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1. AXIOMS OF PROBABILITY I (SEC 2.2-3)

Sample Spaces and Events. We consider an experiment whose outcome is unpredictable. A sample space
is the set of all possible outomes, which is usually denoted by S. For example,

(i) If the outcome of an experiment consists of the determination of the sex of a newborn child, then
S = {g, b}.

(ii) If the experiment consists of flipping two coins, then S = {(H,H), (H,T ), (T,H), (T, T )}.
(iii) If the experiment consists of tossing two dice, then S = {(i, j) : 1 ≤ i, j ≤ 6}.
Let S be a sample space. An event is a subset of the sample space S. For example, ∅ and S itself are also

events.
(i) If S = {g, b}, then the events are ∅, {g}, {b}, and {g, b}.

(ii) If S = {(H,H), (H,T ), (T,H), (T, T )}, then {(H,H), (H,T )} (the first coin is head) is an event.
(iii) If S = {(i, j) : 1 ≤ i, j ≤ 6}, then {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} is an event.

Operations on Events
Let S be a sample space and E,F events.

(i) The union of E and F is an event, denoted by E ∪ F , that either E or F occurs.
(ii) The intersection of E and F is an event, denoted by EF or E ∩ F , that both E and F occur.

(iii) The complement of E is an event, denoted by Ec, that E does not occur.
(iv) If all outcomes in E are also in F , we say that E is contained in F , denoted by E ⊂ F .
(v) Let E1, E2, · · · be countably many events. The union of these events is an event, denoted by

∪∞
i=1Ei, that at least one of these event occurs. The intersection of these events is an event,

denoted by ∩∞
i=1Ei, that all the events occur.

Example 1. Let S = {(H,H), (H,T ), (T,H), (T, T )}. Let E = {the first coin is head.} = {(H,H), (H,T )}
and F = {the first is different from the second.} = {(H,T ), (T,H)}. Then, E∪F = {(H,H), (H,T ), (T,H)},
E ∩ F = {(H,T )}, and Ec = {(T, T ), (T,H)} = {the first is tail}.

Example 2. We have Sc = ∅, ∅c = S, and ∅ ⊂ E ∩ F ⊂ E,F ⊂ E ∪ F ⊂ S.

Laws for operations
Let S be a sample space and E,F,G events.

(i) (Commutativity) E ∪ F = F ∪ E and EF = FE.
(ii) (Associativity) (E ∪ F ) ∪G = E ∪ (F ∪G) and (E ∩ F ) ∩G = E ∩ (F ∩G).

(iii) (Distribution laws) (E ∪ F ) ∩G = (E ∩G) ∪ (F ∪G) and (E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G).
(iv) (De Morgan’s laws) For events E1, · · · , En,(

n⋃
k=1

Ek

)c

=

n⋂
k=1

Ec
k,

(
n⋂

k=1

Ek

)c

=

n⋃
k=1

Ec
k.

Example 3. Let E,F,G be events in a sample space S. Find expressions of the following events.
(i) Both E and G, but not F , occur: E ∩G ∩ F c.

(ii) At least two of the events occur: (E ∩ F ) ∪ (F ∩G) ∪ (G ∩ E).
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(iii) At most one of them occur: the complement of the event in (ii). That is,

((E ∩ F ) ∪ (F ∩G) ∪ (G ∩ E))c = (E ∩ F )c ∩ (F ∩G)c ∩ (G ∩ E)c

= (Ec ∪ F c) ∩ (F c ∪Gc) ∩ (Gc ∪ Ec).

Axioms of Probability. An intuitive way of defining the probability of an event E is to consider its relative
frequency. Suppose we perform the same experiments n times and count the number of occurance of the
event E, denotes by ϕn(E). Then, we consider

lim
n→∞

ϕn(E)

n

as a definition of probability of E. However, this definition leads to several delicate questions: how do we
know that the limit exists? Even if so, how do we know the limit is consistent? And so on.

Modern probability theory starts from the axioms of probability and show that the relative frequency
converges to its probability.

