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Chapter 3 : Determinants
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Topics and Objectives

Topics
We will cover these topics in this section.

1. The definition and computation of a determinant

2. The determinant of triangular matrices

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Compute determinants of n X n matrices using a cofactor expansion.

2. Apply theorems to compute determinants of matrices that have
particular structures.
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A Definition of the Determinant

Suppose A is n X n and has elements a;;.
1. If n =1, A =[a11], and has determinant det A = a1;.

2. Inductive case: for n > 1,
J nxh {@—H\@J\B
det A = ail det A11 — a2 det A12 + -+ (—1)1+”a1n det Aln

where A;; is the submatrix obtained by eliminating row ¢ and
column 5 of A.

Example
e o o o o
e o o o
e e o o o
© o o o
A=]0 o o o o =  Ag3 =
’ © o o o
© © o © ©
© o o o
© © 0 © o
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Example 1

-
o m@a - L-w@qﬁ

= oa- d — b-cC

Compute det [
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Example 2

1 =5 0
Compute det |2 4 —1| =
2 0
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Cofactors

Cofactors give us a more convenient notation for determinants.

~— Definition: Cofactor \

The (4, 7) cofactor of an n x n matrix A is

Cij = (—/l)j_'_j det Az’j

The pattern for the negative signs is

+ -+ =
(—+—+...\
+ - + -
- 4+ - +

\io ...)
Wl ] e o) i)
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t ' 1) ) .
OM « e a“ C‘U - (.—‘\& J..Q,'l‘ Asé_
Q\"\K(n“) - ~
AEJ cR erovT?H_ t—th rew L OL‘J’L‘ OJUWI

(l@‘i‘(A\): O\‘l'Clz I azz 'sz + ag-;_ Cg-,_‘ +- -- *%;Cm.

~— Theorem

The determinant of a matrix A can be computed down any
row or column of the matrix. For instance, down the j'"
column, the determinant is

det A = a1;C15 + a2;Coj + -+ + anjChj.

\

This gives us a way to calculate determinants more efficiently.
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Example 3
)

Compute the determinant of 3

il ol NI (G ]

W O O

lohe 5.0 Afajr[[ X T L0

L 3-0=D - A—Q“'{(

— |

&
4

}
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Triangular Matrices

\

~— Theorem

If A is a triangular matrix then
Prdeet <t ofrdgjm& ontrigh,

det A = ai1a22a33 - - ann

J

\

Example 4
Compute the determinant of the matrix. Empty elements are zero.

2) 1 '
02 1
o |0 A 1
dob | <[ 2 1
Cle 0 gl
¢ N 2 1
_O Q) 02_
_ - 9.9 . 2
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Computational Efficiency

Note that computation of a co-factor expansion for an N x N matrix
requires roughly N! multiplications.

e A 10 x 10 matrix requires roughly 10! = 3.6 million multiplications
o A 20 x 20 matrix requires 20! ~ 2.4 x 10'® multiplications

Co-factor expansions may not be practical, but determinants are still
useful.

o We will explore other methods for computing determinants that are
more efficient.

e Determinants are very useful in multivariable calculus for solving
certain integration problems.
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Section 3.2 : Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

“A problem isn't finished just because you've found the right answer.”
- Yoko Ogawa

We have a method for computing determinants, but without some of the
strategies we explore in this section, the algorithm can be very inefficient.
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Topics and Objectives

Topics
We will cover these topics in this section.

e The relationships between row reductions, the invertibility of a
matrix, and determinants.

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply properties of determinants (related to row reductions,
transpose, and matrix products) to compute determinants.

2. Use determinants to determine whether a square matrix is invertible.
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Row Operations

e We saw how determinants are difficult or impossible to compute
with a cofactor expansion for large V.

e Row operations give us a more efficient way to compute
determinants.

~— Theorem: Row Operations and the Determinant

Let A be a square matrix.
) \WC'Q/Y\IN\\/l' If a multiple of a row of A is added to another row to
? produce B, then det B = det A.

Cenod 2. If two rows are interchanged to produce B, then
det B = — det A.

