Chapter 5. Distributions of Functions of Random Variables

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Functions of One Random Variable

Functions of One Random Variable

Let X be a random variable.
Define $Y=u(X)$ for some function u. Examples: $Y=X^{2}$ We discuss how to find the distribution of Y from that of X.

$$
y=e^{x}
$$

a

Functions of One Random Variable

Example
Let X have a discrete uniform distribution on the integers from -2 to 5 .
Find the distribution of $Y=X^{2}$.
$x=-2,-1,0,1, \cdots, 5$ egearlly likely.

$$
f_{x}(k)=\underset{N}{\text { constant }}=\frac{1}{8} \quad \text { for } \quad k=\underbrace{-2,-1,-1,5}
$$

$$
Y_{Y}=x^{2}
$$

$$
=(-2)^{2},(-1)^{2}, 0^{2}, 1^{2}, \cdots, 5^{2}
$$

$$
f_{Y(k)}= \begin{cases}\frac{2}{8} & k=4,1 \\ \frac{1}{8} & k=0,9,16,25\end{cases}
$$

$$
\begin{aligned}
& \mathbb{P}(0<X \leqslant Y)=\mathbb{P}\left(X^{2} \leqslant Y^{2}\right) \\
& \cdot \mathbb{P}(X \leqslant Y<0)=\mathbb{P}\left(X^{2} \geqslant Y^{2}\right)
\end{aligned}
$$

CDF Technique

Example
Let X have a gamma distribution with PDF

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}} .
$$

Find the distribution of $Y=e^{X} .>0$

$$
F_{Y}(y)=\mathbb{P}(Y \leqslant y)=0 \quad \text { if } \quad y \leqslant 0
$$

For $y>0$.

$$
\begin{aligned}
& \begin{aligned}
F_{Y(y)} & =\mathbb{P}(Y \leqslant y)=\mathbb{P}\left(e^{x} \leqslant y\right) \\
& =\mathbb{P}\left(\ln \left(e^{x}\right) \leqslant \ln \right) \text { because }
\end{aligned} \\
& =\mathbb{P}\left(\ln \left(e^{x}\right) \leqslant \ln y\right) \text { \& } \quad \ln (t) \\
& =\mathbb{P}(x \leqslant \ln y)=F_{x}(\ln y) \\
& \text { is increasing } \\
& f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} F_{X}(\ln y)=f_{X}(\ln y) \cdot(\ln y)^{\prime} \\
& =\frac{1}{y} \frac{1}{\Gamma(\alpha) \theta^{\alpha}}(\ln y)^{\alpha-1} e^{-\frac{1}{\theta}(\ln y)}
\end{aligned}
$$

$$
\begin{aligned}
\left(e^{-\frac{1}{\theta} \ln y}\right. & =e^{\ln \left(y^{-\frac{1}{\theta}}\right)}=y^{-\frac{1}{\theta}} \\
\left(-\frac{1}{\theta} \ln y\right. & =\ln \left(y^{-\frac{1}{\theta}}\right) \\
f_{x}(y) & =\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \cdot(\ln y)^{\alpha-1} \cdot y^{-\frac{1}{\theta}-1}
\end{aligned}
$$

CDF of X

$$
\begin{aligned}
& F\left(F^{-1}(x)\right)=x \\
& F^{-1}(F(x))=x
\end{aligned}
$$

The inverse of $F \quad m(a, b)$
$U \sim U_{n i f}(0,1)$

$$
Y=F^{-1}(U)
$$

Q: Dist. of Y ?

$$
\left.e^{x} \leqslant y \rightarrow \ln \left(e^{x}\right) \leqslant \ln y\right)
$$

$$
\left.\left.\begin{array}{rl}
F_{Y}(y) & =\mathbb{P}(Y \leqslant y)=\mathbb{P}\left(F^{-1}(U) \leqslant y\right) \\
& =\mathbb{P}(\underbrace{F\left(F^{-1}(U)\right.}_{=U})
\end{array} \leqslant\right) F(y)\right)
$$

$=F_{x}(y) \quad \Rightarrow \quad x, Y$ have the same distribution.

Theorem
Let X be a random variable with CDF F.
Suppose F is strictly increasing, $F(a)=0, F(b)=1$.
Let $Y \sim U(0,1)$.
Then, $X=F^{-1}(Y)$.

Application
WANT: Choose 1 sample from Exp (2)
Sample 1 number from $V(0,1)$, say x

$$
\begin{array}{r}
\underbrace{F^{-1}(x)}, \quad F \quad \text { is } C D F \text { of } E_{x p}(2) \\
F(t)=1-e^{-2 t}= \\
F^{-1}(t)=-\frac{1}{2} \ln (1-t) \\
\binom{t=1-e^{-2 F^{-1}(t)}}{e^{-2 F^{-1}(t)}=1-t}
\end{array}
$$

$$
\begin{aligned}
f_{x}(x)=3(1-x)^{2} \quad \rightarrow \quad F_{x}(x) & =1-(1-x)^{3} \\
F(x) & =1-(1-x)^{3}=1-Y
\end{aligned}
$$

