MATH 403 LECTURE NOTE WEEK 4

DAESUNG KIM

1. THEOREM OF MENELAUS (SEC 1.12)

Recall that $P \in \ell_{AB}$ if and only if there exist a, b such that P = aA + bB and a + b = 1.

Definition 1.1. *Three points* A, B, C *are called* collinear *if there exists a line* ℓ *such that* $A, B, C \in \ell$ *.*

Theorem 1.2. Three distinct points A, B, C are collinear if and only if there exist a, b, c not all zero such that a + b + c = 0 and aA + bB + cC = O.

Proof. If A, B, C are collinear, then $C \in \ell_{AB}$. Thus, there exists $r \in \mathbb{R}$ such that C = (1 - r)A + rB. Let a = 1 - r, b = r, c = -1, then a + b + c = 0 and aA + bB + cC = O.

Suppose aA + bB + cC = O with a + b + c = 0. Since a, b, c are not all zero, we assume $c \neq 0$ without loss of generality. Then, $C = -\frac{a}{c}A - \frac{b}{c}B$. Since $-\frac{a}{c} - \frac{b}{c} = 1$, we have $C \in \ell_{AB}$.

Theorem 1.3. Let A, B, C form a triangle. Let $A' \in \ell_{BC}, B' \in \ell_{CA}, C' \in \ell_{AB}$ be distinct from A, B, C. Then, A', B', C' are collinear if and only if

$$\frac{A'-B}{A'-C}\cdot\frac{B'-C}{B'-A}\cdot\frac{C'-A}{C'-B}=1$$

Proof. Assume that A', B', C' are collinear. Then, there are $r, s, t \in \mathbb{R}$ such that

$$A' = (1 - r)B + rC, \quad B' = (1 - s)C + sA, \quad C' = (1 - t)A + tB.$$

Since A', B', C' are distinct from A, B, C, we have $r, s, t \neq 0, 1$. Note that (B'-C) = s(A-C) and (A'-C) = (1-r)(B-C). Then,

$$C' - C = (1 - t)(A - C) + t(B - C)$$

= $\frac{1 - t}{s}(s(A - C)) + \frac{t}{1 - r}((1 - r)(B - C))$
= $\frac{1 - t}{s}(B' - C) + \frac{t}{1 - r}(A' - C).$

Since A', B', C' are collinear, the sum of coefficients is 1, that is,

$$\frac{1-t}{s} + \frac{t}{1-r} = 1$$

Solving for *t*, we get

$$t = \frac{(1-r)(s-1)}{r+s-1}, \quad 1-t = \frac{rs}{r+s-1}$$

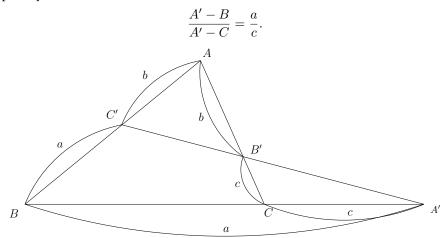
(Why $r + s - 1 \neq 0$?) Then,

$$\frac{A'-B}{A'-C} \cdot \frac{B'-C}{B'-A} \cdot \frac{C'-A}{C'-B} = \frac{r}{r-1} \cdot \frac{s}{s-1} \cdot \frac{t}{t-1} = \frac{r}{r-1} \cdot \frac{s}{s-1} \cdot \frac{(r-1)(s-1)}{rs} = 1.$$

Assume that the product of ratios equals to 1. In particular, we assume that

$$\frac{B'-C}{B'-A} = -\frac{c}{b}, \quad \frac{C'-A}{C'-B} = -\frac{b}{a},$$

then the assumption yields



Solving for B', we get

$$B' = \frac{c}{b+c}A + \frac{b}{b+c}C,$$

$$B' - B = \frac{c}{b+c}(A-B) + \frac{b}{b+c}(C-B)$$

$$= \frac{c}{b+c} \cdot \frac{a+b}{a}(C'-B) + \frac{b}{b+c} \cdot \frac{a-c}{a}(A'-B).$$

Since

$$\frac{c}{b+c} \cdot \frac{a+b}{a} + \frac{b}{b+c} \cdot \frac{a-c}{a} = 1,$$

we conclude that A', B', C' are collinear.

