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Section 1.

Functions of One Random Variable



Functions of One Random Variable

Let X be a random variable.

Define Y = u(X ) for some function u.

We discuss how to find the distribution of Y from that of X .
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Functions of One Random Variable

Example

Let X have a discrete uniform distribution on the integers from �2 to 5.

Find the distribution of Y = X 2.
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CDF Technique

Example

Let X have a gamma distribution with PDF

f (x) =
1

�(↵)✓↵
x↵�1e�

x
✓ .

Find the distribution of Y = eX .
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CDF Technique

Theorem

Let X be a random variable with CDF F .

Suppose F is strictly increasing, F (a) = 0, F (b) = 1.

Let Y ⇠ U(0, 1).

Then, X = F�1(Y ).
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Change of Variables

Example

Let X have the PDF f (x) = 3(1� x)2 for 0 < x < 1.

Find the distribution of Y = (1� X )3.
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In general,
↓

Define Y = u(X)

Assume U TS monotone ↓
increasing

decreasing
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Exercise

Let X have the PDF f (x) = 4x3 for 0 < x < 1.

Find the PDF of Y = X 2.
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Section 2.

Transformations of Two Random

Variables



4/9/24

· X : a continuous RV with PDF x(x)

Y = u(X) What is the PDF of Y ?

Fy(y) = P(yxy) = P(u(X) < y)
strictly

if u is -increasing
,

there exists the inverse of u
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Transformations of Two Random Variables

If X1 and X2 are two continuous-type random variables with joint PDF f (x1, x2).

Let Y1 = u1(X1,X2), Y2 = u2(X1,X2).

If X1 = v1(Y1,Y2), X2 = v2(Y1,Y2), then the joint PDF of Y1 and Y2 is

fY1,Y2 = |J|fX1,X2(v1(y1, y2), v2(y1, y2))

where J is the Jacobian given by
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Transformations of Two Random Variables

Example

Let X1 and X2 have the joint PDF

f (x1, x2) = 2, 0 < x1 < x2 < 1.

Find the joint PDF of Y1 =
X1

X2
and Y2 = X2.

&



Exercise

Let X1 and X2 be independent random variables, each with PDF

f (x) = e�x , 0 < x < 1.

Find the joint pdf of Y1 = X1 � X2 and Y2 = X1 + X2.



Section 3.

Several Independent Random

Variables



Independent random variables

Recall that X1 and X2 are independent if

P(X1 2 A,X2 2 B) = P(X1 2 A)P(X2 2 B)

for all A,B .

In particular, if X1 and X2 have PDFs, then fX1,X2(x1, x2) = fX1(x1)fX2(x2).



Independent random variables

Definition

In general, we say X1,X2, · · · ,Xn are independent if

{X1 2 A1}, {X2 2 A2}, · · · , {Xn 2 An} are mutually independent, for any choice of

A1,A2, · · · ,An.

In particular, if X1,X2, · · · ,Xn has PDFs, then the joint PDF is the product.

If X1,X2, · · · ,Xn are independent and have the same distribution,

we say they are i.i.d. (independent and identically distributed) or a random sample of

size n from that common distribution.

&1EAM , CX2EAch ,
EXSEASY mutually inter

.

P(X / EA ., X 2EA2) = P (XIEA) · (EAL)

↑ (x2EAL , X3EAs) = (X2EA2) (X3 ->As)

↑ (x> EAS ,
XiEAl = P (XSEAS) P(XIEA)

#(XIAI
, XEAL ,XgEAs) = P(XIEAD P(EAL) P(XS EAs)

(PDFs are the same



Independent random variables

Example

Let X1,X2,X3 be a random sample from a distribution with PDF

f (x) = e�x , 0 < x < 1.

Find P(0 < X1 < 1, 2 < X2 < 4, 3 < X3 < 7).

