

P(failure) = q = 1� p.

A random variable X is a Bernoulli random variable with success

probability p is X = 1 if success and 0 otherwise.

26

P +G =1

x =S7,with pro.Pe



Bernoulli random variables

Theorem

Let X be a Bernoulli random variable with success probability p.

E[X ] =

Var[X ] =

27

x =1 w.p.p f(x) =5q4
if x=1

E
0
2.pg

=1-4 if x=0

⑧ otherwise.

=x -f(x) =0 .f(0) +1 - f(1) =0.9 +1-p =p.

E(x2) - (E(x))2 =4 - 5 =p.(1-p) =Pg.

E[x] =

zxf(x)
=0 - f() +1-f() =p

M(t) =E(etX] =2,etf(x) =etofia +etfil

=1-g +et.p =1- p +etp
=

1 +(et-1) p.



Binomial random variables

Consider a sequence of independent Bernoulli experiments with success

probability p.

Let X be the number of success trials in the first n experiments.

This is called a binomial random variable with the number of trials n and

success probability p.

We use the notation X ⇠ b(n, p) = Bin(n, p).

28

f(x) =P(X =k) =P)R success in a experiments) = ()pbgr-k
-

***D.. k =0, --.,n

e
in times

success prob. P



Binomial random variables

Theorem

Let X a binomial random variable with the number of trials n and

success probability p.

The pmf of X is

E[X ] =

Var[X ] =

29

Indep

& If n=1, Binomial =Bernowl: Ber (p)
-XL& X-Bin(n.P), x =y1 +Xz + --. +Xn

a success (n-k failure

runtenant ↓ I
f(k) =(2) pr. (1-p)**, b =0,1,..in

n. P

n. p. (1- p)
=E(x2) - (ECx])2

M(t) =E( etX] = ! etk(z) pk.gr-k
k=3

= E(*). (pet)*(q)
nk

- (+g)=
M'(t) = n pet +g(.)g!=npetgp.et
MC0L =
n. (p +q.p.e =n.p.

=E(X]



Binomial random variables

Example

Out of millions of instant lottery tickets, suppose that 20% are winners.

If eight such tickets are purchased, what is the probability of purchasing

two winning ticket?

30

S

#of trials= 8

success prob =0.2

Ply*aof winning racketon
Bin 10.0.21



Binomial random variables

Example

H5N1 is a type of influenza virus that causes a severe respiratory disease

in birds called avian influenza (or “bird flu”).

Although human cases are rare, they are deadly; according to the World

Health Organization the mortality rate among humans is 60%.

Let X equal the number of people, among the next 25 reported cases,

who survive the disease.

Assuming independence, the distribution of X is b(25, 0.4). What is the

probability that ten or fewer of the cases survive?

31

#of trials = 25

Success prob. = 0.4

I
nee --

n
en--

25-k
25

P(X <10) =(n).co.x.co.6
=

0.5858.



Binomial random variables

Theorem

The mgf of a binomial random variable X is

M(t) =

32

1 - P

28+pets"

=(1 +cet-1)p)



Binomial random variables

Exercise

It is believed that approximately 75% of American youth now have

insurance due to the health care law.

Suppose this is true, and let X equal the number of American youth in a

random sample of n = 15 with private health insurance.

How is X distributed? Find the probability that X is at least 10. Find

the mean, variance, and standard deviation of X .

33

en

X- Bin (15,0.75)

E(X] =

n.p =15.7 =4
Var(X) =n.p.g =

n.p.(rp) =15.4.5 =5.
Std(x) =2g =I = 35I

15-k

I(X >10) - ! () (0.751.10.25)



Section 5.

The Hypergeometric Distribution



The Hypergeometric Distribution

There is a collection of N1 red balls and N2 blue balls.

Sample n balls at random without replacement (n  N1 + N2).

Let X be the number of red balls chosen.

Then, X is called a hypergeometric random variable with parameters

N1,N2, n, and denoted by HG(N1,N2, n).

34

0 X min?n, N1Y

⑭ball
⑭

NI

0

N2
-

0
N =N,

f(k) =(X =k) =me)



The Hypergeometric Distribution

Example

In a small pond there are 50 fish, ten of which have been tagged.