2. THEOREM OF PAPPUS (SEC 1.13)

Remark 1. Recall that If $X, Y \in \mathbb{R}^2$ and $\ell_{OX} \neq \ell_{OY}$, then every $P \in \mathbb{R}^2$ can be uniquely written as P = aX + bY for $a, b \in \mathbb{R}$. It follows from the uniqueness that

$$aX + bY = O \Rightarrow a = b = 0$$

or

$$aX + bY = a'X + b'Y \Rightarrow a = a', b = b'.$$

The condition $\ell_{OX} \neq \ell_{OY}$ *is equivaluent to* $O \notin \ell_{XY}$ *.*

Theorem 2.1 (Pappus). Let $\ell_{BB'}$, $\ell_{CC'}$ be two distinct lines through O with $X \in \ell_{BB'}$ and $Y \in \ell_{CC'}$. If $\ell_{BC'} \parallel \ell_{B'Y}$ and $\ell_{B'C} \parallel \ell_{XC'}$, then $\ell_{BC} \parallel \ell_{XY}$.

Proof. Since $B', X \in \ell_{OB}$ and $C', Y \in \ell_{OC}$, there exist $m_1, m_2, n_1, n_2 \in \mathbb{R}$ such that

$$B' = m_1 B$$
, $X = m_2 B$, $C' = n_1 C$, $Y = n_2 C$.

Since $\ell_{BC'} / | \ell_{B'Y}$, there exists $a \in \mathbb{R}$ such that Y - B' = a(C' - B). Similarly, we have X - C' = b(B' - C) for some $b \in \mathbb{R}$. Thus,

$$Y = n_2 C = B' + a(C' - B) = (m_1 - a)B + an_1 C,$$

$$0 = (m_1 - a)B + (an_1 - n_2)C.$$

By the remark, we have $m_1 = a$ and $an_1 = n_2$. Similarly, we have $n_1 = b$ and $m_2 = bm_1$. Therefore, $m_2 = n_2 = ab$ and

$$X - Y = ab(B - C).$$

2

3. TRANSLATIONS (SEC 2.1)

Consider an assignment α from the set of points of the plane to itself. We call α a *map* or a *correspondence*. If α assigns a point X to Y, we use the notation $\alpha(X) = Y$. We say two maps α and β are *equal* if $\alpha(X) = \beta(X)$ for all $X \in \mathbb{R}^2$.

Definition 3.1. (1) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called one-to-one if $\alpha(X) = \alpha(X')$ implies X = X'.

- (2) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called onto if for every $Y \in \mathbb{R}^2$, there exists a point X such that $\alpha(X) = Y$.
- (3) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called bijection (or permutation, or transformation) if it is one-to-one and onto.

Definition 3.2 (Composition). Let α, β be two maps from \mathbb{R}^2 to \mathbb{R}^2 . The composition $\alpha\beta = \alpha \circ \beta$ is the map from \mathbb{R}^2 to itself, defined by

$$\alpha\beta(X) = \alpha \circ \beta(X) = \alpha(\beta(X)), \quad X \in \mathbb{R}^2.$$

Definition 3.3 (Inverse). Let α be a bijection map from \mathbb{R}^2 to itself. Then, the inverse map $\alpha^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ is the map satisfies $\alpha \alpha^{-1} = \alpha^{-1} \alpha = \iota = \text{Id}$.

Definition 3.4 (Image of maps). Let α be a map from \mathbb{R}^2 to itself and S be a subset of \mathbb{R}^2 . The image of S under α is defined by

$$\alpha(S) = \{\alpha(X) : X \in S\}.$$

Definition 3.5 (Translations). Let $A \in \mathbb{R}^2$. The translation by A, denoted by $\tau_A : \mathbb{R}^2 \to \mathbb{R}^2$, is defined by

$$au_A(X) = X + A, \quad X \in \mathbb{R}^2$$

Example 3.6. (1) Let $Id = \iota : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\iota(X) = X$. This map is called the identity.

(2) Let $\mu : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\mu(X) = 2X$.

(3) Let $A \in \mathbb{R}^2$. Let $\gamma : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\gamma(X) = A$.

Proposition 3.7. Let $A, B \in \mathbb{R}^2$.

- (1) The translation τ_A is one-to-one and onto.
- (2) $\tau_A \tau_B = \tau_{A+B}$.
- (3) $\tau_A^{-1} = \tau_{-A}$.
- (4) τ_A maps a line ℓ to a line $\tau_A(\ell)$, and $\tau_A(\ell) \parallel \ell$.
- (5) For fixed $B, C \in \mathbb{R}^2$, there exists a unique A such that $\tau_A(B) = C$.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu