Chapter 5. Distributions of Functions of Random Variables

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Functions of One Random Variable

Functions of One Random Variable

Let X be a random variable.
Define $Y=u(X)$ for some function u.
We discuss how to find the distribution of Y from that of X.

Functions of One Random Variable

Example
Let X have a discrete uniform distribution on the integers from -2 to 5 .
Find the distribution of $Y=X^{2}$.

$$
x=-2,-1,0,1,2,3,4,5
$$

with the same prob.

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{8} \quad \text { for } x=-2,-1, \cdots, 5 \\
& Y=x^{2}=(-2)^{2},(-1)^{2}, 0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2} \\
& f_{Y}(y)= \\
& \frac{2}{8}, y=1,4 \\
& \frac{1}{8}, y=0,9,16,25
\end{aligned}
$$

Recall f is increasing

$$
\Leftrightarrow \quad \text { if } x \leqslant y \text { then } f(x) \leqslant f(y)
$$

CDF Technique

Example
Let X have a gamma distribution with PDF

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}} .
$$

Find the distribution of $(Y)=\stackrel{e^{x}}{=}>0$

$$
\begin{array}{ll}
C D F, P D F . & \text { Possible values for } Y \text { ? } \\
F_{Y}(y)=\mathbb{P}(Y \leqslant y) & =0 \text { if } y \leqslant 0
\end{array}
$$

For $y \geq 0$,

$$
\begin{aligned}
& F_{Y}(y)=\mathbb{P}(Y \leqslant y)=\mathbb{P}\left(e^{x} \leqslant y\right)=\mathbb{P}(x \cdots) \\
& \begin{array}{c}
=\mathbb{P}\left(\ln \left(e^{x}\right) \leqslant \ln y\right) \\
\text { Key? why? } \\
x
\end{array} \\
& =P(x \leqslant \ln y)=F_{x}(\ln y) \\
& f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y}\left(F_{X}(\ln y)\right)=f_{X}(\ln y) \cdot(\ln y)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\Gamma(\theta) \theta^{\alpha}}(\ln y)^{\alpha-1} e^{-\frac{1}{\theta} \ln y}-\frac{1}{y} \\
& \text { PDF of } Y \\
& e^{-\frac{1}{\theta} \ln y}=y^{-\frac{1}{\theta}} \quad y \cdot e^{-\frac{1}{\theta}}=e^{-\frac{1}{\theta}+\ln y} \\
& e \underbrace{\left(-\frac{1}{\theta}\right) \cdot \ln y}=e^{\ln \left(y^{-\frac{1}{\theta}}\right)}=y^{-\frac{1}{\theta}}
\end{aligned}
$$

$Y \sim \operatorname{Unif}(0,1)$
X a $R V \quad C D F F_{x}$

$\left(\begin{array}{ccc}f \text { is strictly } & \text { increasing } & \text { if }\end{array}\right)$
$F^{-1} \quad \leftarrow \quad F\left(F^{-1}(x)\right)=x=F^{-1}(F(x))$
\uparrow the inverse of F on (a, b)

$$
\begin{aligned}
& Z=F_{x}^{-1}(Y) \\
& F_{z}(z)=\mathbb{P}(Z \leqslant z) \\
&=\mathbb{P}\left(F_{x}^{-1}(Y) \leqslant z\right) \\
&=\mathbb{P}\left(F_{x}\left(F_{x}^{-1}(Y)\right) \leqslant F_{x}(Z)\right) \\
&=\mathbb{P}\left(Y \leqslant F_{x}(z)\right)=F_{x}(Z)
\end{aligned}
$$

F is increasing
x, Z have the same dist.

CDF Technique

Theorem
Let X be a random variable with CDF F.
Suppose F is strictly increasing, $F(a)=0, F(b)=1$.
Let $Y \sim U(0,1)$.
Then, $X \stackrel{d}{=} F^{-1}(Y)$.
" d" : have the same distribution

Example Q : How to sample randoms number
which follows Exp (2)?
(1) Sample x from towif $(0,1)$
(2) $\quad F^{-1}(x)$

$$
-\frac{1^{\prime \prime}}{2} \ln (1-x)
$$

$F(x)=C D F$ of $E_{x_{p}}(2)$

$$
1-e^{-2 x}
$$

$$
\begin{aligned}
& 1-(1-X)^{3} \sim \operatorname{Unif}(0,1) \\
& 1-Y \sim \operatorname{Unif}(0,1) \\
& Y \sim U_{\text {rif }}(0,1)
\end{aligned}
$$

Change of Variables

$$
F_{x}(x)=1-(1-x)^{3}
$$

Example
Let X have the PDF $f(x)=3(1-x)^{2}$ for $0<x<1$.
Find the distribution of $Y=(1-X)^{3}$. $Y \in(0,1)$