If a fisherman’s catch consists of seven fish selected at random and

without replacement, and X denotes the number of tagged fish, what is

the probability that exactly two tagged fish are caught?

35

50 =N

e X =# of tagged fish

~ HG (10,40,7)

a=7 withoutreplacement

P(X =2)=
With replacement -># of trinks = 7

Bin. success prob = * =I =5.



The Hypergeometric Distribution

Theorem

P(X = k) =

E[X ] = n N1
N1+N2

Var[X ] = n N1
N1+N2

N2
N1+N2

36

(a)

without replacement ->M6 (N,,N, n)

with replacement ->Bin (n, *N2)⑪" H
E(X) = n.N
Var(X) =a.2 IN2



1. Bernoull:RV: 2 outcomes 5 Success, Failure) =$

IP (Success) =p =(0,11

IP(Failure) =1- 4 =G

X =

E
1 if success & Bernoulli RV.

0 otherwise

2. Binomial RV: Repeat BernoulliExp. a times

Count of success

-
11

PMF AIR*cae X
:Binomial. BV

n- k
I (M)pk.(1-p)

E(X] =

n.p Var(X) =n-p.g =4.p(1-p).

=Ni+N2
3. Hyper Geometric RV:

- blue

n chosen without replacement
cont # of red =X: HG RV.

PME f(k)-in)- a balls outof

N balls



The Hypergeometric Distribution

Exercise

In a lot (collection) of 100 light bulbs, there are five bad bulbs.

An inspector inspects ten bulbs selected at random.

Find the probability of finding at least one defective bulb.

37

X =0, 1, ---,m,
X - HG (N, N2, n)

two kinds
HG- total population(

L
-

satteornutreturnI Bethe

-s
Count # of Defection = X-HG15;95,0)
? 5

I

4)
=

in) in=

k=1 110°)
=1 - P((Xx1)) =1 - P(X =0)

=-
q8



Section 6.

The Negative Binomial Distribution



Geometric random variables

Consider a sequence of independent Bernoulli trials with success

probability

Let X be the number of trials until the first success.

This random variable is called a geometric random variable.

38

#
of
trial

fix

f
Binomial - repeat in time

-># of sees.

Geometric :repeat until success ofhis
- I

Geometric RV.

experiments

H -> success

RepeatBernoulliExp. with success prob. 4 = (0,1)
-

until firstsuccess.



Geometric random variables

Theorem

The pmf of X is

E[X ] = 1
p

Var[X ] = q
p2

M(t) = pet

1�(1�p)et

39

PMF f(K) =IP(Xh) Itsuccess
I

=P(E F F F
... ())

--
lines=*1.p

k =1,2, ---

f(k) =(1p4.p for k = 1,2,3,--

-
I
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Geometric random variables

Example

Some biology students were checking eve color in a large number of fruit

flies.

For the individual fly, suppose that the probability of white eyes is 1/4

and the probability of red eyes is 3/4, and that we may treat these

observations as independent Bernoulli trials.

What is the probability that at least four flies have to be checked for eye

color to observe a white-eyed fly?

40

/

&
P

&F
# of trials = X

- Geom()

&Success p =I p +(1-p)p+
4 11-p.p.

D(X=4) =

tomeniepercI

#4)

X- Geom(P(

· 4(X - k) =(1-p memoryless property.

· P(X + a +b(X - a) =p(X - b)



Negative Binomial random variables

Consider a sequence of independent Bernoulli trials with success

probability

Let X be the number of trials until the r -th success.

This random variable is called a negative binomial random variable.
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X-Geom(p):# of trials until first success

↓
= #of trials until rth success.

Beg afine Binomial (r,PC
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#
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X1 + Xc+Xs.



Negative Binomial random variables

Theorem

The pmf of X is

f (k) =

✓
k � 1

r � 1

◆
pr (1� p)k�r

for k = r , r + 1, · · · and otherwise zero.

E[X ] = r
p

Var[X ] = rq
p2

M(t) =
⇣

pet

1�(1�p)et

⌘r
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Negative Binomial random variables

A negative binomial random variable can be written as a sum of

independent geometric random variables.
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Negative Binomial random variables

Example

Suppose that during practice a basketball player can make a free throw

80% of the time.