Change of Variables

$$
\begin{aligned}
& 0<(1-x)^{3}<1 \\
& 0<1-x<1 \\
& 0<x<1
\end{aligned}
$$

Example
Let X have the PDF ${\underset{x}{x}}^{(x)}=3(1-x)^{2}$ for $0<x<1$.
Find the distribution of $Y=(1-X)^{3} . \quad \in(0,1)$
For $0<y<1$
$F_{Y}(y)=\mathbb{P}(Y \leqslant y)=\mathbb{P}\left((1-x)^{3} \leqslant y\right)$ $Y \sim U_{\text {nit }}(0,1)$

$$
=\mathbb{P}\left(1-x \leqslant y^{\frac{1}{3}}\right)
$$

$$
=\mathbb{P}\left(x \geqslant 1-y^{\frac{1}{3}}\right)=1-F_{x}\left(1-y^{\frac{1}{3}}\right)
$$

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y}(1-F_{X}(\underbrace{1-y^{\frac{1}{3}}})) \\
& =-f_{X}\left(1-y^{\frac{1}{3}}\right) \cdot\left(-\frac{1}{3} y^{-\frac{2}{3}}\right) \\
& =-\beta \cdot\left(1-\left(1-y^{\frac{1}{3}}\right)\right)^{2} \cdot\left(-\frac{1}{3}\right) \cdot y^{-\frac{2}{3}} \\
& =\left(y^{\frac{1}{3}}\right)^{2} \cdot y^{-\frac{2}{3}}=1
\end{aligned}
$$

In general,

$$
\underline{x}
$$

Define $\quad Y=u(x)$
Assume u is monotone $<\begin{aligned} & \text { increasing } \\ & \text { decreasing }\end{aligned}$

$$
\begin{aligned}
& F_{Y}(y)=\mathbb{P}(Y \leqslant y) \\
& =\mathbb{P}(u(x) \leqslant y) \\
& =\left\{\begin{array}{lll}
\mathbb{P}\left(x \leqslant u^{-1}(y)\right)=F_{x}\left(u^{-1}(y)\right) \\
\mathbb{P}\left(x \geqslant u^{-1}(y)\right) & \text { if } u \text { increasing } \\
& \text { if } u \text { decreasing }
\end{array}\right. \\
& f_{y}(y)=\left\{\begin{array}{l}
f_{x}\left(u^{-1}(y)\right) \cdot\left(u^{-1}(y)\right)^{\prime \prime} F_{X} \\
-f_{x}\left(u^{-1}(y)\right) \cdot\left(u^{-1}(y)\right)^{\prime}
\end{array}\right. \\
& =f_{x}\left(u^{-1}(y)\right) \cdot\left|u^{-1}(y)\right| \text {. }
\end{aligned}
$$

Exercise

Let X have the PDF $f(x)=4 x^{3}$ for $0<x<1$.
Find the PDF of $Y=X^{2}=u(X)$

$$
u(t)=t^{2} \quad 0<t<1
$$

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(u^{-1}(y)\right) \cdot\left|\left(u^{-1}(y)\right)^{\prime}\right| \\
& =f_{X}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}} \\
& =4 \cdot y^{\frac{3}{2}} \cdot \frac{1}{2} \cdot y^{-\frac{1}{2}}=2 y .
\end{aligned}
$$

$$
u^{-1}(t)=\sqrt{t}
$$

Section 2.
Transformations of Two Random Variables
$4 / 9 / 24$

- X : a continuous RV with PDF $f_{x}(x)$
$Y=u(x) \quad$ What is the PDF of Y ?

$$
F_{Y}(y)=\mathbb{P}(Y \leqslant y)=\mathbb{P}(u(x) \leqslant y)
$$

if u is ${ }^{\text {strictly }}$ increasing, there exists the inverse of u.

$$
\begin{aligned}
& u^{-1}(u(x))=u\left(u^{-1}(x)\right)=x . \\
& F_{Y}(y)=\mathbb{P}\left(x \leqslant u^{-1}(y)\right)=F_{X}\left(u^{-1}(y)\right) \\
& f_{Y}(y)=f_{X}\left(u^{-1}(y)\right) \cdot\left(u^{-1}(y)\right)^{\prime}
\end{aligned}
$$

Example X_{1}, X_{2} : contimous RV with joint PDF

$$
f\left(x_{1}, x_{2}\right)=2 \quad \text { for } \quad 0<x_{1}<x_{2}<1
$$

Define $Y=\frac{x_{1}}{x_{2}}$ What is the PDF of Y ?

$$
\begin{aligned}
& F_{Y(y)}=\mathbb{P}(Y \leqslant y)=\mathbb{P}\left(\frac{x_{1}}{x_{2}} \leqslant y\right)=\mathbb{P}\left(x_{1} \leqslant y \cdot x_{2}\right) \\
& =\iint A f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

If $y \geqslant 1$, the $F_{Y}(y)=1$
For $0<y<1, \quad F_{y}(y)=\int_{0}^{1} \int_{0}^{y x_{2}} 2 d x_{1} d x_{2}=\int_{0}^{1} 2 \cdot x_{2} \cdot y d x_{2}$

$$
f_{Y}(y)=1 \quad \text { for } \quad 0<y<1 .
$$

$Q: X_{1}, X_{2} \quad \Rightarrow \quad Y_{1}=\frac{x_{1}}{x_{2}}, \quad Y_{2}=x_{2}$
the joint $P D F$ of Y_{1}, Y_{2} ?