For $0<y<1$.

$$
\begin{aligned}
F_{Y}^{\prime}(y)= & \mathbb{P}(Y \leqslant y)=\mathbb{P}\left((1-x)^{3} \leqslant y\right) \\
& =\mathbb{P}\left(\left((1-x)^{\frac{1}{3}} \leqslant y^{\frac{1}{3}}\right)\right. \\
& =\mathbb{P}\left(1-x \leqslant y^{\frac{1}{3}}\right) \\
= & \mathbb{P}\left(x \geqslant 1-y^{\frac{1}{3}}\right)=1-F_{X}\left(1-y^{\frac{1}{3}}\right) \\
f_{Y}(y)= & -f_{X}\left(1-y^{\frac{1}{3}}\right) \cdot\left(-\frac{1}{3} \cdot y^{-\frac{2}{3}}\right) \\
= & -\nless 3 \cdot\left(1-\left(1-y^{\frac{1}{3}}\right)\right)^{2}\left(>\frac{1}{3} y^{-\frac{2}{3}}\right) \\
= & \left(y^{\frac{1}{3}}\right)^{2} \cdot y^{-\frac{2}{3}}=1 \quad \text { for } \quad y \in(0,1) \\
& Y \sim \text { Unif }(0,1)
\end{aligned}
$$

3 nondom soints uniformly indep.
x smallest.
\uparrow Dist?
$U_{1}, U_{2}, U_{3} \sim$ Unif $(0,1)$ indep.

$$
\begin{aligned}
& x=\min \left\{U_{1}, U_{2}, U_{3}\right\} \\
& \mathbb{P}(X \leqslant t)=1-(1-t)^{3}=F_{x}(t) \\
& \begin{aligned}
\mathbb{P}\left(X \leqslant \frac{1}{3}\right) & \stackrel{2}{=} 1-\mathbb{P}\left(X>\frac{1}{3}\right) \\
& =1-\mathbb{P}\left(U_{1}>\frac{1}{3}, U_{2}>\frac{1}{3}, U_{3}>\frac{1}{3}\right) \\
& =1-\mathbb{P}\left(U_{1}>\frac{1}{3}\right) \mathbb{P}\left(U_{2}>\frac{1}{3}\right) \mathbb{P}\left(U_{3}>\frac{1}{3}\right) \\
& =1-\left(1-\frac{1}{3}\right)^{3}
\end{aligned}
\end{aligned}
$$

Exercise

Let X have the PDF $f(x)=4 x^{3}$ for $0<x<1$.
Find the PDF of $Y=X^{2}$.

Section 2.
Transformations of Two Random Variables
X : contr. RV with PDF f_{x}

$$
Y=u(x)
$$

Q: Dist of Y ?

$$
F_{Y}(y)=\mathbb{P}(Y \leqslant y)=\mathbb{P}(u(x) \leqslant y)
$$

Suppose u is strictly increasing

$$
\begin{aligned}
& u^{-1}(u(x))=x \\
& F_{Y}(y)=\mathbb{P}\left(x \leqslant u^{-1}(y)\right)=F_{x}\left(u^{-1}(y)\right) \quad \downarrow \text { tate dericative } \\
& f_{Y}(y)=f_{X}\left(u^{-1}(y l) \cdot\left(u^{-1}(y)\right)^{\prime}\right.
\end{aligned}
$$

Example x_{1}, x_{2} with joint PDF

$$
f\left(x_{1}, x_{2}\right)=2 \quad \text { for } \quad 0<x_{1}<x_{2}<1
$$

$Y=\frac{x_{1}}{x_{2}} \quad$ Dist. of Y ?

$$
F_{Y}(y)=\mathbb{P}\left(\frac{x_{1}}{x_{2}} \leqslant y\right)=\mathbb{P}\left(x_{1} \leqslant y x_{2}\right)
$$

If $\quad y>1, \quad F_{Y}(y)=1$
If $0<y<1$,

$$
F_{Y}(y)=\int_{0}^{1} \int_{0}^{y \cdot x_{2}} 2 d x_{1} d x_{2}=\int_{0}^{1} 2 y \cdot x_{2} d x_{2}=y
$$

$$
f_{Y}(y)=1 \quad \text { for } \quad 0<y<1
$$

Q: $\quad x_{1}, x_{2}$ as above

$$
Y_{1}=\frac{X_{1}}{X_{2}} \quad, \quad Y_{2}=X_{2}
$$

What is joint PDF of Y_{1}, Y_{2}

Transformations of Two Random Variables

If X_{1} and X_{2} are two continuous-type random variables with joint $\operatorname{PDF} f\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right), Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$.
If $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right), X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$, then the joint PDF of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}=|J| f_{X_{1}, X_{2}}\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)
$$

