Homework 6

Math 461: Probability Theory, Spring 2022
Daesung Kim
Due date: Mar 11, 2022

Instruction

1. Each problem is worth 10 points and only five randomly chosen problems will be graded.
2. Convert a photocopy of your solutions to one single pdf file and upload it on Moodle.
3. Please indicate whom you worked with, it will not affect your grade in any way.
4. An urn contains 4 white and 5 black balls. We randomly choose 4 balls. If 2 of them are white and 2 are black, we stop. If not, we replace the balls in the urn and again randomly select 4 balls. This continues until exactly 2 of the 4 chosen are white. What is the probability that we shall make exactly n selections?
5. Let X be a negative binomial random variable with parameters r and p and let Y be a binomial random variable with parameters n and p. Show that

$$
\mathbb{P}(X>n)=\mathbb{P}(Y<r)
$$

3. Let X be a random variable with probability density function

$$
f(x)= \begin{cases}c(1-x)^{2} & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of c ?
(b) What is the cumulative distribution function of X ?
4. A system consisting of one original unit plus a spare can function for a random amount of time X. If the density of X is given (in units of months) by

$$
f(x)= \begin{cases}C x e^{-x / 2} & x \geqslant 0 \\ 0 & x \leqslant 0\end{cases}
$$

What is the probability that the system functions for at least 4 months?
5. The probability density function of X, the lifetime of a certain type of electronic device (measured in hours), is given by

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & x>10 \\ 0 & x \leqslant 10\end{cases}
$$

(a) Find $\mathbb{P}(X>20)$.
(b) What is the cumulative distribution function of X ?
(c) What is the probability that, of 6 such types of devices, at least 3 will function for at least 15 hours? What assumptions are you making?
6. A filling station is supplied with gasoline once a week. If its weekly volume of sales in thousands of gallons is a random variable with probability density function

$$
f(x)= \begin{cases}5(1-x)^{4} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

what must the capacity of the tank be so that the probability of the supply's being exhausted in a given week is $.01 ?$
7. Compute $\mathbb{E} X$ if X has a density function given by
(a)
(c)

$$
\begin{align*}
& f(x)= \begin{cases}\frac{1}{4} x e^{-x / 2} & x>0 \\
0 & \text { otherwise } .\end{cases} \\
& f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\
0 & \text { otherwise } .\end{cases} \tag{b}\\
& f(x)= \begin{cases}\frac{5}{x^{2}} & x>5 \\
0 & \text { otherwise } .\end{cases}
\end{align*}
$$

8. Trains headed for destination A arrive at the train station at 15 -minute intervals starting at 7 A.M., whereas trains headed for destination B arrive at 15-minute intervals starting at 7:05 A.M.
(a) If a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 A.M. and then gets on the first train that arrives, what proportion of time does he or she go to destination A?
(b) What if the passenger arrives at a time uniformly distributed between 7:10 and 8:10 A.M.?
9. You arrive at a bus stop at 10 o'clock, knowing that the bus will arrive at some time uniformly distributed between 10 and 10:30.
(a) What is the probability that you will have to wait longer than 10 minutes?
(b) If, at 10:15, the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?
10. A stick of length 1 is broken at a uniformly random point, yielding two pieces. Let X and Y be the lengths of the shorter and longer pieces, respectively, and let $R=X / Y$ be the ratio of the lengths X and Y.
(a) Find the CDF and PDF of R.
(b) Find the expected value of R.