Transformations of Two Random Variables

If X_{1} and X_{2} are two continuous-type random variables with joint PDF $f\left(x_{1}, x_{2}\right)$.
Let $\begin{aligned} Y_{1} & =x_{1}\left(x_{2}\right. \\ = & u_{1}\left(X_{1}, X_{2}\right), Y_{2}=u_{2}\left(X_{1}, X_{2}\right) .\end{aligned}$
If $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right), X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$, then the joint PDF of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}=\underline{|J| f_{X_{1}, X_{2}}\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)}
$$

where J is the Jacobian given by $\left(J_{1}, v_{2}\right)^{\prime} \&$ matrix b.

$$
J:=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right| \cdot=\left\lvert\, \begin{aligned}
& \frac{\partial v_{1}}{\partial y_{1}} \\
& \frac{\partial v_{2}}{\partial y_{1}}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \frac{\partial v_{1}}{\partial y_{2}} \\
& \frac{\partial v_{2}}{\partial y_{2}}
\end{aligned}
$$

Example

$$
\begin{array}{rlr}
Y_{1} & =\frac{x_{1}}{x_{2}} & Y_{2}=x_{2} \\
X_{1} & =\frac{Y_{1} \cdot Y_{2}}{v_{1}\left(Y_{1}, Y_{2}\right)} & \quad x_{2}= \\
& =
\end{array}
$$

$$
f_{x_{1}, x_{2}} \text { for } \quad x_{1}=\underline{Y_{1} \cdot Y_{2}} \quad x_{2}=Y_{2}=v_{2}\left(Y_{1}, Y_{2}\right)
$$

$0<x_{1}<x_{2}<1$

$$
\begin{aligned}
& I=\left|\begin{array}{ccc}
y_{2} & y_{1} \\
X & 1 \\
0 & 1
\end{array}\right|=\left|y_{2} \cdot 1-y_{1}-0\right|=\left|y_{2}\right| \\
& f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) \\
& =\underbrace{}_{x_{1}, x_{2}}\left(y_{1} \cdot y_{2}, y_{2}\right) \cdot\left|y_{2}\right| \\
& =2 \cdot y_{2} \quad \text { for } 0<y_{1} \cdot y_{2}<y_{2}<1
\end{aligned}
$$

Transformations of Two Random Variables

Example

Let X_{1} and X_{2} have the joint PDF

$$
f\left(x_{1}, x_{2}\right)=2, \quad 0<x_{1}<x_{2}<1 .
$$

Find the joint PDF of $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{2}$.

Exercise

Let X_{1} and X_{2} be independent random variables, each with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find the joint pdf of $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$.

Section 3.
Several Independent Random
Variables

Independent random variables

Recall that X_{1} and X_{2} are independent if

$$
\mathbb{P}\left(X_{1} \in A, X_{2} \in B\right)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B\right)
$$

for all A, B.
In particular, if X_{1} and X_{2} have PDFs, then $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.
$\left\{x_{1} \in A_{1}\right\},\left\{x_{2} \in A_{2}\right\},\left\{x_{3} \in A_{3}\right\}$ mutually index.

$$
\begin{gathered}
\mathbb{P}\left(x_{1} \in A_{1}, x_{2} \in A_{2}\right)=\mathbb{P}\left(x_{1} \in A_{1}\right) \cdot \mathbb{P}\left(x_{2} \in A_{2}\right) \\
\mathbb{P}\left(x_{2} \in A_{2}, x_{3} \in A_{3}\right)=\mathbb{P}\left(x_{2} \in A_{2}\right) \mathbb{P}\left(x_{3} \in A_{3}\right) \\
\mathbb{P}\left(x_{3} \in A_{3}, x_{1} \in A_{1}\right)=\mathbb{P}\left(x_{3} \in A_{3}\right) \mathbb{P}\left(x_{1} \in A_{1}\right) \\
\mathbb{P}\left(x_{1} \in A_{1}, x_{2} \in A_{2}, x_{3} \in A_{3}\right)=\mathbb{P}\left(x_{1} \in A_{1}\right) \mathbb{P}\left(x_{2} \in A_{2}\right) \mathbb{P}\left(x_{3} \in A_{3}\right)
\end{gathered}
$$

Independent random variables

Definition
In general, we say $X_{1}, X_{2}, \cdots, X_{n}$ are independent if
$\left\{X_{1} \in A_{1}\right\},\left\{X_{2} \in A_{2}\right\}, \cdots,\left\{X_{n} \in A_{n}\right\}$ are mutually independent, for any choice of $A_{1}, A_{2}, \cdots, A_{n}$.