Cpx ™ \,‘P\l 3. If one row of A is multiplied by a scalar k to produce
Gt B, then det B = kdet A.
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1 —4 2
Example 1 Compute |—2 8§ -9
—1 7 0
| -4 2
-2 3 1 [2>_+-2§2)—’>E
- s t ° ?5%&2\ — R?)

|
|

dot & = (D-4-3 &3) =
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Invertibility

Important practical implication: If A is reduced to echelon form, by r
interchanges of rows and columns, then

Al = (—1)" x (product of pivots), when A is invertible
o, When@s singular.

=

ok hot Thvﬂ/nb""u
& e
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Properties of the Determinant

For any square matrices A and B, we can show the following.

1. det A = det AT,

(e - Sin l‘r)

2. Alis |nvert|ble if and only if
3. det(AB) = det A - det B.

N of S\KPFOSQ (S: «
El "E)_ T

A=

Section 3.2 Slide 17

det A #~ 0.

)

=

bl |
Ep (chlmd- . QLQM\%JU/P})(

A ruahble B A & nwadibk

rafrices >



Additional Example (if time permits)

Use a determinant to find all values of A\ such that matrix C is not
invertible. det d =0

5 0 0 S s 0 A 8o

C=10 0 1|—-A3=]0o o I>— (QA 0>
1 1 0 I (o GO/{
N

o5 =~
( (N

det d = @_%}_Q(ﬁ[—% [j& = (6= (%2—15
[ =N

= (5 -A) Gy =o

—_—
—_—

5,0, =
T E_(géfr\va[va %
| ol C&Gw‘j/t basts @
%R\ (o O , Q)
o o

o O —|



Additional Example (if time permits)

Determine the value of

det A = det

_ =
— =N
w N o

Section 3.2 Slide 19



Section 3.3 : Volume, Linear Transformations

Chapter 3 : Determinants

Math 1554 Linear Algebra
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Topics and Objectives

Topics
We will cover these topics in this section.

1. Relationships between area, volume, determinants, and linear
transformations.

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Use determinants to compute the area of a parallelogram, or the
volume of a parallelepiped, possibly under a given linear
transformation.

Students are not expected to be familiar with Cramer's rule.
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Determinants, Area and Volume

In R?, determinants give us the area of a parallelogram.

A (a+c, b+d)
(c, d)

cc b

ad (

= (a, b) _
(0, 0) 2 5
//c7< Ué

ger § dj

N

area of parallelogram =

are =§ad ~ be.|
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Determinants as Area, or Volume

A" E 3?1—3 23
Theorem

The volume of the parallelpiped spanned by the columns of
an n x n matrix A is |det A|.

Key Geometric Fact (which works in any dimension). The area of

the parallelogram spanned by two vectors a, b is equal to the area
spanned by a, ca + b, for any scalar c.

a,+ca, "2 a,+ L
| '\

' |
| |
' |

0 -
1

ca

FIGURE 2 Two parallelograms of equal area.
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Example 1

Calculate the area of the parallelogram determined by the points

(—2,-2),(0,3),(4,—-1),(6,4)

(b)

| e ¥

{

-+

(a)

FIGURE 5 Translating a parallelogram does not change its
area.

£ 02T [
IR INE L,J (2]
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Linear Transformations

~— Theorem \
If Ty :R" — R", and S is some parallelogram in R™, then

volume (T'4(5)) = |det(A)]| - volume(S)

\ S

An example that applies this theorem is given in this week's worksheets.

2
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Section 4.9 : Applications to Markov Chains

Chapter 4 : Vector Spaces

Math 1554 Linear Algebra
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Topics and Objectives

Topics
We will cover these topics in this section.

1. Markov chains
2. Steady-state vectors

3. Convergence

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Construct stochastic matrices and probability vectors.

