
In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true false

� � If a linear system has more unknowns than equations, then the system

has either no solutions or infinitely many solutions.

� � A n ⇥ n matrix A and its echelon form E will always have the same

eigenvalues.

� � x2 � 2xy + 4y2 � 0 for all real values of x and y.

� � If matrix A has linearly dependent columns, then dim((RowA)?) > 0.

� � If � is an eigenvalue of A, then dim (Null(A� �I)) > 0.

� � If A has QR decomposition A = QR, then ColA = ColQ.

� � If A has LU decomposition A = LU , then rank(A) = rank(U).

� � If A has LU decomposition A = LU , then dim(NullA) = dim(NullU)).

2. Give an example of the following.

i) A 4⇥ 3 lower triangular matrix, A. such that Col(A)? is spanned by

the vector ~v =

0
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ii) A 3⇥4 matrixA, that is in RREF, and satisfies dim

⇣
(RowA)?

⌘
= 2 and dim

⇣
(ColA)?

⌘
=

2. A =

0
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3. (3 points) Suppose A =

✓
3 1

6 2

◆
. On the grid below, sketch a) Col(A), and b) the eigenspace

corresponding to eigenvalue � = 5.
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4. Fill in the blanks.

(a) If A 2 RM⇥N
, M < N , and A~x = 0 does not have a non-trivial solution, how many pivot

columns does A have?

(b) Consider the following linear transformation.

T (x1, x2) = (2x1 � x2, 4x1 � 2x2, x2 � 2x1) .

The domain of T is . The image of ~x =

✓
1

0

◆
under T (~x) is

✓ ◆
. The co-domain

of T is . The range of T is:

5. Four points in R2
with coordinates (t, y) are (0, 1), (14 ,

1
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2). Determine the

values of c1 and c2 for the curve y = c1 cos(2⇡t) + c2 sin(2⇡t) that best fits the points. Write

the values you obtain for c1 and c2 in the boxes below.
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In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true false

� � For any vector ~y 2 R2
and subspace W , the vector ~v = ~y � projW~y is

orthogonal to W .

� � If A is m ⇥ n and has linearly dependent columns, then the columns of

A cannot span Rm
.

� � If a matrix is invertible it is also diagonalizable.

� � If E is an echelon form of A, then NullA = NullE.

� � If the SVD of n⇥n singular matrix A is A = U⌃V T
, then ColA = ColU .

� � If the SVD of n⇥ n matrix A is A = U⌃V T
, r = rankA, then the first r

columns of V give a basis for NullA.

2. Give an example of:

a) a vector ~u 2 R3
such that proj~p ~u = ~p, where ~u 6= ~p, and ~p =

0
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b) an upper triangular 4 ⇥ 4 matrix A that is in RREF, 0 is its only eigenvalue, and its

corresponding eigenspace is 1-dimensional. A =

0
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c) A 3⇥ 4 matrix, A, and Col(A)? is spanned by
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d) A 2⇥ 2 matrix in RREF that is diagonalizable and not invertible.
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3. Suppose A =

✓
2 �1
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◆
. On the grid below, sketch a) the range of x ! Ax, b) (ColA)?, (c)

set of solutions to A~x =
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4. Matrix A is a 2⇥2 matrix whose eigenvalues are �1 =
1
2 and �2 = 1, and whose corresponding

eigenvectors are ~v1 =
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In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible impossible

� � Q(~x) = ~x TA~x is a positive definite quadratic form, and Q(~v) = 0, where

~v is an eigenvector of A.

� � The maximum value of Q(~x) = ax2
1 + bx2

2 + cx2
3, where a > b > c, for

~x 2 R3
, subject to ||~x|| = 1, is not unique.

� � The location of the maximum value of Q(~x) = ax2
1 + bx2

2 + cx2
3, where

a > b > c, for ~x 2 R3
, subject to ||~x|| = 1, is not unique.

� � A is 2 ⇥ 2, the algebraic multiplicity of eigenvalue � = 0 is 1, and

dim(Col(A)?) is equal to 0.

� � Stochastic matrix P has zero entries and is regular.

� � A is a square matrix that is not diagonalizable, but A2
is diagonalizable.

� � The map TA(~x) = A~x is one-to-one but not onto, A is m⇥n, and m < n.

2. Transform TA = A~x reflects points in R2
through the line y = 2 + x. Construct a standard

matrix for the transform using homogeneous coordinates. Leave your answer as a product of

three matrices.

v=0

↑

X
-

#O
X

Y

dim(Nul(A((
= 1

X =

-
o dim (CICAI) = 2



3. Fill in the blanks.

(a) TA = A~x, where A 2 R2⇥2
, is a linear transform that first rotates vectors in R2

clockwise

by ⇡/2 radians about the origin, then reflects them through the line x1 = x2. What is

the value of det(A)?

(b) B and C are square matrices with det(BC) = �5 and det(C) = 2. What is the value of

det(B) det(C4
)?

(c) A is a 6 ⇥ 4 matrix in RREF, and rank(A) = 4. How many di↵erent matrices can you

construct that meet these criteria?

(d) TA = A~x, where A 2 R2⇥2
, projects points onto the line x1 = x2. What is an eigenvalue

of A equal to?

(e) If an eigenvalue of A is
1
3 , what is one eigenvalue of A�1

equal to?

(f) If A is 30 ⇥ 12 and A~x = ~b has a unique least squares solution x̂ for every ~b in R30
, the

dimension of NullA is .

4. A is a 2⇥2 matrix whose nullspace is the line x1 = x2, and C =

✓
1 2

0 1

◆
. Sketch the nullspace

of Y = AC.

5. Construct an SVD of A =

✓
1 �1

1 1

◆
. Use your SVD to calculate the condition number of A.


