
MATH 403 LECTURE NOTE
WEEK 1

DAESUNG KIM

1. OPERATIONS OF VECTORS (SEC 1.1-3)

The set of all real numbers is denoted by R. For any a1, a2 ∈ R, a pair (a1, a2) is called a vector in the
plane. The set of all vectors in the plane is denoted by R2. In this course, vectors will be denoted by upper
case letters, that is, A = (a1, a2), B = (b1, b2), etc.

There are two geometric interpretations for vectors. We identify a vector A = (a1, a2) with a point (a1, a2)
in the plane. We use O = (0, 0) for the origin. When we use vectors for points, we will just use upper case
letters.

On the other hand, we use a vector A to describe an arrow from the origin to A. When vectors are used
for arrows, we denote by

#    »

OA = (a1, a2).

Definition 1.1. We say two vectors A = (a1, a2), B = (b1, b2) are equal, denoted by A = B, if and only if a1 = b1
and a2 = b2.

Definition 1.2. For any vectors A = (a1, a2), B = (b1, b2) and a real number r ∈ R, we define

A+B = (a1 + b1, a2 + b2),

rA = (ra1, ra2).

Proposition 1.3. For any vectors A = (a1, a2), B = (b1, b2), C = (c1, c2) and real numbers r, s ∈ R, we have
(A1) A+B = B +A (commutativity)
(A2) A+ (B + C) = (A+B) + C (associativity)
(A3) O +A = A = A+O (identity)
(A4) A+ (−A) = O (inverse)
(M1) (r + s)A = rA+ sA
(M2) r(A+B) = rA+ rB
(M3) r(sA) = (rs)A
(M4) 1A = A

Proof. (A1): By definition of the addition, we have A+B = (a1+b1, a2+b2) and B+A = (b1+a1, b2+a2). By
the commutativity of real numbers, we know a1+b1 = b1+a1 and a2+b2 = b2+a2. Since each components
are equal, we conclude that A+B = B +A.

The rest are exercise. �

We consider the vector
#    »

OA. Then translate
#    »

OB to the end of
#    »

OA. The sum A + B is a vector from the
starting point of

#    »

OA to the end point of the translated vector
#    »

OB. The vector −A can be thought of as an
arrow from O to (−a1,−a2). Thus, −A is the opposite direction to A. All scalar multiples of A, rA, lie on
the line through from the origin to A. Combining the addition and the scalar multiplication, we define the
subtraction A − B by A + (−B). What is the geometric meaning of A − B? Consider

#    »

OA and
#    »

OB. Then
an arrow from the point B to the point A corresponds to A − B. In other words,

#    »

AB = A − B. Note that
A =

#    »

OA = A−O.
When we identify a vector with an arrow, we will disregard its location, only its direction and length

matter. So we say two arrow are equal if they are identical up to translation. In terms of vectors,
#    »

AB =
#    »

CD
if and only if b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2.
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Definition 1.4. The vectors E1 = (1, 0) and E2 = (0, 1) are called the standard basis vectors.

They are called basis because every vector in the plane can be uniquely written in terms of E1 and E2.
Indeed,

A = (a1, a2) = (a1, 0) + (0, a2) = a1E1 + a2E2.

(Is this representation unique? Exercise.)
In general,

Proposition 1.5. Suppose B and C are distinct nonzero vectors in the plane such that the lines `OB (through O and
B) and `OC (through O and C) are distinct. Then, every vector A has a unique representation

A = rB + sC

for some r, s ∈ R.