2. Model and solve real-world problems using Markov chains (e.g. -
find a steady-state vector for a Markov chain)

3. Determine whether a stochastic matrix is regular.
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Example 1

e A small town has two libraries, A and B.

e After 1 month, among the books checked out of A,

» 80% returned to A
» 20% returned to B

e After 1 month, among the books checked out of B,

» 30% returned to A
» 70% returned to B

If both libraries have 1000 books today, how many books does each
library have after 1 month? After one year? After n months? A place to
simulate this is http://setosa.io/markov/index.html

0.8 0.7

0.3

- B

0.2
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Example 1 Continued

)

wwhe books are equally divided by between the two branches, denoted by
C

q)(mﬁft To = [2] What is the distribution after 1 month, call it ;7?7 After two

LVW"‘A o~ = A °~‘C‘[‘W
months? y J e 8 { LJ 1 werith
{o\: 0.8 - 05 + o.3. 0%

PR
L = O.D - C)-S- -~ 0-7 - o8 [‘0\ Qg @,3]/ N\
3771-_ 'P‘—Z L]w[o_l i _[O-S]

Atter k months, the distribution is Z;, which is what in terms of Zy?

g(z ( Shate %CHM 9 %h’”’\%)
= P.X = P(PR) = P.%
Imgm»a(oﬂ/
%o = Poog o chle e b peendhs
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Markov Chains

6.2 |
e - - .3 < - o
A few definitions: XK= | s L
e A probability vector is a vector, Z, with non-negative elements that
sum to 1.

. . oMWl W are pl
o A stochastic matrix is a square matrix, P, whose columns are 1

probability vectors.

e A Markov chain is a sequence of probability vectors X, and a
stochastic matrix P, such that:

fk+1:Pfk, k:0,1,2,...

e A steady-state vector for P is a vector ¢ such that P¢g=4¢.

/\
P(r\%abﬂﬂfjﬁ
Note . TT X 5 o prob. \veohs P o Shaeafic
Ptk Px ©  « prb. vechy.
CEX‘Q:VCTS—E ) Hont-. ? v pinb .
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Example 2 L
waoaL\?l—J},

Determine a steady-state vector for the stochastic matrix

P=(5 )

Fnd %3 Sadh Fhnt fPa; =E = ICT;_
P-@ - I—%? = 0

._5
% c Nl (P-—I>_
o
- 1 (g~ 3>ﬁ /(ﬂz 3>
(o = /o
< 2 T-l> 2 -3

3 e
= NPT
__% 2.X = 33\ :) % [3]
K -iy=s 2.
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Convergence

We often want to know what happens to a process,

3_3‘)]{;_|_1:PCE]€, ]4320,1,2,...

as k — oo.

Definition: a stochastic matrix P is-regular if there is some k such that
P* only contains strictly positive entries.

P has  nTce widing  prepariy

If P is a.regular stochastic matrix, then P has a unique steady-
state vector ¢, and Zy,1 = P&y converges to q as k — o0.

B—=0

Theorem
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Example 3

A car rental company has 3 rental locations, A, B, and C. Cars can be

returned at any location. The table below gives the pattern of rental and
returns for a given week.

rented from

A8 1 2 SRS
returnedto B |.2 .6 .3 :"P = o | 2 6 3
C \0 3 5

There are 10 cars at each location today.

a) Construct a stochastic matrix, P, for this problem.

b) What happens to the distribution of cars after a long time? You
may assume that P is regular.

Gd R st PR =%

poro /Y2 o> @ Nl [ P—T
ROEETE P oo mp
°© 3

-5
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T ¥ryes = Shespoly < 2Ty . 4-
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Chapter 5 : Eigenvalues and Eigenvectors
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Topics and Objectives

Topics
We will cover these topics in this section.

1. Eigenvectors, eigenvalues, eigenspaces

2. Eigenvalue theorems

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Verify that a given vector is an eigenvector of a matrix.
2. Verify that a scalar is an eigenvalue of a matrix.

3. Construct an eigenspace for a matrix.
4

. Apply theorems related to eigenvalues (for example, to characterize
the invertibility of a matrix).
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Eigenvectors and Eigenvalues

If A € R" "™, and there is q@in R™ and

AT =\ oA
Cowfres
then ¥ is an eigenvector for A, and _)LS the corresponding
eigenvalue.
Note that

e We will only consider square matrices.
o If A e R, then

» when A > 0, A¥ and ¥ point in the same direction
» when A < 0, Av¥ and ¥ point in opposite directions

o Even when all entries of A and v are real, A can be complex (a
rotation of the plane has no real eigenvalues.)

e We explore complex eigenvalues in Section 5.5.
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Example 1

Which of the following are eigenvectors of A = <i 1)7 What are the

corresponding eigenvalues?