In particular, if $X_{1}, X_{2}, \cdots, X_{n}$ has PDF, then the joint PDF is the product.
If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the same distribution, (PD Es are the same) we say they are i.i.d. (independent and identically distributed) or a random sample of size n from that common distribution.

$$
x_{1}, x_{2}, x_{3} \sim E_{x p}(1) \quad \text { i,i.d. }
$$

Example
Let X_{1}, X_{2}, X_{3} be a random sample from a distribution with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find $\mathbb{P}\left(0<X_{1}<1,2<X_{2}<4,3<X_{3}<7\right)$.

$$
\begin{aligned}
& \mathbb{P}\left(0<x_{1}<1,2<x_{3}<4, \quad 3<x_{3}<7\right) \\
& =\frac{\mathbb{P}\left(0<x_{1}<1\right)}{1} \mathbb{P}\left(2<x_{2}<6\right) \mathbb{P}\left(3<x_{3}<7\right) \\
& \left(=\overline{\int_{0}^{1} e^{-x} d x} \cdot \int_{2}^{4} e^{-x} d x \quad \cdot \int_{3}^{7} e^{-x} d x=\square\right) \\
& =\left(\mathbb{P}\left(x_{1}>0\right)-\mathbb{P}\left(x_{1}>1\right)\right) \cdot\left(\mathbb{P}\left(x_{2}>2\right)-\mathbb{P}\left(x_{2}>4\right)\right)\left(\mathbb{P}\left(x_{3}>3\right)-\mathbb{P}\left(x_{3}>7\right)\right) \\
& \left(\begin{array}{ll}
0 \mathbb{P}(\alpha x<1)=F(1)-F(0) & F(x)=1-e^{-x} \\
x \sim \operatorname{Exp}(\lambda) & \mathbb{P}(x>t)=e^{-\lambda t}
\end{array}\right) \\
& =\left(1-e^{-1}\right)\left(e^{-2}-e^{-4}\right)\left(e^{-3}-e^{-7}\right)
\end{aligned}
$$

Expectation and Variance
works
Theorem
Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of random variables. Then, dependent cases

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

If they are independent, then

$$
\mathbb{E}\left[X_{1} X_{2} \cdots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \cdots \mathbb{E}\left[X_{n}\right]
$$

and

$$
\operatorname{Var}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\cdots+\operatorname{Var}\left[X_{n}\right] .
$$

$$
\operatorname{Var}\left(x_{1}+x_{2}\right)=\operatorname{Var}\left(x_{1}\right)+\operatorname{Var}\left(x_{2}\right)+2 \operatorname{Cov}\left(x_{1} d x_{2}\right)
$$

Let X_{1}, X_{2}, X_{3} be i.i.d. Geometric with $p=\frac{3}{4}$.
Let Y be the minimum of X_{1}, X_{2}, X_{3}.
Find $\mathbb{P}(Y>4)$.

$$
\begin{aligned}
& =\mathbb{P}\left(x_{1}>4, \quad x_{2}>4, \quad x_{3}>4\right) \\
& =\mathbb{P}\left(x_{1}>4\right) \mathbb{P}\left(x_{2}>4\right) \mathbb{P}\left(x_{3}>4\right) \\
& =\mathbb{P}\left(x_{1}>4\right)^{3} \\
& =\left(\left(\frac{1}{4}\right)^{4}\right)^{3}=\left(\frac{1}{4}\right)^{12}
\end{aligned}
$$

Section 4.
The Moment-Generating Function Technique

$$
\text { Example } \begin{aligned}
& X_{1}, X_{2}, X_{3} \quad Y=\frac{\left(x_{1}+x_{2}+X_{3}\right)}{3} \\
&=\frac{1}{3} \cdot x_{1}+\frac{1}{3} x_{2}+\frac{1}{3} \cdot x_{3} \\
& \Rightarrow \quad M_{Y}(t)=M_{X_{1}}\left(\frac{1}{3} t\right) M_{x_{2}}\left(\frac{1}{3} t\right) M_{x_{3}}\left(\frac{1}{3} t\right)
\end{aligned}
$$

The Moment-Generating Function

Theorem

If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the MGFs $M_{X_{i}}(t)$, then the MGF of $Y=a_{1} X_{1}+\cdots a_{n} X_{n}$ is $M_{Y}(t)=M_{X_{1}}\left(a_{1} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)$.

Theorem

If $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d., then the MGF of $Y=X_{1}+\cdots+X_{n}$ is $M_{Y}(t)=M_{X}(t)^{n}$. If $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then the MGF is $M_{\bar{X}}(t)=M_{X}\left(\frac{t}{n}\right)^{n}$.

$$
3\left(x_{1}+\cdots+x_{n}\right) \quad \Rightarrow \quad M_{Y}(t)=M_{x_{1}}(3 t)^{n}
$$

Example
Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. Bernoulli with p.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the MGF of Y.

$$
\begin{aligned}
M_{X_{1}}(t) & =\mathbb{E}\left[e^{t x_{1}}\right]=e^{t \cdot 0} \cdot(1-p)+e^{t \cdot 1} \cdot p \\
M_{Y}(t)= & \left(M_{x_{1}}(t)\right)^{n}=1-p+e^{t} \cdot p \\
= & \left(1-p+e^{t} \cdot p\right)^{n} \\
\Rightarrow \quad & Y \sim \operatorname{Bin}(n, p)
\end{aligned}
$$

The Moment-Generating Function

Example

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. exponential with θ.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the MGF of Y.