Proof. Consider a system of linear equations{
a1 = b1r + c1s,

a2 = b2r + c2s

Then, the system has a unique solution if and only if b1c2 − b2c1 6= 0. The latter condition is satisfied
because of the assumption `OB 6= `OC . Suppose b1c2 = b2c1. Since B and C are nonzero, either b1 and c1
are nonzero, or b2 and c2 are nonzero. (why?) Without loss of generality, we assume that b1 6= 0 and c1 6= 0.
Then, we get b2/b1 = c2/c1, which implies that `OB = `OC . This is a contradiction. Thus, b1c2 6= b2c1. �

2. EQUATION OF A LINE (SEC 1.4-5)

Let A = (a1, a2) and B = (b1, b2) be two distinct points. We want to describe the line through A and B

in terms of vectors. Suppose a point P lies on the line `AB . Then, the vector
#    »

PA and
#    »

AB have the same
direction, with possibly different length. In other words,

#    »

PA is a scalar multiple of
#    »

AB. Thus,
#    »

PA = A− P = t(B −A) = t
#    »

AB

for some t ∈ R.

Definition 2.1. The line `AB through A and B is the set of all points P that satisfy
#    »

PA = t
#    »

AB for some t ∈ R, that
is,

`AB = {P ∈ R2 :
#    »

PA = t
#    »

AB for some t ∈ R}.

Theorem 2.2. Let A = (a1, a2) and B = (b1, b2) be two distinct points. Then every point P lies on the line `AB

through A and B if and only if there exist a, b ∈ R such that a+ b = 1 and

P = aA+ bB.

Furthermore, this representation is unique: if aA+ bB = cA+ dB with a+ b = c+ d = 1, then a = c and b = d.

Proof. By definition, if P ∈ `AB , then there exists a real number t ∈ R such that
#    »

PA = t
#    »

AB. From A− P =
t(B −A), we have P = (1 + t)A− tB. Let a = 1 + t and b = −t, then a+ b = 1.

If P = aA+ bB with a, b ∈ R and a+ b = 1, then with t = −b we have
#    »

PA = t
#    »

AB. Thus, P ∈ `AB .
To show the uniqueness, we assume that there are a, b, c, d ∈ R such that a+ b = c+ d = 1 and

P = aA+ bB = cA+ dB.

Thus, (a − c)A = (d − b)B. Since d − b = (1 − c) − (1 − a) = a − c, we obtain(a − c)a1 = (a − c)b1 and
(a− c)a2 = (a− c)b2. Thus,

(a− c)(a1 − b1) = 0 = (a− c)(a2 − b2).

Since A 6= B, either a1 − b1 6= 0 or a2 − b2 6= 0. Thus, a− c = 0 as desired. �

Definition 2.3. The midpoint of points A and B (or of the segment AB) is a point M that satisfies
#     »

AM =
#      »

MB.

Exercise 3. Show that 1
2 (A+B) is the midpoint of A and B.
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Definition 3.1. Let A,B,C,D ∈ R2 be distinct. Then the lines `AB and `CD are parallel, denoted by `AB // `CD,
if D − C = t(B −A) for some nonzero t ∈ R.

Exercise 4. If lines `AB and `CD are parallel and C /∈ `AB , then `AB ∩ `CD = ∅.

5. PARALLELOGRAMS (SEC 1.6)

Let A,B,C,D be distinct points in the plane. A quadrilateral ABCD (in order) is defined by joining A
and B, B and C, C and D and D and A. Our question is when a quadrilaterel ABCD forms a parallelogram.
To be a parallelogram, the sides AB and DC are parallel and have the same length. Equivalently, the vectors
#    »

AB and
#    »

DC are equal. Thus,
#    »

AB = B −A = C −D =
#    »

DC,

A+ C = B +D.

This gives us a definition.

Definition 5.1. Four points A,B,C,D define a parallelogram ABCD if A+ C = B +D.

Remark 5.2. We do not assume that A,B,C,D are distinct. Thus, our definition generalizes parallelograms. For
instance, if A = B, then C = D by the equation. Thus, the parallelogram ABCD is just a line segment AD = BC.

Proposition 5.3. A quadrilateral is a parallelogram if and only if the diagonals bisect each other.