3)1712(}) A—‘\_Flt((( ([)((()(i)\@_(ﬁ

:@‘?‘i Trﬂ, TS %Tg@wed@v
With A= Q

QX}

a-()

~
)
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Example 2 Ube 2 € N (A-31)

Confirm that A = 3 is an eigenvalue of A = ( 2 _4) < K ) - (?x. )

-1 -l <) \dx

¥
Section 5.1 Slide 5
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Eigenspace

Definition

Suppose A € R™"*™. The eigenvectors for a given \ span a
subspace of R™ called the \-eigenspace of A.

Note: the \-eigenspace for matrix A is Nul(A — A\I).= E,

Example 3
Construct a basis for the eigenspaces for the matrix whose eigenvalues

are given, and sketch the eigenvectors.
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Theorems

Proofs for the most these theorems are in Section 5.1. If time permits,
we will explain or prove all/most of these theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues.
2. A invertible < 0 is not an eigenvalue of A.
3. Stochastic matrices have an eigenvalue equal to 1.

A If ¥U1,7s, ..., U, are eigenvectors that correspond to distinct
eigenvalues, then v7, v, ..., Uy are linearly independent.

A — W S 0w ke
0{’”
Section 5.1 Slide 7
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Eogh +o she el der (A-0T) =0

doe Bh—ogT=yl/ = o | = pduck of  dmgemals
e

= O



dot (A= 2T) = ot Oy

= (=)~ (Gw-A) =9

'/\:’th LSRR C A

Theorems

Proofs for the most these theorems are in Section 5.1. If time permits,
we will explain or prove all/most of these theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues.

2. A invertible < 0 is not an eigenvalue of A.
© AR =o-X Lw\g e G\N\y Ff*H\U?o\Q N Var
3. Stochastic matrices have an eigenvalue equal {o 1.
oo e T ov Probobilly st
A If ¥1,0s, ..., U, are eigenvectors that correspond to distinct
eigenvalues, then v7, v, ..., Uy are linearly independent

AY -
/( ng clode e

Slachash, ok %

A
N O

X
CAJ—S &z;z—‘\ <
A3a — U"’(m ljS
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Warning!

[ We can't determine the eigenvalues of a matrix from its reduced form. ]

Row reductions change the eigenvalues of a matrix.

Example: suppose A = E |

=L 90
(- 0

e But the reduced echelon form of A is:

] . The eigenvalues are A = 2,0, because

e The reduced echelon form is triangular, and its eigenvalues are:
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Topics and Objectives

Topics
We will cover these topics in this section.

1. The characteristic polynomial of a matrix
2. Algebraic and geometric multiplicity of eigenvalues

3. Similar matrices

Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Construct the characteristic polynomial of a matrix and use it to
identify eigenvalues and their multiplicities.

2. Characterize the long-term behaviour of dynamical systems using
eigenvalue decompositions.
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The Characteristic Polynomial (A ADR =6

,_5
Recall: Thert exlde o manzen vechs X si  AX = X

¢zl
X is an eigenvalue of A < (A — M) is not _ Thuertible

Therefore, to calculate the eigenvalues of A, we can solve A ¢ ﬂ?mm
det(A—Al)= O
The quantity det(A — AI) is the characteristic polynomial of A.
The quantity det(A — AI') = 0 is the characteristic equation of A.
The roots of the characteristic polynomial are the of A.
¢ Re-l /anpl-bx
det (A-STY = det [(BTA G ooy R s
On ab_“?\ - + '
| O‘?l \\, U“AA/VG{-TM
o Z
= o pb\k/hmvv?o\(l of QL@gma 1\ Tn A = ?50\3
Section 5.2 Slide 11 rf‘e"'k[w""?ux
& n—|
q)L}\\:@ = Cn'(>\Y\+ Cn,\‘% -+ CN ¥ G

bR Fandomgdd  Thesron <t Flgabo
—= Fhinusias

Co (=T O - (A

7\2]_(”":‘7\(/\@ ([:

———Covv?l*x hun bor-
EF&@M‘ s = M, Az T A



Example

The characteristic polynomial of A = (g ?) is:

b (N = det (A -xT)

)

©r ( TA 2 Q (5NN =

2 =
= A —bX 4
So the eigenvalues of A are:
$N = 0
N —6AN+L =0 — No= BE{F 1
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Characteristic Polynomial of 2 x 2 Matrices

Express the characteristic equation of

a b

M T noy Tt
in terms of its determinant. What is the equation when M is singular?

