In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true	false	$\bigwedge m \times p \qquad n > m$
X	0	If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.
0	\bigotimes	A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues. $\lambda^2 - \lambda - l = 0$ $\begin{pmatrix} l & j \\ l & j \end{pmatrix} \longrightarrow \begin{pmatrix} l & j \\ l & j \end{pmatrix} = \begin{pmatrix} l & j \\ l & j \end{pmatrix} = \begin{pmatrix} l & j \\ l & j \end{pmatrix}$
\bigotimes	\bigcirc	$x^2 - 2xy + 4y^2 \ge 0$ for all real values of x and y.
\bigotimes	\bigcirc	If matrix A has linearly dependent columns, then $\dim((\operatorname{Row} A)^{\perp}) > 0$.
\otimes	\bigcirc	If λ is an eigenvalue of A , then $\dim(\operatorname{Null}(A - \lambda I)) > 0$.
\bigotimes	\bigcirc	If A has QR decomposition $A = QR$, then $ColA = ColQ$.
\bigotimes	\bigcirc	If A has LU decomposition $A = LU$, then $rank(A) = rank(U)$.
\oslash	\bigcirc	If A has LU decomposition $A = LU$, then dim(Null A) = dim(Null U)).

2. Give an example of the following.

i) A 4 × 3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

the vector
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$$
. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$ $A^{T} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \end{bmatrix}$

ii) A 3×4 matrix A, that is in RREF, and satisfies $\dim \left((\operatorname{Row} A)^{\perp} \right) = 2$ and $\dim \left((\operatorname{Col} A)^{\perp} \right) = 2$. (Col (A) $\subseteq \mathbb{R}^3$

3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) Col(A), and b) the eigenspace corresponding to eigenvalue $\lambda = 5$.

- 2×y +4y² ZO for every ×, y $Q(x) = \frac{1}{x^2}$ $= [x y] \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad Q: P.S.D. \iff \lambda; \ge 0$ $\begin{array}{c} \begin{array}{c} & \lambda_{1} \cdot \lambda_{2} \\ A \\ (\lambda - \lambda_{1}) (\lambda + \lambda_{2})^{2} \end{array} \xrightarrow{2} - \left[\begin{array}{c} 5 \\ \lambda \end{array} \right] \times \left[\begin{array}{c} \lambda_{1} \cdot \lambda_{2} \\ \lambda_{2} \end{array} \right] \xrightarrow{2} = 0 \\ \lambda_{1} + \lambda_{2} \end{array} \xrightarrow{2} \xrightarrow{2} 2 \end{array}$ $(x^2 - 2xy + y^2) + 3.y^2$ (x-y) + 3y > 0 A has lin. dep. columns Free Var. RREF & has NON PIVOT Columns Ax = 0 => has <u>Nontrivial</u> solution Infinitely many \Rightarrow Nul(A) \neq $4 \circ 4$ 2) dim (Mal(A)) 70 Row (A) (Byproduct of Gram - Schnidt) QR decomposition $A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ $f = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ Col(A) Col(B)

$$\vec{d} A = \vec{d} \vec{Q} R = R = \begin{bmatrix} x_1 \cdot u_1 & x_2 \cdot u_1 & \cdots \\ \vdots & \vdots & \vdots \\ I \end{bmatrix}$$

$$LU \quad \text{decomp.}$$

$$A \quad \overleftarrow{F_1} \quad \overleftarrow{F_2} \quad \cdots \quad \overleftarrow{F_k} \quad REF$$

$$= U$$

$$\text{replacement}$$

- 4. Fill in the blanks.
- Colums are lin. Indep. (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have?