$$
\begin{aligned}
M_{X_{1}}(t) & =\frac{1}{(1-\theta t)} \\
M_{Y}(t) & =\frac{1}{(1-\theta t)^{n}}=M_{x_{1}}(t)^{n}=\frac{1}{\left(1-\frac{t}{\lambda}\right)^{n}} \\
Y & \sim \operatorname{Gamman}(n, \lambda)
\end{aligned}
$$

Exercise

Let X_{1}, X_{2}, X_{3} be independent Poisson with means $2,1,4$.
Find the MGF of $Y=X_{1}+X_{2}+X_{3}$.

$$
\begin{aligned}
M_{x_{i}}(t) & =e^{\lambda_{i}\left(e^{t}-1\right)} \\
M_{y}(t) & =M_{x_{1}(t) \cdot M_{x_{2}}(t) \cdot M_{x_{3}}(t)} \\
= & e^{2\left(e^{t}-1\right)} \cdot e^{1 \cdot\left(e^{t}-1\right)} \cdot e^{4\left(e^{t}-1\right)} \\
& =e^{7\left(e^{t}-1\right)} \\
Y & \sim P_{\text {ois }}(2+1+4)
\end{aligned}
$$

$X_{1}, X_{2}, \cdots, X_{n}$ i.i.d. (indep. \& identically distributed)

$$
\begin{aligned}
& Y=x_{1}+x_{2}+\cdots+x_{n} \\
& M_{Y}(t)=\mathbb{E}\left[e^{t Y}\right]=\mathbb{E}\left[e^{t \cdot\left(x_{1}+x_{2}+\cdots+x_{n}\right)}\right] \\
&=\mathbb{E}\left[e^{t x_{1}} \cdot e^{t x_{2}} \cdots e^{t x_{n}}\right] \\
&=\mathbb{E}\left[e^{t x_{1}}\right] \mathbb{E}\left[e^{t x_{2}}\right] \cdots \mathbb{E}\left[e^{+x_{n}}\right] \\
&=M_{x_{1}}(t) M_{x_{2}}(t) \cdots x_{n} \text { Tndep } \\
&=\left(M_{\left.X_{1}(t)\right)^{n}} \quad \text { L } M_{x_{n}}(t) \quad x_{1}, \cdots x_{n}\right. \text { have the } \\
& \text { saine distribution }
\end{aligned}
$$

MGF Technique

If $\quad Y=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$

$$
M_{y}(t)=M_{x_{1}}\left(a_{1} t\right) M_{x_{2}}\left(a_{2} t\right) \ldots M_{x_{n}}\left(a_{n} t\right)
$$

Assume $\quad x_{1}, \cdots, x_{n} \quad$ i.i.d. $\mathbb{E}\left[x_{1}\right]=\cdots=\mathbb{E}\left[x_{n}\right]=0$

$$
\begin{gathered}
a=a_{1}=a_{2}=\ldots=a_{n}, \quad Y=a X_{1}+a X_{2}+\cdots+a X_{n} \\
M_{Y}(t)=\left(M_{X}(a t)\right)^{n} \\
M_{X}(t) \\
M_{X}(0)=1, M_{x}^{\prime}(0)=\mathbb{E}[x]=0, M_{x}^{\prime \prime}(0)=\mathbb{E}\left[x^{2}\right]=\operatorname{Var}(x)=\sigma^{2} \\
M_{X}(t) \approx M_{x}(0)+M_{x}^{\prime}(0) \cdot t+M_{x}^{\prime \prime}(0) \cdot \frac{t^{2}}{2}=1+\frac{\sigma^{2} t^{2}}{2}
\end{gathered}
$$

(Taylor Exponsion)

$$
\left.\begin{array}{ll}
M_{Y(t)}=(\underbrace{}_{x}(a t))^{n} \approx & \left(1+\frac{\sigma^{2} a^{2} t^{2}}{2}\right)^{n} \\
a^{2}=\frac{1}{n} \quad a=\frac{1}{\sqrt{n}} \\
Y=\frac{1}{\sqrt{n}} \cdot\left(x_{1}+\cdots+x_{n}\right)
\end{array} \right\rvert\, \begin{array}{cc}
11
\end{array}
$$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

If x_{1}, \cdots, x_{n} iii,d. $\mathbb{E}\left[x_{1}\right]=0$

$$
Y=\frac{1}{\sqrt{n}}\left(x_{1}+\cdots+x_{n}\right) \Rightarrow N\left(0, \sigma^{2}\right)
$$

$$
M_{Y}(t) \approx e^{\frac{\sigma^{2} t^{2}}{2}} \text { for large } n \text {. }
$$

Section 6.
The Central Limit Theorem

Note

$$
\begin{aligned}
Y=\frac{X-\mathbb{E}[x]}{\sqrt{\operatorname{Var}(x)}} \mathbb{E}[Y] & =\mathbb{E}\left[\frac{x-\mathbb{E}[x]}{\sqrt{\operatorname{Var}(x)}}\right] \\
& =\frac{1}{\sqrt{\operatorname{Var}(x)}}(\underbrace{\mathbb{E}[x-\mathbb{E}[x]]}_{=\mathbb{E}[x]-\mathbb{E}[x]}) \\
& =\operatorname{Var}\left(\frac{x-\mathbb{E}[x]}{\sqrt{\operatorname{Var}(x)}}\right) \\
& =\frac{\operatorname{Var}(x-\mathbb{E}[x])}{\operatorname{Var}(x)}=1 .
\end{aligned}
$$