where J is the Jacobian given by

$$
\begin{aligned}
& J:=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}
\end{array}\right| \\
& f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=2 \\
& \text { for } \quad \delta<x_{1}<x_{2}<1
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}=\frac{x_{1}}{x_{2}}=u_{1}\left(x_{1}, x_{2}\right) \quad Y_{2}=x_{2}=u_{2}\left(x_{1}, x_{2}\right) \\
& x_{1}=Y_{1} \cdot Y_{2}=v_{1}\left(Y_{1}, Y_{2}\right) \quad x_{2}=Y_{2}=v_{2}\left(Y_{1}, Y_{2}\right) \\
& f_{Y_{1}, Y_{2}}\left(y_{1}, Y_{2}\right)=f_{x_{1}, x_{2}}\left(y_{1}, y_{2}, y_{2}\right) \cdot|J| \\
& |J|=\left|\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right| \begin{array}{c}
\uparrow \\
\text { Determinant } \\
\text { an Absolute Value }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f_{Y_{1, Y_{2}}}\left(y_{1}, y_{2}\right)=2 y_{2} \quad 0<x_{11}^{y_{1} y_{2}}<\frac{y_{11}}{y_{1}}<x_{2}<1 \\
& \text { for } 0<y_{1} y_{2}<y_{2}<1 \\
& \Rightarrow\left\{\begin{array}{l}
0<y_{1}<1 \\
0<y_{z}<1
\end{array}\right. \\
& f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=\left(\frac{1}{11}\right)-\left(2 y_{1}\right) \\
& f_{Y_{1}}\left(y_{1}\right) \quad f_{Y_{2}}\left(y_{2}\right) \\
& Y_{1}, Y_{2} \text { indep. }
\end{aligned}
$$

Transformations of Two Random Variables

Example

Let X_{1} and X_{2} have the joint PDF

$$
f\left(x_{1}, x_{2}\right)=2, \quad 0<x_{1}<x_{2}<1 .
$$

Find the joint PDF of $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{2}$.

Exercise

Let X_{1} and X_{2} be independent random variables, each with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find the joint pdf of $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$.

Section 3.
Several Independent Random
Variables

Independent random variables

Recall that X_{1} and X_{2} are independent if

$$
\mathbb{P}\left(X_{1} \in A, X_{2} \in B\right)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B\right)
$$

for all A, B.
In particular, if X_{1} and X_{2} have PDFs, then $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.

$$
\begin{aligned}
& A, B, C \quad \text { mutually Tidep. } \\
& \mathbb{P}(A \cap B)=\mathbb{P}(A)-\mathbb{P}(B) \\
& \mathbb{P}(B \cap C)=\mathbb{P}(B) \mathbb{P}(C) \\
& \mathbb{P}(C \cap A)=\mathbb{P}(C) \mathbb{P}(A) \\
& \mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)
\end{aligned}
$$

Independent random variables

Definition

In general, we say $X_{1}, X_{2}, \cdots, X_{n}$ are independent if
$\left\{X_{1} \in A_{1}\right\},\left\{X_{2} \in A_{2}\right\}, \cdots,\left\{X_{n} \in A_{n}\right\}$ are mutually independent, for any choice of $A_{1}, A_{2}, \cdots, A_{n}$.

In particular, if $X_{1}, X_{2}, \cdots, X_{n}$ has PDFs, then the joint PDF is the product. If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the same distribution, we say they are i.i.d. (independent and identically distributed) or a random sample of size n from that common distribution.

Independent random variables
Note: $x \sim \operatorname{Exp}(\lambda), P(x>t)=e^{-\lambda t}$

$$
x_{1}, x_{2}, x_{3} \sim \operatorname{Exp}(1) \text { i.i.d. }
$$

Example
Let X_{1}, X_{2}, X_{3} be a random sample from a distribution with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find $\mathbb{P}\left(0<X_{1}<1,2<X_{2}<4,3<X_{3}<7\right)$.

$$
\begin{aligned}
& =\mathbb{P}\left(0<x_{1}<1\right) \mathbb{P}\left(2<x_{2}<4\right) \mathbb{P}\left(3<x_{3}<7\right) \\
& =\left(\mathbb{P}\left(x_{1}>0\right)-\mathbb{P}\left(x_{1}>1\right)\right)\left(\mathbb{P}\left(x_{2}>2\right)-\mathbb{P}\left(x_{2}>4\right)\right)\left(\mathbb{P}\left(x_{3}>3\right)-\mathbb{P}\left(x_{3} \gg\right)\right) \\
& =\left(1-e^{-1}\right)\left(e^{-2}-e^{-4}\right)\left(e^{-3}-e^{-7}\right)
\end{aligned}
$$