Furthermore, assume that a sequence of free-throw shooting can be

thought of as independent Bernoulli trials.

Let X equal the minimum number of free throws that this plaver must

attempt to make a total of ten shots.

Find the mean of X .
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en

& I
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P =0.8 X- NegBin (4, 0.8)
E[X] =0.5 =10.8 =10.2 =E =12.5.



Negative Binomial random variables

Exercise

One of four di↵erent prizes was randomly put into each box of a cereal.

If a family decided to buy this cereal until it obtained at least one of

each of the four di↵erent prizes, what is the expected number of boxes

of cereal that must be purchased?
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Section 7.

The Poisson Distribution



Definition

Some experiments result in counting the number of times particular events

occur at given times or with given physical objects.

Example

• the number of cell phone calls passing through a relay tower between

9 and 10 A.M.

• the number of flaws in 100 feet of wire t

• he number of customers that arrive at a ticket window between noon

and 2P.M.

• the number of defects in a 100-foot roll of aluminum screen that is 2

feet wide.
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Definition

Counting such events can be looked upon as observations of a random

variable associated with an approximate Poisson process, provided that the

conditions in the following definition are satisfied.
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Definition

Let the number of occurrences of some event in a given continuous

interval be counted. Then we have an approximate Poisson process with

parameter � > 0 if

• The numbers of occurrences in nonoverlapping subintervals are

independent.

• The probability of exactly one occurrence in a su�ciently short

subinterval of length h is approximately �h.

• The probability of two or more occurrences in a su�ciently short

subinterval is essentially zero.

Under these assumption, consider the number of occurrences in a time

interval [0, 1].
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Definition

Split [0, 1] into n subintervales [0, 1n ], [
1
n ,

2
n ], · · · , [

n�1
n , 1].

In each subinterval, at most one event occurs with probability �
n .

Thus, the number of occurrences is a binomial random variable with n nad
�
n .

As n ! 1, the random variable gets close to some random variable X .

We say X is a Poisson random variable with parameter � if its pmf is

P(X = k) =
e���k

k!

for k = 0, 1, 2, · · · .
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Definition

Theorem

E[X ] =

Var[X ] =

M(t) =

50
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Definition

Example

In a large city, telephone calls to 911 come on the average of two every 3

minutes.

If one assumes an approximate Poisson distribution, what is the

probability of five or more calls arriving in a 9 minute period?
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Poisson Approximation to Binomial

Supose X is a binomial random variable b(n, p), n is large, and p is small

but np converges to some constant, say �.

In this case, X can be approximated by a Poisson random variable with

parameter �.

This approximation is quite accurate if n � 20, p  0.05 or n � 100,

p  0.1.
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X - Geom(p(
#of trials until first success.

f(k) =(1- p(*4.p for b= 1,2,3,...

X- NegBin Jr.p(
#of trials until ith success.
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Poisson Approximation to Binomial

Example

A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs

are defective.

Assuming independence, the number of defective bulbs in a box of 100

bulbs has a binomial distribution with parameters n = 100 and p = 0.02.

Find the probability that a box of 100 of these bulbs contains at most

three defective bulbs.
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In largea small

xX - Bin (100, 0.02)
n.p =2

=x

-

&
100-

P43) =(° (0.02* 10.98)

= P(y-33) =22The
Y - Poisson (X=2)

=e?(1 +2 +2 +)



Poisson Approximation to Binomial

Exercise

Suppose that the probability of su↵ering a side e↵ect from a certain flu

vaccine is 0.005. If 1000 persons are vaccinated, approximate the

probability that (a) At most one person su↵ers. (b) Four, five, or six

persons su↵er.
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X =# of people sufferinga side effect - Bin (1000, 0.005)
↑

large small.

(a) P) At most I person suffers)
1000 - kk

=

P(X-1) =aeos.(10.005) 999

1000. (0.005). (0.995)

=P(Ys 1) = 2-55 =t)1 +5) =6.
Y - Poisson (N)

x =n .p
=1000.0.005 =5

Ex PCY < 4)
Estable.