ﬂSQM: &+(M~%T) = &t (O D
C d-A

(=) d-N) — -LC
N i L

P

N — (h+d)n + (ad=5kc)
=Gum c‘S‘ Q[f\?geho& = CI"Q'!’(M)

- '(‘m(,.a Q‘S" H = -E?-(M)

I

- N — MY+ derM)
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> S TxT
Ex «éc?\\ = (A1) (A-1) & degres AcPR
N < \l\ ) 1
Algebraic Multiplicity o tml{—,’r, “f\‘a% ST
Definition

The algebraic multiplicity of an eigenvalue is its multiplicity
as a root of the characteristic polynomial.

Example
Compute the algebraic multiplicities of the gi_%luesfor the matrix

0
0
—1

:(>

\)
OO =
o O O O
o O O O

‘f’ﬁma,m1w .

-2 X \ SO =N (—
>\7_\_ dol C A —XT) = N (=) (A= (A
: [~

Q
= %®(A-L3 CM*LBL = O
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A’ 5 e —P E()\l: NU[QA“'/\J'_)
o Moo,

(
(
(

Geometric Multiplicity

g:N 6(1/0(1\ (>\ {
1 £ & R P
Definition o hMLh' = g
The geometric multiplicity of an eigenvalue ) is the dimension
of Null(A — AI). dim (£5)
Dynlpnet

1. Geometric multiplicity is always at least 1. It can be smaller than
algebraic multiplicity. Oohy 2 det( A~Ary =1
2. Here is the basic example:

[, qémm BN + O
(4 0) ‘s

A = 0 is the only eigenvalue. lts algebraic muItipI|C|ty |@ but the
M PR T . - ~

geometric multiplicity is 1.
If

dm ([ ot (ay) =+ o freo A~
= 6‘(_ MHP'(\UQFS‘S =4
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Example

Give an example of a 4 x 4 matrix with A = 0 the only eigenvalue, but
the geometric multiplicity of A = 0 is one.

< :&‘ o‘g’ hein PTVG'j's = 41
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Recall: Long-Term Behavior of Markov Chains

Recall:

e We often want to know what happens to a Markov Chain
Tri1 = P%r, k=0,1,2,...

as k — oo.
e If P is regular, then there is a ()\/V\Tr?o)/d S{{NJLI/—S{WL@ @%L g

Now lets ask:

o If we don't know whether P is regular, what else might we do to
describe the long-term behavior of the system?

e What can eigenvalues tell us about the behavior of these systems?
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Example: Eigenvalues and Markov Chains

Consider the Markov Chain:

S S 0.6 04Y) . . 1
—/
This system can be represented schematically with two nodes, A and B:
0.6 0.6
0.4
< B
0.4

Goal: use eigenvalues to describe the long-term behavior of our system.

S0 = X = CobrafIn + () —(oe)

;LL@S‘XL—QXA—K\) = é ('?9\4{> (A—=1)

i
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L
O

What are the eigenvalues of P?

What are the corresponding eigenvectors of P?
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Use the eigenvalues and eigenvectors of P to analyze the long-term
behaviour of the system. In other words, determine what ;. tends to as
k — 0.
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Similar Matrices

~— Definition

Two n X n matrices A and B are similar if there is a matrix P so that
A= PBP 1

~— [ heorem

If A and B similar, then they have the same characteristic polynomial.

\

If time permits, we will explain or prove this theorem in lecture. Note:

e Our textbook introduces similar matrices in Section 5.2, but doesn't
have exercises on this concept until 5.3.

e Two matrices, A and B, do not need to be similar to have the same
eigenvalues. For example,

(00) = (00)
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Additional Examples (if time permits)

1. True or false.
a) If Ais similar to the identity matrix, then A is equal to the identity

matrix.
b) A row replacement operation on a matrix does not change its

eigenvalues.
2. For what values of k£ does the matrix have one real eigenvalue with

algebraic multiplicity 27
-3 k
2 —6
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