Theorem
Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of random variables. Then,

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

If they are independent, then

$$
\mathbb{E}\left[X_{1} X_{2} \cdots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \cdots \mathbb{E}\left[X_{n}\right]
$$

and

$$
\operatorname{Var}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\cdots+\operatorname{Var}\left[X_{n}\right] .
$$

Note

$$
\operatorname{Var}\left(x_{1}+x_{2}\right)=\operatorname{Var}\left(x_{1}\right)+\operatorname{Var}\left(x_{2}\right)+2 \operatorname{Cav}\left(x_{1}, x_{2}\right)
$$

$$
\left(\begin{array}{rl}
\operatorname{Var}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\operatorname{Var}\left(x_{1}\right) & +\cdots+\operatorname{Var}\left(x_{n}\right) \\
& +2 \sum_{i}^{-1} \operatorname{Cov}\left(x_{i}, x_{j}\right) \\
& 1 \leqslant i<_{j} \leqslant n
\end{array}\right) \vec{\sigma}
$$

Exercise

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}>4\right)^{3}=\left(1-\mathbb{P}\left(x_{1} \leqslant 4\right)\right)^{3}=(1-F(4))^{3} \\
& \mathbb{P}\left(x_{1}>k\right)=(1-p)^{k} \mid \\
& \mathbb{P}(x>t)=\left(e^{-\lambda}\right)^{t} \\
& \text { Geometric with } p=\frac{3}{4} .
\end{aligned}
$$

Let X_{1}, X_{2}, X_{3} be i.i.d. Geometric with $p=\frac{3}{4}$.
Let Y be the minimum of X_{1}, X_{2}, X_{3}.
Find $\mathbb{P}(Y>4)$.

$$
\begin{aligned}
& =\mathbb{P}\left(x_{1}>4, x_{2}>4, x_{3}>4\right) \quad \text { indep } \\
& =\mathbb{P}\left(x_{1}>4\right) \mathbb{P}\left(x_{2}>4\right) \mathbb{P}\left(x_{3}>4\right) \quad \text { the same dist } \\
& =\mathbb{P}\left(x_{1}>4\right)^{3} \\
& =\left(\left(\frac{1}{4}\right)^{4}\right)^{3}=\left(\frac{1}{4}\right)^{12}
\end{aligned}
$$

Section 4.
The Moment-Generating Function Technique

Recall $\quad M_{x}(t)=\mathbb{E}\left[e^{t x}\right]$
fact

$$
\left\{\begin{aligned}
M_{X}(t) & =M_{Y}(t) \quad \text { around } \quad t=0 \\
& \Rightarrow X, Y \quad \text { have the dist. } \\
M_{X}(t) & \approx M_{Y}(t) \\
& \Rightarrow X, Y \quad \text { "almost same" }
\end{aligned}\right.
$$

Theorem
If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the MGFs $M_{X_{i}}(t)$, then the MGF of $Y=a_{1} X_{1}+\cdots a_{n} X_{n}$ is $M_{Y}(t)=M_{X_{1}}\left(a_{1} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)$.

Theorem
If $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d., then the MGF of $Y=X_{1}+\cdots+X_{n}$ is $M_{Y}(t)=M_{X}(t)^{n}$. If $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then the MGF is $M_{\bar{X}}(t)=M_{X}\left(\frac{t}{n}\right)^{n}$.

$$
\begin{aligned}
& X_{1}, X_{2}, \cdots, X_{n} \\
& Y=a_{1} X_{1}+a_{2} x_{2}+\cdots{ }^{\text {indep }} \\
& M_{Y}(+)=\mathbb{E}\left[e^{t Y}\right]=\mathbb{E}\left[e^{t\left(a_{n} x_{1}+\cdots+a_{n} x_{n}\right)}\right] \\
&=\mathbb{E}\left[e^{a_{1} t x_{1}} \cdot e^{a_{2} t x_{2}} \cdots e^{a_{n} t x_{n}}\right] \\
&=\mathbb{E}\left[e^{a_{1} t x_{1}}\right] \cdots \mathbb{E}\left[e^{a_{n} t x_{n}}\right] \\
&\left.=M_{x_{1}} r_{1}^{\prime} t\right) \cdots M_{x_{n}}^{a_{n}}(t)
\end{aligned}
$$

Example
Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. Bernoulli with p.
Let $Y=X_{1}+\cdots+X_{n}$. Julep sum
Find the MGF of Y.