5. Four points in \mathbb{R}^2 with coordinates (t, y) are (0, 1), $(\frac{1}{4}, \frac{1}{2})$, $(\frac{1}{2}, -\frac{1}{2})$, and $(\frac{3}{4}, -\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y = c_1 \cos(2\pi t) + c_2 \sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below.

$$c_1 =$$

$$\frac{1}{2} = C_{1} \cos(0) + C_{2} \sin(0) = 1 \cdot C_{1} + 0 \cdot C_{2}$$

$$\frac{1}{2} = C_{1} \cos(\frac{\pi}{2}) + C_{2} \sin(\frac{\pi}{2}) = 0 \cdot C_{1} + 1 \cdot C_{2}$$

$$-\frac{1}{2} = (4 \cos(\pi) + C_{2} \sin(\pi)) = -1 \cdot C_{1} + 0 \cdot C_{2}$$

$$-\frac{1}{2} = C_{1} \cos(\frac{2\pi}{2}) + C_{2} \sin(\frac{3\pi}{2}) = 0 \cdot C_{2} - 1 \cdot C_{2}$$

$$\begin{bmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} + X \quad A \times = b$$

$$\begin{bmatrix} C_{1} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} + X \quad A \times = b$$
Normal Eqn

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false. true false

\otimes	\bigcirc	For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W , the vector $\vec{v} = \vec{y} - \text{proj}_W \vec{y}$ is orthogonal to W .
\bigcirc	\bigotimes	If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
\bigcirc	\bigotimes	If a matrix is invertible it is also diagonalizable. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
\bigotimes	\bigcirc	If E is an echelon form of A, then $\operatorname{Null} A = \operatorname{Null} E$.
\bigcirc	\bigotimes	If the SVD of $n \times n$ singular matrix A is $A = U\Sigma V^T$, then $\operatorname{Col} A = \operatorname{Col} U$.
\bigcirc	\otimes	If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, $r = \operatorname{rank} A$, then the first r columns of V give a basis for Null A .

2. Give an example of:

a) a vector
$$\vec{u} \in \mathbb{R}^3$$
 such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$

b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$.

d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \end{bmatrix} / \qquad A_{X} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \cdot X_{1} + \begin{bmatrix} -1 \\ -2 \end{bmatrix} \cdot X_{2} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $\overrightarrow{x \to Ax}$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\overrightarrow{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

4. Matrix A is a 2 × 2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate

1. $A(\vec{v}_1 + 4\vec{v}_2) \simeq A \vec{v}_1 + 4 \cdot A \vec{v}_2 = \frac{1}{2} \vec{v}_1 + 4 \cdot 4 \cdot \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ 2. A^{10} 3. $\lim_{k \to \infty} A^k(\vec{v}_1 + 4\vec{v}_2) \simeq \begin{bmatrix} 0 & 4 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$

•

 $\overline{f} : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ lin. transformation $T(x) = A \cdot x$ Then Then Then Δ Ξ MXN Range 0 dim of dim of Col(A) Codomain domain

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible. $\Im \Gamma = 0$						
poss	sible impossi	ble The second sec				
\bigcirc	×	$Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A .				
\bigcirc	\bigotimes	The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.				
\gg	\bigcirc	The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.				
0	×	$A \text{ is } 2 \times 2, \text{ the algebraic multiplicity of eigenvalue } \lambda = 0 \text{ is } \underline{1}, \text{ and}$ $\underbrace{\dim(\operatorname{Col}(A)^{\perp})}_{\geq 0} \text{ is equal to } 0.$ $\underbrace{\dim(\operatorname{Col}(A)^{\perp})}_{\geq 0} = 0 \text{ is } \underline{1}, \text{ and}$				
\bigcirc	\bigcirc	Stochastic matrix P has zero entries and is regular.				
0	0	A is a square matrix that is not diagonalizable, but A^2 is diagonalizable.				
\bigcirc	0	The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m < n$.				

2. Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

- 3. Fill in the blanks.
 - (a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^2 clockwise by $\pi/2$ radians about the origin, then reflects them through the line $x_1 = x_2$. What is the value of det(A)?
 - (b) *B* and *C* are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?
 - (c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?
 - (d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?
 - (e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?
 - (f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is .
- 4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.