*
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.
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· (0 = F(1 - FCO) F(x) = 1 - 5
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=
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Expectation and Variance

Theorem

Let X1,X2, · · · ,Xn be a sequence of random variables. Then,

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

If they are independent, then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn]

and

Var[X1 + X2 + · · ·+ Xn] = Var[X1] + Var[X2] + · · ·+ Var[Xn].

works

even for

↓ dependent cases

Var(X1 +Xn) = Var(i) + Var(z) + 2 CoVIX1 <X2)



Exercise

Let X1,X2,X3 be i.i.d. Geometric with p = 3
4 .

Let Y be the minimum of X1,X2,X3.

Find P(Y > 4).

E
,

= (x1 > 4
,
x2 >4 , xs >4)

2 indep
= ((x1 > 4) ((X 2 >4) P(X3 >4)

= (x1 >4)3
= ( (P)3 = (E)



Section 4.

The Moment-Generating Function

Technique



The Moment-Generating Function

Theorem

If X1,X2, · · · ,Xn are independent and have the MGFs MXi (t), then the MGF of

Y = a1X1 + · · · anXn is MY (t) = MX1(a1t) · · ·MXn(ant).

Theorem

If X1,X2, · · · ,Xn are i.i.d., then the MGF of Y = X1 + · · ·+ Xn is MY (t) = MX (t)n.

If X = X1+···+Xn
n , then the MGF is MX (t) = MX (

t
n )

n.

Example X1 ,
X 2

, X3 Y =
1 +

x2
+*s

=1 . x1 + + x2 + xs

=> My 1) = Mx
, (5) Mx(+ ) Mxs(+

-L
/

3(X ,
+ ... + Xn) = My(t) = Mx

,
(3+ )

"



The Moment-Generating Function

Example

Let X1,X2, · · · ,Xn be i.i.d. Bernoulli with p.

Let Y = X1 + · · ·+ Xn.

Find the MGF of Y . X, ~ Ber

t- o

MX
,
() = 1 S e

+X] = e . ( - p) + et . p

= 1 - p + et. p

My(t) = (Mxz(H("

- pc"

=> Y - Bin (n
, pl



The Moment-Generating Function

Example

Let X1,X2, · · · ,Xn be i.i.d. exponential with ✓.

Let Y = X1 + · · ·+ Xn.

Find the MGF of Y .

x
mean

MX
,

(H) =

0

MYH== MXH"
= !

Y~ Gamma (n , x)



Exercise

Let X1,X2,X3 be independent Poisson with means 2, 1, 4.

Find the MGF of Y = X1 + X2 + X3.

X

My != yti(et

My (7) = Mx
,
(t) - Mxc() - Mxg(+)

=2(et) .
(ety 4(e + )

· e

= e(et 1)

Y Pois(2 + 1 +4)



4/1)/24

X 1 , X2, ...., Xn i . i . d. Jindep . & identically distributed

Y = x1 + x2 + ... + Xn

My(t) = E(e
+Y] = #) et (x1

+ x z + .
-+ X n)]

= E(p+*+
. e
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.... p
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]

2 Xi - %. Xn indep
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MGF Technique

If Y = a1 X1 + a2X2 + ... + AnXn

MyH) = Mx1(at) Mx2(a27) .... Myn(ant

Assume X 1 ,

-

,
An T .

i .
d. E(X1] = - .. = ELXn] =0

a = ai = az = -.. - An Y = aX1 + aXz + - .. + aXn
S

My(t) = (Mx(a+))
"

Mx (t)

Mx(0) = 1 Hx(0) = EX] = 0 ,
M 10) = #2) = Var() = 5

-

S

Mx(+L ~ Mx(0) + Mx(0) . t + xx . E = 1+
(Taylor Expansion)

N

My(H) = (Mx(a+ )) (t + van 7

- n + x

& >
at= t a = En I (1 + t .( ))"-> e

5

Y = j . (x
, + - .. + xn)



Im10(1 +1) = e

If X X jid., EXi0

Y = (x1 + .. + x n] =>> N(0 ,
52

My (t) F e for large n.

Central Limit Theorem
.



Section 6.