$$
\begin{aligned}
M_{Y}(t) & =M_{x_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{x_{n}}(t) & \text { (indep.) } \\
& =\left(M_{x_{1}}(t)\right)^{n} & \text { (same dist.) }
\end{aligned}
$$

$$
\begin{aligned}
M_{x_{1}}(t)= & \mathbb{E}\left[e^{t x_{1}}\right]=e^{t \cdot 0} \cdot(1-p)+e^{t \cdot 1} \cdot p=1-p+p e^{t} \\
M_{Y}(t) & =\left(1-p+p e^{t}\right)^{n} \\
Y & \sim B_{\operatorname{Tn}}(n, p)
\end{aligned}
$$

The Moment-Generating Function

Example

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. exponential with θ.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the MGF of Y.

$$
\lambda_{1} \lambda_{2}, \lambda_{3}
$$

Let X_{1}, X_{2}, X_{3} be independent Poisson with means $2,1,4$.
Find the MGF of $Y=X_{1}+X_{2}+X_{3}$.

$$
\begin{aligned}
X_{i} & \sim P_{\text {Dis }}\left(\lambda_{i}\right) \\
& M_{x_{i}}(t)=e^{\lambda_{i}\left(e^{t}-1\right)} \\
M_{Y}(t)= & M_{x_{1}}(t) \cdot M_{x_{2}}\left(t-M_{x_{3}}(t)\right. \\
= & e^{2\left(e^{t}-1\right)} e^{1 \cdot\left(e^{t}-1\right)} e^{t\left(e^{t}-1\right)} \\
= & e^{7\left(e^{t}-1\right)} \\
Y \sim P_{\text {ois }} & (7)
\end{aligned}
$$

$x_{1}, x_{2}, \cdots, x_{n}$: i.i.d. (indep. Sn identically dist.)

$$
\begin{aligned}
Y & =a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} x_{n} \\
M_{Y}(t) & =\mathbb{E}\left[e^{t Y}\right]=\mathbb{E}\left[e^{t \cdot\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)}\right] \\
& =\mathbb{E}\left[e^{a_{1} t x_{1}} e^{a_{2} t x_{2}} \cdots e^{a_{n} t x_{n}}\right] \\
& =\mathbb{E}\left[e^{a_{1} t x_{1}}\right] \cdot \mathbb{E}\left[e^{a_{2} t x_{1}}\right] \cdots \mathbb{E}\left[e^{a_{n} t x_{n}}\right] \\
& =M_{x_{1}}\left(a_{1} t\right) M_{X_{2}}\left(a_{2} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)
\end{aligned}
$$

fact
(i) If $M_{X}(t)=M_{Y}(t) \quad \Rightarrow \quad X, Y$ have the same dist.
(ii) $M_{x}(t) \approx M_{y}(t) \quad \Rightarrow \quad X, Y$ have the almost same dist.

Suppose X_{1}, \cdots, x_{n} i.i.d. $\mathbb{E}\left[x_{1}\right]=0=\cdots=\mathbb{E}\left[x_{n}\right]$

$$
\begin{gathered}
Y=a\left(x_{1}+\cdots+x_{n}\right) \quad \Rightarrow M_{Y}(t)=\left(M_{x}(a, t)\right)^{n} \\
M_{x}(0)=1, \quad M_{x}^{\prime}(0)=\mathbb{E}[x]=0, \quad M_{x}^{\prime \prime}(0)=\mathbb{E}\left[x^{2}\right]=\operatorname{Var}(x)=\sigma^{2} \\
M_{x}(t) \approx M_{x}(0)+M_{x}^{\prime}(0) \cdot \frac{t}{1!}+M_{x}^{\prime \prime}(0) \cdot \frac{t^{2}}{2!} \in t^{2}
\end{gathered}
$$

when t is small, Taylor Expansion

$$
\begin{array}{cc}
M_{X}(a t) \approx 1+\frac{\sigma^{2} t^{2}}{2} \cdot a^{2} \\
M_{Y}(t)=\left(M_{X}(a t)\right)^{n} \approx\left(1+\frac{\sigma^{2} t^{2}}{2} \cdot a^{2}\right)^{n}=\left(1+\left(\frac{\sigma^{2} t^{2}}{2} \cdot \frac{1}{n}\right)^{n}\right. \\
a=\frac{1}{\sqrt{n}} & \uparrow_{\text {for large }} n \quad \downarrow^{\frac{\sigma^{2} t^{2}}{2}} \\
\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e\right) & e^{n \rightarrow \infty}
\end{array}
$$

If $Y=\frac{1}{\sqrt{n}}\left(x_{1}+\cdots+x_{n}\right)$, Hen $M_{Y}(t) \rightarrow e^{\frac{\sigma^{2} t^{2}}{2}}$ as $n \rightarrow \infty$ Y converges to $N\left(0, \sigma^{2}\right)$ Central Limit Theron

