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Section 1.
Some General Concepts of Point
Estimation



Statistics and Point Estimators

Definition
A statistic is any quantity whose value can be calculated from sample data.

Prior to obtaining data, there is uncertainty as to what value of any particular statistic
will result.

Therefore, a statistic is a random variable and will be denoted by an uppercase letter; a
lowercase letter is used to represent the calculated or observed value of the statistic.

A point estimate of a parameter θ is a single number that can be regarded as a sensible
value for θ.

A point estimate is obtained by selecting a suitable statistic and computing its value
from the given sample data.

The selected statistic is called the point estimator of θ
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Statistics and Point Estimators

Example
Let µ (a parameter) denote the true average breaking strength of wire connections used
in bonding semiconductor wafers.

A random sample of n = 10 connections might be made, and the breaking strength of
each one determined, resulting in observed strengths x1, x2, · · · , x10.

The sample mean breaking strength x could then be used to draw a conclusion about
the value of µ.
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Statistics and Point Estimators

Example
An automobile manufacturer has developed a new type of bumper, which is supposed
to absorb impacts with less damage than previous bumpers. The manufacturer has
used this bumper in a sequence of 25 controlled crashes against a wall, each at 10 mph,
using one of its compact car models.

Let X be the number of crashes that result in no visible damage to the automobile. The
parameter to be estimated is

p = P(no damage in a single crash).

If X is observed to be x = 15, then

p̂ = .
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Statistics and Point Estimators

Example
The article “Is a Normal Distribution the Most Appropriate Statistical Distribution for
Volumetric Properties in Asphalt Mixtures?” reported the following observations on X =
voids filled with asphalt (%) for 52 specimens of a certain type of hot-mix asphalt:
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Statistics and Point Estimators

For a parameter θ, there are many different possible estimators.

Among them, which one would be best? How can we choose the best possible estimator
for θ?
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Unbiased Estimators

Definition
A point estimator θ̂ is said to be an unbiased estimator of θ if

E[θ̂] = θ

for every possible value of θ.

If θ̂ is not unbiased, the difference
E[θ̂]− θ

is called the bias of θ̂.

Principle of Unbiased Estimation: When choosing among several different estimators of
u, select one that is unbiased.
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Unbiased Estimators

Example
Let X ∼ Bin(n,p).

Find an unbiased estimator of p.
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Unbiased Estimators

Example
Let X ∼ Unif(0, θ).

Find an unbiased estimator of θ.
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Unbiased Estimators

Proposition
If X1, X2, · · · , Xn is a random sample from a distribution with mean µ and variance σ2,
then

X =
S2 =

are unbiased estimators of µ and σ2.
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Estimators with Minimum Variance

Principle of Minimum Variance Unbiased Estimation
Among all estimators of θ that are unbiased, choose the one that has minimum variance.

The resulting θ̂ is called the minimum variance unbiased estimator (MVUE) of θ.
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Estimators with Minimum Variance

Example
Let X1, · · · , Xn be a random sample from a uniform distribution on [0, θ]. Consider

θ̂1 =
n+ 1
n max Xi

θ̂2 = 2X.

Are they unbiased?

Find the variances of θ̂1 and θ̂2
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Estimators with Minimum Variance

Theorem
Let X1, · · · , Xn be a random sample from a normal distribution with parameters µ and σ2.

Then the estimator X is the MVUE for µ.
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Exercise

(6.1-8) In a random sample of 80 components of a certain type, 12 are found to be
defective.

1. Give a point estimate of the proportion of all such components that are not defective.
2. A system is to be constructed by randomly selecting two of these components and
connecting them in series, as shown here.

The series connection implies that the system will function if and only if neither
component is defective (i.e., both components work properly).
Estimate the proportion of all such systems that work properly.
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Section 2.
Methods of Point Estimation



The Method of Moments

Definition
Let X1, · · · , Xn be a random sample from a PMF or PDF f(x).

For k = 1, 2, · · · , the k-th population moment, or k-th moment of the distribution f(x), is
E[Xk].

The k-th sample moment is
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The Method of Moments

Definition
Let X1, · · · , Xn be a random sample from a distribution with PMF or PDF f(x; θ1, · · · , θm),
where θ1, · · · , θm are parameters whose values are unknown.

Then the moment estimators
θ̂1, · · · , θ̂m

are obtained by equating the first m sample moments to the corresponding first m
population moments and solving for θ1, · · · , θm.
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The Method of Moments

Example
Let X1, · · · , Xn represent a random sample of service times of n customers at a certain
facility, where the underlying distribution is assumed exponential with parameter λ.

Find the moment estimator for λ.
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The Method of Moments

Example
Let X1, · · · , Xn be a random sample of size n from a Gamma distribution.

Find the moment estimators for α,β.
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Maximum Likelihood Estimation

Definition
Let X1, · · · , Xn have joint PMF or PDF

f(x1, x2, · · · , xn; θ1, · · · , θm)

where the parameters θ1, · · · , θm have unknown values.

When x1, · · · , xn are the observed sample values and f is regarded as a function of
θ1, · · · , θm, it is called the likelihood function.
The maximum likelihood estimates (MLE) θ̂1, · · · , θ̂m are those values of the θi’s that
maximize the likelihood function

When the Xi’s are substituted in place of the xi’s, the maximum likelihood estimators
result.
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Maximum Likelihood Estimation

Example
Let X1, · · · , Xn be a random sample from Bernoulli distribution.

Find the Likelihood function and the MLE for p.
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Maximum Likelihood Estimation

Example
Let X1, · · · , Xn be a random sample from exponential distribution.

Find the Likelihood function and the MLE for λ.
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Maximum Likelihood Estimation

Example
Let X1, · · · , Xn be a random sample from exponential distribution.

Find the Likelihood function and the MLE for λ.
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Maximum Likelihood Estimation

Example
Let X1, · · · , Xn be a random sample from normal distribution.

Find the Likelihood function and the MLEs for µ,σ2.
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Exercise

(6.2-23) Two different computer systems are monitored for a total of n weeks.

Let Xi denote the number of breakdowns of the first system during the i-th week, and
suppose the Xi’s are independent and drawn from a Poisson distribution with parameter
µ1.

Similarly, let Yi denote the number of breakdowns of the second system during the i-th
week, and assume independence with each Yi Poisson with parameter µ2.

Derive the MLE’s of µ1, µ2, and µ1 − µ2
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