The Central Limit Theorem



The Central Limit Theorem

Let X1,X2, · · · ,Xn be i.i.d. with common distribution X .

Let E[X ] = µ and Var(X ) = �2.

Let X = X1+···+Xn
n , then

E[X ] =

Var(X ) =

Let W =
X � µ

�p
n

, then

E[W ] =

Var(W ) =

Note

Y =*Ext E(k) = El ED
=

(EXE=Vor(s)

=Van
= 1

.Var(X)

M
# = the sample mean

.

si
I

w = =Es=/
D

1
.

E (x) = E( ! . (x++ .. . + x2)] = E . ELX2+- - - + x]

= (E[X2] + .. . + # (Xi]) =
. (M+ - ..+M) = M

Vor() = Var( - (Xe+.. .+Xn))

=te Var (x1 + .. . +Xw) =
2

. ( Var(X,) +Varel +-Var()

= E. n .x=



The Central Limit Theorem

Theorem

If µ and �2 are finite, then the distribution of W =
X � µ

�p
n

converges to that of the

standard normal distribution N(0, 1) as n ! 1.

The convergence is in the following sense: If n is large, for the standard normal Z ,

P(W  x) ⇡ P(Z  x) =: �(x) =

Z x

1

1p
2⇡

e�
|y|2
2 dy .

X1
, "-i Xw iiid

.

x = h(x , +- + x)
,

w
= s_

Convergence
in dist

.

↑ ↑
CDF of W CDF of Normal



The Central Limit Theorem

Example

Let X be the mean of a random sample of n = 25 currents (in milliamperes) in a

strip of wire in which each measurement has a mean of 15 and a variance of 4.

Find the approximate probability P(14.4 < X < 15.6).

w = M > N(0
, 1) meaning that

P(W + & ICA (CDF of Standardformal

x1 ,
X 2

. -- , X 25 Tid . E[X] = 15=M ,
Var(i) = 4 =E

x = t(X1 + .. . + xn) = 2 (x1+ - . + x25) T= 2

N =E=5

1P( 14 .
4 < * < 15 . 6)

#= 5 =0
.4

=P)
=

P) -= +< = P) - 1
.5 < <1 . 5)

O
.

* 1) + 1
. 5 ( z <1 . 5) = = (1

. 5) - E (- 1
.5)

By CT =

(1 . 5)- (1 - (1 .5)

= 2 . (1
.
5) - 1

.



The Central Limit Theorem

Example

Let X denote the mean of a random sample of size 25 from the distribution whose

PDF is f (x) = x3

4 , 0 < x < 2.

Find the approximate probability P(1.5  X  1.65).

Var(x) = #(3) - (A = = - G =8) -
- = = =

#(x7 = )x fax==2E(x2) = (x f(x)dx = So

8
x = 25(x1 + x2+ .. . + X25) M =

J
n

==
H = 25

w = EM tTH

# (1 .
5 x x 1

.65) =
=

1) We
N

- # ( ( - ))↑

By CLT .

for large =25



Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the

measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is µ = 54.030 and the

standard deviation is � = 5.8.

Let X be the sample mean of a random sample of size n = 47.

Find P(52.761  X  54.453), approximately.



Central Limit Theorem

X
X 1

,
X 2

,
.... Xn : i

.
i

.
d

. (independent , same dist.

EIXI =M ,
Var(XI =&

Sn + X1 + x2+ ...
- + Xn

x= : sample mean ((X) =M ,
Var()=

w ==E : E No, a S n- -> x

C meaning that convergence in distribution

P(wx) > (X) a5 n+x)
z - N(0 ,1

Sn - EC5n]
=

(X(t ... + Xn) - nM
= W =>> N(O , 1)

.(Sn) +-

① Y = Bin (n , p) Y = X1 + Xz + - .. + Xn

X1
, :, Xn : ii.

d. Ber(t)

Y N10
, 1 as n+ x

n is large
II ↓

Y - n . p Normal Approximation to Binomial
.

PL)

( Poisson Approximation : Bin(n
. p) = Pois(X) L
↑

if n is large p is small

p x

& Y Pois Y =X1 + x2 + -..