Section 6.
The Central Limit Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then (Sample mean)

$$
\begin{aligned}
& \mathbb{E}[\bar{X}]=\mu \\
& \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Let $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$, then $W=\frac{\bar{x}-\mathbb{E}[\bar{x}]^{=\mu}}{\sqrt{\operatorname{Var}(\bar{x})}}$

$$
\begin{aligned}
& \mathbb{E}[W]=0 \\
& \operatorname{Var}(W)=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[\bar{x}]=\mathbb{E}\left[\frac{1}{n} \cdot\left(x_{1}+\cdots+x_{n}\right)\right]=\frac{1}{n} \mathbb{E}\left[x_{1}+\cdots+x_{n}\right] \\
& =\frac{1}{n}\left(\mathbb{E}\left[x_{1}\right]+\cdots+\mathbb{E}\left[x_{n}\right]\right]=\frac{1}{n} \cdot n \cdot \mu=\mu \text {. } \\
& \operatorname{Var}(\bar{X})=\operatorname{Var}^{\prime \prime \mu}\left(\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)\right)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) \\
& \stackrel{?}{=} \frac{1}{n^{2}}\left(\operatorname{Var}\left(x_{1}\right)+\cdots+\operatorname{Var}^{2} \underset{{ }^{\prime}}{ }\left(X_{n}\right)\right)=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}, \cdots, x_{n} \quad \text { i.i.d. } \\
& \bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
\end{aligned}
$$

The Central Limit Theorem

Theorem

If μ and σ^{2} are finite, then the distribution of $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ converges to that of the standard normal distribution $N(0,1)$ as $n \rightarrow \infty$.

The convergence is in the following sense: If n is large, for the standard normal Z,

$$
\begin{aligned}
& \qquad \begin{array}{c}
\mathbb{P}(W \leq x) \approx \mathbb{P}(Z \leq x)=: \Phi(x)=\int_{\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{|y|^{2}}{2}} d y . \\
\text { CDF } \rightarrow C D F \\
\text { of }
\end{array} \text { of } \\
& \text { W } \\
& \text { Standard Normal } \\
& \text { Convergence in distribution. }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}, x_{2}, \cdots, x_{25} \quad i, i . d \\
& \bar{x}=\frac{1}{25}\left(x_{1}+x_{2}+\cdots+x_{n}\right)
\end{aligned}
$$

Example
Let \bar{X} be the mean of a random sample of $n=25$ currents (in milliamperes) in a strip of wire in which each measurement has a mean 15 and a variance of 4 .
Find the approximate probability $\mathbb{P}(14.4<\bar{X}<15.6)$.

$$
\begin{gathered}
\mathbb{E}\left(x_{1}\right]=\cdots=\mathbb{E}\left[x_{n}\right]=15=\mu \\
\operatorname{Var}\left(x_{1}\right)=\cdots=\operatorname{Var}\left(x_{n}\right)=4=\sigma^{2} \\
n=25 \\
W=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{x}-15}{0.4} \quad \text { Converges to } N(0,1) \\
\text { in dist } \\
=\mathbb{P}(14.4<\bar{x}<15.6) \\
=\mathbb{P}\left(\frac{14.4-\mu}{\sigma / \sqrt{n}}<\frac{x}{\sigma}-\mu / \sqrt{n}<\frac{15.6-\mu}{\sigma / \sqrt{n}}\right)=\mathbb{P}\left(\frac{14.4-15}{0.5}<W<\frac{15.6-15}{0.4}\right) \\
=\mathbb{P}(-1.5<w<1.5)=\mathbb{P}(w<1.5)-\mathbb{P}(w<-15) \\
\approx \mathbb{P}(Z<1.5)-\mathbb{P}(z<-1.5)=\Phi(1.5)-(1-\Phi(1.5)
\end{gathered}
$$

The Central Limit Theorem

Example

Let \bar{X} denote the mean of a random sample of size 25 from the distribution whose PDF is $f(x)=\frac{x^{3}}{4}, 0<x<2$.
Find the approximate probability $\mathbb{P}(1.5 \leq \bar{X} \leq 1.65)$.

Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is $\mu=54.030$ and the standard deviation is $\sigma=5.8$.

