In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.
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If a linear system has more unknowns than equations, then the system
has either no solutions or infinitely many solutions.

A n X n matrix A and its echelon form E will always have the same
eigenvalues. N~ )| =o
[(2) — [o1) *-

x? — 2xy + 4y® > 0 for all real values of x and y.
If matrix A has linearly dependent columns, then dlm((ROWA) )
If X is an eigenvalue of A, then dim (Null(A — AI))

If A has QR decomposition A = QR, then ColA = ColQ.
If A has LU decomposition A = LU, then rank(A) = rank(U).

O If A has LU decomposition A = LU, then dim(Null A) = dim(NullU)).
2. Give an example of the following. No! C AT>
Y
i) A 4 x 3 lower triangular matrix, A. such that Col(A)* is spanned by
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ii) A 3x4 matrix A, that is in RREF, and satisfies dim ((Row A)L> = 2 and dim ((Col A)L> =2
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3. (3 points) Suppose A = (
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6 2 ) On the grid below, sketch a) Col(A), and b) the eigenspace

corresponding to eigenvalue A = 5.
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4. Fill in the blanks. A Cloms o Jn. ™

(a) If A € RM*N M < N, and AT = 0 does not have a non-trivial solution, how many pivot
columns does A have?

(b) Consider the following linear transformation.
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TR — R
T(xy,29) = (221 — X9, 421 — 209, X9 — 227) . /‘\ T
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The domain of T is . The image of Z = < (1)) under T'(¥) is ( 4—) . The co-domain
of T is . The range of T is: fl
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5. Four points in R? with coordinates (¢,y) are (0;1);(

£73)s (3,=2%),and (3,=2%). Determine the
values of ¢; and ¢y for the curve y = ¢ cos(2at) + ¢ sin(27t) that best fits the points. Write
the values you obtain for ¢; and ¢y in the boxes below.
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In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.
true false

—

R O For any vector ¢ € R? and subspace W, the vector ¥ = i — projy, v/ is
orthogonal to W.

O (}Q If Ais m x n and has linearly dependent columns, then the columns of
A cannot span R™.
Lot
O @ If a matrix is invertible it is also diagonalizable. [ 0
%) O If E is an echelon form of A, then Null A = Null £. Rn
I

O QQ\ If the SVD of n x n'singular matrix A'is A = ULV, then ColA = ColU.
O @\ If the SVD of n x n matrix Ais A = UXV7T, r = rankA, then the first r

columns of V' give a basis for @ullA.)‘L

2. Give an example of:

: S
a) a vector @ € R3 such that projzu = p, where @ # p, and p= | 2 |: @ =

b) an upper triangular 4 x 4 matrix A that is in RREF, 0 is its only eigenvalue, and its
8 v (|
corresponding eigenspace is 1-dimensional. A= [ O o
S

= Nl (,A') < D
R _
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¢) A 3 x 4 matrix, A, and Col(A)* is spanned by

d) A 2 x 2 matrix in RREF that is diagonalizable and not invertible.
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4. Matrix A is a 2 x 2 matrix whose eigenvalues are \; = % and Ay = 1, aZd whose corresponding

eigenvectors are v; = (é) , Uy = (%) Calculate
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In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible. Y=o
possible impossible 7“
O K Q(7) = ¥T AZ is apositive definite quadratic form, and Q(¥) =0, where

@

U is an eigenvector of A.

X 0
The maximum value of Q(Z) = ax? + bx3 + cz}, where a > b > ¢, for
7 € R3, subject to ||Z|| = 1, is not unique.

The location of the maximum value of Q(Z) = ax? + bx3 + cx3, where
a>b>c, for ¥ € R subject to ||Z]| = 1, is not unique.

Vi AEW\(N"‘(CABB =
A is 2 x 2, the algebraic multiplicity of eigenvalue A = 0 is 1, and
dim(Col(A)4) is equal to 0. =

: o dine CILAY =2

Stochastic matrix P has zero entries and is regular.
A is a square matrix that is not diagonalizable, but A? is diagonalizable.

The map T4 (¥) = AZ is one-to-one but not onto, A is m xn, and m < n.

2. Transform T4 = AZ reflects points in R? through the line y = 2 + . Construct a standard
matrix for the transform using homogeneous coordinates. Leave your answer as a product of
three matrices.



3. Fill in the blanks.

(a) Th = AZ, where A € R?*?| is a linear transform that first rotates vectors in R? clockwise
by 7/2 radians about the origin, then reflects them through the line z; = xo. What is

the value of det(A)?

(b) B and C' are square matrices with det(BC) = —5 and det(C) = 2. What is the value of
det(B) det(C*)?

(c) Ais a6 x 4 matrix in RREF, and rank(A) = 4. How many different matrices can you

construct that meet these criteria?

(d) Ty = AZ, where A € R**% projects points onto the line x; = xo. What is an eigenvalue

of A equal to?

(e) If an eigenvalue of A is 3, what is one eigenvalue of A~ equal to?

(f) If Ais 30 x 12 and A7 = b has a unique least squares solution & for every b in R3% the

dimension of NullA is

1 2

01 ) . Sketch the nullspace

4. Ais a 2x 2 matrix whose nullspace is the line 1 = x5, and C' = (

of Y = AC.

1

5. Construct an SVD of A = (1

_11 ) Use your SVD to calculate the condition number of A.