Xn

X
, i =. X2 : ri .

d Pois(1)

=ENC
as x+x



Section 7.

Approximations for Discrete

Distributions



Normal approximation to Binomial Distribution

Theorem

Let X be a binomial random variable with parameter n and p. If n is large enough

(usually, np � 5 and n(1� p) � 5), then X is approximately a normal distribution

with mean np and variance np(1� p).

= No , 1)



Normal approximation to Binomial Distribution

Example

Let Y be Bin(25, 12). Find the approximate probability P(12  Y < 15) using the

central limit theorem.

#n = 25 p =E E() = 25 . 7 = 3
,
Val = 25 - 1 -Cl

25 =Y -

E 5
=> N(0 , 1)

/4
↓S

#(1244 (15) =1)
= (00

.
2 x z 1) = #(1) - E 0

.
2)

= E(l) + E(0 .

2) - 1

$(y = 12) (i) Y < 12
.5) = P)1. 5 2 .56

half unit correction

mid point correction
= 1) - 0

.4 / z(o)

↑ (124Y (15) = P(Y= 12
, 1 , 1) = P (11 .

5 < Y < 11
.5)

P (" L



Normal approximation to Poisson Distribution

Theorem

Let X be a Poisson random variable with parameter �. Then,

W :=
Y � �p

�

converges to N(0, 1) in distribution as � ! 1.



Normal approximation to Poisson Distribution

Example

Let X1,X2, · · · ,X30 be a random sample of size 30 from a Poison distribution with a

mean of 2
3 . Approximate the probability

P

 
21 

30X

i=1

Xi  27

!
.

j

, i .
d

. Pois()

-

al

" Pois (20)

=* E No e

(2)Y (27) =P(
without half unit correction.

((2))y + 27) = (20 .

5 16 4427.5)
with half unit correction

((x = 2)) + P (Y= 22) + P(y= 23) +... + (Y=27)



Section 8.

Chebyshev’s Inequality and

Convergence in Probability

:vace
a

I I
S

Y E

?
IX-MR] 3

P((x-Mix 3) < #
S2

=

2

P((x -M) < E] Y 1 -

↑
2

2



Chebyshev’s Inequality

Theorem

If the random variable X has a mean µ and variance �2, then for every k � 1,

P(|X � µ| � ")  �2

"2
.

In particular " = k�, then

P(|X � µ| � k�)  1

k2
.

area =PE
/'

/ /
7/ PDF of Xis

area = 1(M - 3 ( X < M+ 3) = b)(X-MI < 3)
-



Chebyshev’s Inequality

Example

Suppose X has a mean of 25 and a variance of 16.

Find the lower bound of P(17 < X < 33).

&Ei(I I E= ILHI
is
O

--

= P(X-25/ < 8) x 1-
6= 1 -

82
= 1 -1

= B



The Law of Large Numbers

Definition

We say a sequence of random variables Xn converges to a random variable X in

probability if for every " > 0,

lim
n!1

P(|Xn � X | > ") = 0.

(LLN)

Xi , X2 ,
X3 :

"

,

j

Vor (Xi)= Vor(l=
X1

,
X 2 .

-
-

., Xn EX ,7 =M = #(x2) = . .. = E(X-]

S

F = +--- + Xn
E[X1]

N &
Intuition-

P(1-m > &Ma
↑

empirical mean

Chebychev's Ineq .

= <00



The Law of Large Numbers

Theorem

Let X1,X2, · · · ,Xn be i.i.d. with common distribution X .

Let E[X ] = µ and Var(X ) = �2.

Then, X converges to µ in probability.

relative Frequency
Example X1i--- ,

Xn ~ i.

d. Ber(p)

Relation feguy
+

X # [X] = p Success
LLN



Exercise

If X is a random variable with mean 3 and variance 16, use Chebyshev’s inequality to

find

1. A lower bound for P(23 < X < 43).

2. An upper bound for P(|X � 31| � 14).
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