The Central Limit Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then
$\mathbb{E}[\bar{X}]=\mu$

$$
\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Let $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$, then

$$
W=\frac{\bar{x}-\mathbb{E}[\bar{x}]}{\sqrt{\operatorname{Var}(\bar{x})}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

$\mathbb{E}[W]=0$
$\operatorname{Var}(W)=1$.

$$
\begin{aligned}
\mathbb{E}[\bar{x}] & =\mathbb{E}\left[\frac{1}{n} \cdot\left(x_{1}+\cdots+x_{n}\right)\right]=\frac{1}{n} \cdot \mathbb{E}\left[x_{1}+\cdots+x_{n}\right] \\
& =\frac{1}{n}\left(\mathbb{E}\left[x_{1}\right]+\cdots+\mathbb{E}\left[x_{n}\right]\right)=\frac{1}{n} \cdot(\mu+\cdots+\mu)=\mu
\end{aligned}
$$

$$
\operatorname{Var}(\bar{x})=\operatorname{Var}\left(\frac{1}{n} \cdot\left(x_{1}+\cdots+X_{n}\right)\right)
$$

$$
=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+x_{w}\right)=\frac{1}{n^{2}} \cdot\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots \operatorname{Var}\left(X_{n}\right)\right)
$$

$$
=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n}
$$

$$
\begin{aligned}
& x_{1}, \cdots, x_{n} \text { j.i.d. } \\
& \bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \quad, \quad w=\frac{\bar{x}-\mathbb{E}[\bar{x}]}{\sqrt{\operatorname{Var}(\bar{x})}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
\end{aligned}
$$

The Central Limit Theorem

Theorem
Convergence in dist.
If μ and σ^{2} are finite, then the distribution of $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ converges to that of the standard normal distribution $N(0,1)$ as $n \rightarrow \infty$.

The convergence is in the following sense: If n is large, for the standard normal Z,

$$
\mathbb{P}(W \leq x) \approx \mathbb{P}(Z \leq x)=: \Phi(x)=\int_{\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{|y|^{2}}{2}} d y
$$

CDF of W
CDF of Normal
$w=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \Rightarrow N(0,1) \quad$ meaning that
$\mathbb{P}(W \leqslant t) \approx \Phi(t) \quad(C D F$ of Standard Normal)
Example
Let \bar{X} be the mean of a random sample of $n=25$ currents (in milliamperes) in a strip of wire in which each measurement has a mean of 15 and a variance of 4 .

Find the approximate probability $\mathbb{P}(14.4<\bar{X}<15.6)$.

$$
\begin{aligned}
& x_{1}, x_{2}, \cdots, x_{25} \text { i.i.d. } \mathbb{E}\left[x_{1}\right]=15=\mu, \operatorname{Var}\left(x_{1}\right)=4=\sigma^{2} \\
& \bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)=\frac{1}{25}\left(x_{1}+\cdots+x_{25}\right) \\
& \sigma=2 \\
& \mathbb{P}(14.4<\bar{x}<15.6) \\
& \sqrt{n}=\sqrt{25}=5 \\
& \frac{\sigma}{\sqrt{n}}=\frac{2}{5}=0.4 \\
& =\mathbb{P}\left(\frac{144-\mu}{\sigma / \sqrt{n}}<\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}<\frac{15.6-\mu}{\sigma / \sqrt{n}}\right) \\
& =\mathbb{P}\left(-\frac{0.6}{0.4}<W<\frac{0.6}{0.4}\right)=\mathbb{P}(-1.5<\omega<1.5) \\
& \underset{\sim}{\sim} \mathbb{P}(-1.5<z<1.5)=\Phi(1.5)-\Phi(-1.5) \\
& =\Phi(1.5)-(1-\Phi(1.5)) \\
& =2 . \Phi(1.5)-1 \text {. }
\end{aligned}
$$

By CLT

$$
\operatorname{Var}(x)=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}=\frac{8}{3}-\left(\frac{8}{5}\right)^{2}=8\left(\frac{1}{3} \cdot-\frac{8}{25}\right)=\frac{8}{75}
$$

The Central Limit Theorem

$$
\begin{aligned}
& \mathbb{E}[x]=\int x f(x) d x=\int_{0}^{2} x-\frac{x^{3}}{4} d x=\left[\frac{1}{4} \cdot \frac{1}{5} \cdot x^{5}\right]_{0}^{2}=\frac{32}{20}=\frac{8}{5} \\
& \mathbb{E}\left[x^{2}\right]=\int x^{2} f(x) d x=\int_{0}^{2} x^{2} \cdot \frac{x^{3}}{4} d x=\left[\frac{1}{4} \cdot \frac{1}{6} \cdot x^{6}-\right]_{0}^{x}=\frac{64}{24}=\frac{8}{3}
\end{aligned}
$$

Example
Let \bar{X} denote the mean of a random sample of size 25 from the distribution whose PDF is $f(x)=\frac{x^{3}}{4}, 0<x<2$.
Find the approximate probability $\mathbb{P}(1.5 \leq \bar{X} \leq 1.65)$.