Let \bar{X} be the sample mean of a random sample of size $n=47$.
Find $I P(52.761 \leq \bar{X} \leq 54.453)$, approximately.

$$
\begin{array}{ll}
\bar{x}=\frac{1}{47}\left(x_{1}+x_{2}+\cdots+x_{n}\right) & \mu=54.030 \\
w=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} &
\end{array}
$$

$\mathbb{P}(52.761 \leqslant \bar{x} \leqslant 54.453)$

$\approx \mathbb{P}(-1.5 \leqslant z \leqslant 0.5)=\Phi(0.5)-\Phi(-1.5)$
B_{y} GLT

$$
\begin{aligned}
& =\Phi(0.5)-(1-\Phi(1.5)) \\
& =\Phi(0.5)+\Phi(1.5)-1
\end{aligned}
$$

Central Limit Theorem
$x_{1}, x_{2}, \cdots, x_{n}$ ii..d. (indep. \& the same dist.)

$$
\begin{aligned}
& S_{n}=x_{1}+x_{2}+\cdots+x_{n} \\
& \bar{x}=\frac{S_{n}}{n} \\
& Y:=\frac{\bar{x}-\mathbb{E}[\bar{x}]}{\sqrt{\operatorname{Var}(\bar{x})}}=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}} \\
& \text { Standard Normal } \\
& N(0,1) \text { as } n \rightarrow \infty \\
& \text { Convergence in distribution } \\
& \mathbb{P}(Y \leqslant x) \longrightarrow \mathbb{P}(Z \leqslant x)=\Phi(x) \\
& \frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}=\frac{S_{n}-n \cdot \mu}{\sqrt{n \cdot \sigma^{2}}}=\frac{\frac{S_{n}}{n}-\mu}{\sqrt{\sigma^{2} / n}}=Y \Rightarrow N(0,1)
\end{aligned}
$$

Normal Approximation to Binomial

$$
\begin{array}{ll}
Y \sim \operatorname{Bin}(n, p) & Y=x_{1}+x_{2}+\cdots+x_{n} \\
& x_{1}, \cdots, x_{n} \text { i.i.d. } \operatorname{Ber}(p) \\
\frac{Y-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}(Y)}}=\frac{Y-n p}{\sqrt{n \cdot p \cdot(1-p)}} & \Rightarrow N(0,1) \quad \text { as } n \rightarrow \infty
\end{array}
$$

Poisson Approximation
$\operatorname{Bin}(n, p) \approx \operatorname{Pojs}(\lambda)$ when p is small, n large

$$
\begin{array}{ccc}
\# \text { of Heads } & \text { \# of Tarts } & \text { up }=\lambda \\
X \sim \operatorname{Bin}\left(100, \frac{99}{100}\right) & Y \sim \operatorname{Bin}\left(100, \frac{1}{100}\right) & X+Y=100 \\
\mathbb{P}(\underline{X} \geqslant 50)=\mathbb{P}(100-Y \geqslant 50) & \\
& =\mathbb{P}(\underline{Y}(50) \approx \mathbb{P}(\ldots)
\end{array}
$$

Section 7.
Approximations for Discrete Distributions

Normal approximation to Binomial Distribution

Theorem

Let X be a binomial random variable with parameter n and p. If n is large enough (usually, $n p \geq 5$ and $n(1-p) \geq 5$), then X is approximately a normal distribution with mean $n p$ and variance $n p(1-p)$.

$$
\frac{x-n p}{\sqrt{n p(1-p)}}=\frac{x-\mathbb{E}[x]}{\sqrt{\operatorname{Var}(x)}} \Rightarrow N(0,1)
$$

Example
Let Y be $\operatorname{Bin}\left(25, \frac{1}{2}\right)$. Find the approximate probability $\mathbb{P}(12 \leq Y<15)$ using the central limit theorem.

$$
\text { By } \begin{aligned}
& C L T, \frac{Y-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}(Y)}}=\frac{Y-12.5}{\sqrt{25 / 4}} \Rightarrow N(0,1) \\
& \mathbb{P}(12 \leqslant Y<15)=\mathbb{P}\left(\frac{12-12.5}{2.5} \leqslant \frac{Y-12.5}{2.5}<\frac{15-12.5}{2.5}\right) \\
& \approx \mathbb{P}(-0.2 \leqslant Z<1) \\
&=\Phi(1)-\Phi(-0.2)=\Phi(1)+\Phi(0.2)-1 \\
& \mathbb{P}(Y=12)=\mathbb{P}(11.5<Y<12.5) \approx \mathbb{P}\left(\frac{11.5-12.5}{2.5}<Z<\frac{12.5-125)}{2.5}\right)
\end{aligned}
$$