Proof. Suppose a quadrilateral ABCD is a parallelogram. From the defining equation, we have 1
2 (A+C) =

1
2 (B +D). Since A+C and B +D are the diagonals of ABCD, we see that 1

2 (A+C) and 1
2 (B +D) are the

midpoints of them. Thus, the diagonals bisect each other.
Suppose the diagonals of a quadrilateral ABCD bisect each other. Then, vectors A,B,C,D should satisfy

1
2 (A+ C) = 1

2 (B +D), which implies the defining equation. Thus, ABCD is a parallelogram. �

6. CENTROID (SEC 1.7-8)

Definition 6.1. Consider a triagle4ABC. A median is a line joining a vertex to the midpoint of the opposite side.

Theorem 6.2. The medians of a triagle are concurrent. That is, the medians intersect in one point.

Proof. By translation, we assume that A = O. We also assume that B and C are not on the same line.
Otherwise, ABC does not form a triangle. Let A′ be the midpoint of B and C, and B′ be the midpoint of C
and A. Consider P ∈ `AA′ and Q ∈ `BB′ , then

P = P (t) = (1− t)A+ tA′ = (1− t)A+
t

2
B +

t

2
C =

t

2
B +

t

2
C,

Q = Q(s) = (1− s)B + sB′ = (1− s)B +
s

2
C +

s

2
A = (1− s)B +

s

2
C.

Thus, if P = Q, then

(1− s− t

2
)B =

t− s

2
C.

Since B and C are not on the same line, the coefficients should be zero. Thus, t = s = 2
3 . Thus, the

intersection of the two medians is

`AA′ ∩ `BB′ =

{
1

3
(A+B + C)

}
.

Since the point is on the other median `CC′ , where C ′ = 1
2 (A+B) (why?), the proof is complete. �

Definition 6.3. The centroid of a triangle is a unique point in the intersection of three medians. According to the
proof of the previous theorem, the centroid can be written as

G =
1

3
(A+B + C).

In general,
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Definition 6.4. The centroid G of {A1, A2, · · · , An} ⊂ R2 is defined by

G =
1

n
(A1 +A2 + · · ·+An).

Note that G is the midpoint if n = 2 and the centroid of a triangle4ABC if n = 3.

Theorem 6.5. Let A1, A2, A3, A4 ∈ R2. Let G1 be the centroid of A2, A3, A4, G2 be the centroid of A1, A3, A4, and
so on. Let G be the centroid of A1, A2, A3, A4. Then,

G ∈ `A1G1 ∩ `A2G2 ∩ `A3G3 ∩ `A4G4 .

Proof. By symmetry, it suffices to show that G ∈ `A1G1 . Every point P on the line `A1G1 can be written as

P = (1− t)A1 + tG1 = (1− t)A1 +
t

3
A2 +

t

3
A3 +

t

3
A4

for some t ∈ R. If t = 1
4 , then one can see that G = P . Thus, G ∈ `A1G1 . �

Remark 6.6. Do the lines `AiGi
, i = 1, 2, 3, 4 intersect in a single point? In other words,

`A1G1
∩ `A2G2

∩ `A3G3
∩ `A4G4

= {G}?

Proposition 6.7. Let A1, A2, A3, A4 ∈ R2. Let M1 be the midpoint of A1, A2 and M2 be the midpoint of A3, A4.
Let G be the centroid of A1, A2, A3, A4. Then, G ∈ `M1M2

.

Proof. Every point P on `M1M2
can be written as

P = (1− t)M1 + tM2 =
1− t

2
A1 +

1− t

2
A2 +

t

2
A3 +

t

2
A4

for some t ∈ R. If t = 1
2 , then P = G. �

Proposition 6.8. Let n, p, q ∈ N with p + q = n. Let A1, A2, · · · , An ∈ R2. Let U be the centroid of A1, · · · , Ap

and V be the centroid of Ap+1, · · · , An. Let G be the centroid of A1, A2, · · · , An. Then, G ∈ `UV .

Proof. The result follows from
G =

p

n
U +

q

n
V.

�
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