$$
\begin{aligned}
& \bar{x}=\frac{1}{25}\left(x_{1}+x_{2}+\cdots+x_{25}\right) \\
& \mu=\frac{8}{5} \quad \sigma^{2}=\frac{8}{75} \\
& \omega=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \\
& \mathbb{P}(1.5 \leqslant \bar{x} \leqslant 1.65) \\
& =\mathbb{P}\left(\frac{1.5-8 / 3}{\frac{\sqrt{8 / 3}}{25}} \leqslant W \leqslant \frac{1.65-8 / 3}{\frac{\sqrt{8 / 3}}{25}}\right) \\
& n=25 \\
& \frac{\sigma}{\sqrt{n}}=\sqrt{\frac{\sigma^{2}}{n}}=\sqrt{\frac{8}{75} \cdot \frac{1}{25}} \\
& =\frac{\sqrt{8 / 3}}{25} \\
& \underset{\uparrow}{\approx} \Phi(\stackrel{\otimes}{ })-\Phi()
\end{aligned}
$$

By CLT.
for large $n=25$

Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is $\mu=54.030$ and the standard deviation is $\sigma=5.8$.

Let \bar{X} be the sample mean of a random sample of size $n=47$.
Find $P(52.761 \leq \bar{X} \leq 54.453)$, approximately.

Central Limit Theorem
$x_{1}, x_{2}, \cdots, x_{n}:$ i.i.d. (independent, same dist.)

$$
\begin{array}{ll}
\mathbb{E}[x]=\mu, \quad \operatorname{Var}(x)=\sigma^{2}<\infty \\
S_{n}=x_{1}+x_{2}+\cdots+x_{n} &
\end{array}
$$

$$
\bar{x}=\frac{S_{n}}{n}: \text { Saniple mean } \quad\left(\quad \mathbb{E}[\bar{x}]=\mu, \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}\right)
$$

$$
\begin{aligned}
& W=\frac{\bar{x}-\mathbb{E}[\bar{x}]}{\sqrt{\operatorname{Var}(\bar{x})}}=\frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}} \quad \underset{\substack{\uparrow}(0,1) \quad \text { as } n \rightarrow \infty}{\rightarrow} n \rightarrow \infty \text { convergence in distribution }
\end{aligned}
$$

(meaning that

$$
\begin{aligned}
& \mathbb{P}(W \leqslant x) \rightarrow\mathbb{P}(Z \in x) \quad \text { as } n \rightarrow \infty) \\
& Z \sim N(0,1) \\
& \frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}=\frac{\left(x_{1}+\cdots+x_{n}\right)-n \cdot \mu}{\sqrt{n \cdot \sigma^{2}}}=w \Rightarrow N(0,1) .
\end{aligned}
$$

(1)

$$
\begin{array}{cc}
Y \sim \operatorname{Bin}(n, p) & Y=x_{1}+x_{2}+\cdots+x_{n} \\
& x_{1}, \cdots, x_{n}: \text { i.i.d. } \operatorname{Ber}\left(\frac{1}{p}\right) \\
\frac{Y-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}(Y)}} \Rightarrow N(0,1) & \text { as } n \rightarrow \infty \\
\| & n \text { is large }
\end{array}
$$

$$
\frac{Y-n \cdot p}{\sqrt{n p(1-p)}}
$$

Normal Approximation to Binominal.

C Poisson Approximation: $\left.B_{\text {in }}(n, p) \approx \operatorname{Pors}(\lambda) \quad\right)$ \uparrow if n is large p is small

$$
n_{p} \approx \lambda
$$

$$
\begin{array}{cc}
n_{p} \approx \lambda \\
Y \sim \operatorname{Pojs}^{\pi}(n) & Y=x_{1}+x_{2}+\cdots+x_{n} \\
\frac{Y-\mathbb{E}[Y]}{\sqrt{\operatorname{Van}(Y)}}=\frac{Y-\lambda}{\sqrt{\lambda}} \Rightarrow N(0,1) \\
\text { as } \quad \Rightarrow \quad \lambda \rightarrow \infty
\end{array}
$$

Section 7.
Approximations for Discrete Distributions

Normal approximation to Binomial Distribution

Theorem

Let X be a binomial random variable with parameter n and p. If n is large enough (usually, $n p \geq 5$ and $n(1-p) \geq 5$), then X is approximately a normal distribution with mean $n p$ and variance $n p(1-p)$.

$$
\frac{x-n \rho}{\sqrt{n p(1-p)}} \approx N(0,1)
$$

Example
Let Y be $\operatorname{Bin}\left(25, \frac{1}{2}\right)$. Find the approximate probability $\mathbb{P}(12 \leq Y<15)$ using the central limit theorem.