Axioms of Probability
Let S be a sample space. For each event E, the probability P(E) is an assignment so that the following
axioms are satisfied:

(i) For all events, 0 ≤ P(E) ≤ 1.
(ii) P(S) = 1.

(iii) For any sequence of mutually exclusive events E1, E2, · · · , (meaning tthat EiEj = ∅ for i ̸= j),

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei).

The pair of a sample space and probability (S,P) satisfying the three axioms is called a probabilty
space.

Direct consequences are the following:
(i) P(∅) = 0.

(ii) If E1, E2, · · · , En are mutually exclusive events, then

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei).

In particular if A ∩B = ∅, then P(A ∪B) = P(A) + P(B).

Example 4. Let S = {H,T}, then all the events are ∅, {H}, {T}, S. We assign the probabilities P(∅) = 0,
P({H}) = p, P({T}) = 1 − p, and P(S) = 1 for some 0 ≤ p ≤ 1. One can check that the three axioms are
satisfied.

2. AXIOMS OF PROBABILITY II (SEC 2.4)

Probability Space
Let S be a sample space. For each event E, the probability P(E) is an assignment so that the following
axioms are satisfied:

(i) For all events, 0 ≤ P(E) ≤ 1.
(ii) P(S) = 1.

(iii) For any sequence of mutually exclusive events E1, E2, · · · , (meaning tthat EiEj = ∅ for i ̸= j),

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei).

The pair of a sample space and probability (S,P) satisfying the three axioms is called a probabilty
space.
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Example 5. Let S = {1, 2, 3, 4, 5, 6} and P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1
6 . For an

event E in S, we define the probability P(E) by

P(E) =
∑
i∈E

P({i}).

Then the three axioms are satisfied.

Proposition: Properties of Probability

(i) P(Ec) = 1− P(E)
(ii) If E ⊂ F , then P(E) ≤ P(F ).

(iii) For any two events E and F , P(E ∪ F ) = P(E) + P(F )− P(EF ).

Proof. (i) Let E1 = E, E2 = Ec, and Ei = ∅ for all i > 2. The axiom (iii) yields that P(S) = 1 =∑∞
i=1 P(Ei). Since P(∅) = 0 (why?), we have 1 = P(E) + P(Ec).

(ii) Let E1 = E, E2 = F ∩Ec, and Ei = ∅ for all i > 2. The axiom (iii) yields that P(F ) =
∑∞

i=1 P(Ei) =
P(E) + P(F ∩ Ec). Since P(F ∩ Ec) ≥ 0 by the axiom (i), we conclude that P(E) ≤ P(F ).

(iii) Using the axiom (iii), one has

P(E ∪ F ) = P(EF c) + P(EF ) + P(FEc)

P(E) = P(EF c) + P(EF )

P(F ) = P(EF ) + P(FEc),

which leads to

P(E) + P(F )− P(E ∪ F ) = P(EF ).

□

Example 6. J is taking two books along on her holiday vacation. With probability .5, she will like the first
book; with probability .4, she will like the second book; and with probability .3, she will like both books.
What is the probability that she likes neither book?

What if we have more than two events? Let E,F,G be events and consider P(E ∪ F ∪ G). Using the
proposition (iii) for (E ∪ F ) and G and for E and F , one has

P(E ∪ F ∪G) = P(E ∪ F ) + P(G) + P((E ∪ F )G)

= P(E) + P(F )− P(EF ) + P(G) + P(EG ∪ FG).

Using the same proposition for EG and FG, we have

P(EG ∪ FG) = P(EG) + P(FG)− P(EFG).

Therefore, we get

P(E ∪ F ∪G) = P(E) + P(F ) + P(G)− P(EF )− P(FG)− P(GE) + P(EFG).

In general, we have the following.

Lemma: Inclusion-Exclusion Principle
For events E1, E2, · · · , En,

P(E1 ∪ E2 ∪ · · ·En) = (P(E1) + P(E2) + · · ·+ P(En))

− (P(E1E2) + P(E1E3) + · · ·+ P(EiEj) + · · · ) + · · ·

+ (−1)r+1
∑

P(Ei1Ei2 · · ·Eir ) + · · ·

+ (−1)n+1P(E1E2 · · ·En).
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