half unit correction
mid-point correction

$$
\begin{aligned}
\mathbb{P}(12 \leqslant Y<15) & =\mathbb{P}(Y=12,13,14)=\mathbb{P}(Y=12)+\mathbb{P}(Y=13)+\mathbb{P}(Y=14) \\
& =\mathbb{P}(11.5 \leqslant Y \leqslant 14.5) \approx \mathbb{P}\left(\frac{11.5-125}{25} \leqslant Z \leqslant \frac{14.5-125}{2.5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x \sim \operatorname{Pois}(\underset{n}{n})_{\lambda}^{1}, n \text { large } \\
& x=x_{1}+x_{2}+\cdots+x_{n} \quad x_{1}, \cdots, x_{n} \text { is.d. Pois }(1) \\
& \frac{x-\mathbb{E}(x)}{\sqrt{\operatorname{Var}(x)}}=\frac{x-n}{\sqrt{n}}=\frac{x-\lambda}{\sqrt{\lambda}} \Rightarrow N(0,1)
\end{aligned}
$$

Normal approximation to Poisson Distribution

Theorem

Let X be a Poisson random variable with parameter λ. Then,

$$
w:=\frac{\mathbf{x}-\lambda}{\sqrt{\lambda}}
$$

converges to $N(0,1)$ in distribution as $\lambda \rightarrow \infty$.

Example
Let $X_{1}, X_{2}, \cdots, X_{30}$ be a random sample of size 30 from a Poison distribution with a mean of $\frac{2}{3}$. Approximate the probability

$$
\begin{aligned}
& x^{x^{\prime 3}} \quad \mathbb{P}\left(21 \leq \sum_{i=1}^{30} x_{i} \leq 27\right) \\
& Y=\sum_{i=1}^{30} x_{i} \approx \operatorname{Pots}\left(\frac{2}{3} \cdot 30\right)=\operatorname{Pois}(20) \\
& \frac{Y-20}{\sqrt{20}} \approx N(0,1) \\
& \mathbb{P}(21 \leqslant Y \leqslant 27) \approx \mathbb{P}\left(\frac{21-20}{\sqrt{20}} \leqslant Z \leqslant \frac{27-20}{\sqrt{20}}\right)
\end{aligned}
$$

without half unit correction
$\approx \mathbb{P}\left(\frac{20.5-20}{\sqrt{20}} \leqslant z \leqslant \frac{27.5-20}{\sqrt{20}}\right)$ with half wit correction.

$$
\mathbb{P}(21 \leqslant Y \leqslant 27)=\mathbb{P}(Y \geq 21)+\mathbb{P}(Y=22)+\cdots+\mathbb{P}(Y=27)
$$

Section 8.
Chebyshev's Inequality and Convergence in Probability
\Rightarrow Law of Large Numbers

Recall

$$
\mathbb{P}(|x-\mu| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}\left[|x-\mu|^{2}\right]}{\varepsilon^{2}}=\frac{\sigma^{2}}{\varepsilon^{2}}
$$

$$
\mathbb{P}(|x-\mu|<\varepsilon) \geqslant 1-\frac{\sigma^{2}}{\varepsilon^{2}}
$$

$$
\begin{array}{ll}
x_{1}, x_{2}, \ldots, x_{n} \because \text { i.i.d. } & \mathbb{E}\left[x_{1}\right]=\mu \\
& \operatorname{Var}\left(x_{1}\right)=\sigma^{2} \\
\bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) & \mathbb{E}[\bar{x}]=\mu \\
& \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}
\end{array}
$$

κ
for lange n

$$
\mathbb{P}\left(|\bar{x}-\mu|>\frac{1}{100}\right) \leqslant \frac{\mathbb{E}\left[|\bar{x}-\mu|^{2}\right)}{\left(\frac{1}{1-0}\right)^{2}}=\frac{\sigma^{2}}{n} \cdot(100)^{2}
$$

chebysher

Chebyshev's Inequality

Theorem

If the random variable X has a mean μ and variance σ^{2}, then for every $k \geq 1$,

$$
\mathbb{P}(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

In particular $\varepsilon=k \sigma$, then

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Chebyshev's Inequality

Example

Suppose X has a mean of 25 and a variance of 16 .
Find the lower bound of $\mathbb{P}(17<X<33)$.

$$
\mathbb{P}(17<x<33)
$$

The Law of Large Numbers

Definition

We say a sequence of random variables X_{n} converges to a random variable X in probability if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

The Law of Large Numbers

Law of Large Numbers

Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Then, \bar{X} converges to μ in probability.

$$
\begin{aligned}
\text { For any } \varepsilon & <0 \\
& \mathbb{P}(|\bar{x}-\mu| \geqslant \varepsilon) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Exercise

If X is a random variable with mean 33and variance 16, use Chebyshev's inequality to find

1. A lower bound for $\mathbb{P}(23<X<43)$.
2. An upper bound for $\mathbb{P}(|X-3 \mathbf{3}| \geq 14)$.