$$
\begin{aligned}
& \Gamma_{n}=25, \quad \mathbb{E}=\frac{1}{2}[Y]=25 \cdot \frac{1}{2}=\frac{25}{2}, \quad \operatorname{Var}(Y)=25 \cdot \frac{1}{2} \cdot\left(1-\frac{1}{2}\right) \\
& \frac{Y-\frac{25}{2}}{\sqrt{25 / 4}} \Rightarrow N(0,1) \\
& \mathbb{P}(12 \leqslant Y<15)=\mathbb{P}\left(\frac{12-\frac{25}{2}}{\frac{5}{2}} \leqslant \frac{Y-\frac{25}{2}}{\frac{5}{2}} \leqslant \frac{15-\frac{25}{2}}{\frac{5}{2}}\right) \\
& \approx \mathbb{P}(-0.2 \leqslant z<1)=\Phi(1)-\Phi(-0.2) \\
& =\Phi(1)+\Phi(0.2)-1 \\
& \mathbb{P}(Y=12)=\mathbb{P}(11.5<Y<12.5) \approx \mathbb{P}\left(\frac{11.5-12.5}{2.5}<z<\frac{12.5-12.5}{2.5}\right) \\
& \text { half unit correction } \\
& \text { mid point correction }=P(-0.4<z<0) \\
& \mathbb{P}(12 \neq Y<15)=\mathbb{P}(Y=12,13.14)=\mathbb{P}(11.5<Y<14.5) \\
& \approx \mathbb{P}\left(\frac{11.5-12.5}{2.5}<z<\frac{14.5-12.5}{2.5}\right)
\end{aligned}
$$

Normal approximation to Poisson Distribution

Theorem

Let X be a Poisson random variable with parameter λ. Then,

$$
W:=\frac{Y-\lambda}{\sqrt{\lambda}}
$$

converges to $N(0,1)$ in distribution as $\lambda \rightarrow \infty$.

Let $X_{1}, X_{2}, \cdots, X_{30}$ be a random sample of size 30 from a Poison distribution with a mean of $\frac{2}{3}$. Approximate the probability

$$
\begin{aligned}
& \lambda^{\prime \prime} \\
& \mathbb{P}\left(21 \leq \sum_{i=1}^{30} x_{i} \leq 27\right) . \\
& \stackrel{11}{Y} \sim P_{0} \text { is }(20) \\
& \frac{Y-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}(Y)}}=\frac{Y-20}{\sqrt{20}} \Rightarrow N(0,1) \\
& \mathbb{P}(21 \leqslant Y \leqslant 27) \approx \mathbb{P}\left(\frac{21-20}{\sqrt{20}} \leqslant Z \leqslant \frac{27-20}{\sqrt{20}}\right)
\end{aligned}
$$

without half unit correction.

$$
P(21 \leqslant Y \leqslant 27)=\mathbb{P}(20.5 \leqslant Y \leqslant 27.5)
$$

with half unit correction

$$
\mathbb{P}\left(*_{Y}=21\right)+\mathbb{P}(Y=22)+P(Y=23)+\cdots+\mathbb{P}(Y=27)
$$

Section 8.

Chebyshev's Inequality and Convergence in Probability

$$
\begin{aligned}
& x, \quad \mathbb{E}[x]=\mu, \quad \operatorname{Var}(x)=\sigma^{2} \\
& \text { PDF of } x \\
& \mathbb{P}(|x-\mu| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}\left[|x-\mu|^{2}\right]^{2}}{\varepsilon^{2}}=\frac{\sigma^{2}}{\varepsilon^{2}} \\
& \mathbb{P}(|x-\mu|<\varepsilon) \geqslant 1-\frac{\sigma^{2}}{\varepsilon^{2}}
\end{aligned}
$$

Chebyshev's Inequality

Theorem

If the random variable X has a mean μ and variance σ^{2}, then for every $k \geq 1$,

$$
\mathbb{P}(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

In particular $\varepsilon=k \sigma$, then

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Chebyshev's Inequality

Example

Suppose X has a mean of 25 and a variance of 16 .
Find the lower bound of $\mathbb{P}(17<X<33)$.

$$
\begin{aligned}
=\mathbb{P}(|x-25|<8) & \geqslant 1-\frac{\sigma^{2}}{\varepsilon^{2}} \\
& =1-\frac{16}{8^{2}}=1-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

The Law of Large Numbers

$$
(L L N)
$$

Definition

$$
x_{1}, x_{2}, x_{3}=
$$

We say a sequence of random variables X_{n} converges to a random variable X in probability if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

$$
\operatorname{Var}\left(x_{i}\right)=\sigma^{2} \Rightarrow \operatorname{Var}(\bar{x})=\left(\frac{\sigma^{2}}{n}\right.
$$

$$
x_{1}, x_{2}, \cdots, x_{n} \text { i,i,d.} \mathbb{E}\left[x_{1}\right]=\mu=\mathbb{E}\left[x_{2}\right]=\cdots=\mathbb{E}\left[x_{r}\right]
$$

$$
\bar{X}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

$$
\mathbb{P}\left(|\bar{X}-\mu|>\frac{1}{100}\right)
$$

empirical mean
个

Che by che's Inez.

$$
=\frac{\sigma^{2}}{n} \cdot(100)^{2}
$$

The Law of Large Numbers

Theorem
Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Then, \bar{X} converges to μ in probability.
relative frequency
Example $\quad x_{1}, \cdots, x_{n} \sim \operatorname{iind.} \operatorname{Ber}(p)$

Exercise

If X is a random variable with mean 3 and variance 16, use Chebyshev's inequality to find

1. A lower bound for $\mathbb{P}(23<X<43)$.
2. An upper bound for $\mathbb{P}(|X-31| \geq 14)$.
