MATH 403 LECTURE NOTE WEEK 6

DAESUNG KIM

1. TRANSLATIONS AND CENTRAL DILATATIONS (SEC 2.1–2)

Consider an assignment α from the set of points of the plane to itself. We call α a *map* or a *correspondence*. If α assigns a point X to Y, we use the notation $\alpha(X) = Y$. We say two maps α and β are *equal* if $\alpha(X) = \beta(X)$ for all $X \in \mathbb{R}^2$.

Definition 1.1. (1) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called one-to-one if $\alpha(X) = \alpha(X')$ implies X = X'.

(2) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called onto if for every $Y \in \mathbb{R}^2$, there exists a point X such that $\alpha(X) = Y$.

(3) A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called bijection (or permutation, or transformation) if it is one-to-one and onto.

Definition 1.2 (Composition). Let α, β be two maps from \mathbb{R}^2 to \mathbb{R}^2 . The composition $\alpha\beta = \alpha \circ \beta$ is the map from \mathbb{R}^2 to itself, defined by

$$\alpha\beta(X) = \alpha \circ \beta(X) = \alpha(\beta(X)), \quad X \in \mathbb{R}^2.$$

Definition 1.3 (Inverse). Let α be a bijection map from \mathbb{R}^2 to itself. Then, the inverse map $\alpha^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ is the map satisfies $\alpha \alpha^{-1} = \alpha^{-1} \alpha = \iota = \text{Id}$.

Remark 1.4. Note that if $\alpha \circ \beta$ is one-to-one, then β is one-to-one. If $\alpha \circ \beta$ is onto, then α is onto.

Definition 1.5 (Image of maps). Let α be a map from \mathbb{R}^2 to itself and S be a subset of \mathbb{R}^2 . The image of S under α is defined by

$$\alpha(S) = \{\alpha(X) : X \in S\}.$$

Definition 1.6 (Translations). Let $A \in \mathbb{R}^2$. The translation by A, denoted by $\tau_A : \mathbb{R}^2 \to \mathbb{R}^2$, is defined by

$$\tau_A(X) = X + A, \quad X \in \mathbb{R}^2.$$

Proposition 1.7. Let $A, B \in \mathbb{R}^2$.

- (1) The translation τ_A is one-to-one and onto.
- (2) $\tau_A \tau_B = \tau_{A+B}$.
- (3) $\tau_A^{-1} = \tau_{-A}$.
- (4) τ_A maps a line ℓ to a line $\tau_A(\ell)$, and $\tau_A(\ell) / \ell$.
- (5) For fixed $B, C \in \mathbb{R}^2$, there exists a unique A such that $\tau_A(B) = C$.

Definition 1.8. A fixed point of a map α is a point $X \in \mathbb{R}^2$ such that $\alpha(X) = X$.

Definition 1.9 (Central dilatations). Let r be a nonzero number. The central dilatation with center O and dilatation factor r is the map $\delta_r : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\delta_r(X) = rX, \quad X \in \mathbb{R}^2$$

Proposition 1.10. Let $r, s \in \mathbb{R} \setminus \{0\}$ and $A \in \mathbb{R}^2$.

- (1) The map δ_r is one-to-one and onto.
- (2) $\delta_r \circ \delta_s = \delta_{rs}$.
- (3) $(\delta_r)^{-1} = \delta_{1/r}$.
- (4) $\delta_r \circ \tau_A = \tau_{rA} \circ \delta_r$. In particular, $\tau_{rA} = \delta_r \circ \tau_A \circ (\delta_r)^{-1}$.

Definition 1.11. Let $\mu : \mathbb{R}^2 \to \mathbb{R}^2$ be a bijection, and $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ a map. The conjugate $\overline{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ of α by μ is defined by

$$\overline{\alpha} = \mu \circ \alpha \circ \mu^{-1}$$

Thus, τ_{rA} is the conjugate of the translation τ_A by the central dilatation δ_r .

Definition 1.12. Let $C \in \mathbb{R}^2$ and $r \in \mathbb{R}$ with $r \neq 0$. The dilatation with center C and dilatation factor r is the map $\delta_{C,r} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\delta_{C,r}(X) = C + r(X - C) = (1 - r)C + rX, \quad X \in \mathbb{R}^2.$$

Note that $\delta_{C,r}$ is a bijection (exercise) and $\delta_{O,r} = \delta_r$.

Proposition 1.13. Let $A, C \in \mathbb{R}^2$ and $r, s \in \mathbb{R} \setminus \{0\}$.

- (1) $\delta_{C,r} \circ \delta_{C,s} = \delta_{C,rs}, \delta_{C,1} = \text{Id}, \text{ and } (\delta_{C,r})^{-1} = \delta_{C,1/r}.$
- (2) The map $\delta_{A+C,r}$ is the conjugate of $\delta_{A,r}$ by τ_C . That is, $\delta_{A+C,r} = \tau_C \circ \delta_{A,r} \circ (\tau_C)^{-1}$.
- (3) *C* is the fixed point of $\delta_{C,r}$, that is, $\delta_{C,r}(C) = C$. The point *C* is the only fixed point if and only if $r \neq 1$.
- (4) $\delta_{C,r}$ maps a line to a parallel line.
- (5) If A, B, C are distinct and collinear, then there exists a unique central dilatation $\delta_{C,r}$ with $\delta_{C,r}(A) = B$.

Proof. (1) For $X \in \mathbb{R}^2$, we have

$$\delta_{C,r} \circ \delta_{C,s}(X) = \delta_{C,r}((1-s)C + sX) = (1-r)C + r((1-s)C + sX)$$

= (1-rs)C + rsX = $\delta_{C,rs}(X)$

and

$$\delta_{C,1}(X) = (1-1)C + 1X = X.$$

- Since $\delta_{C,r} \circ \delta_{C,1/r} = \text{Id} = \delta_{C,1/r} \circ \gamma_{C,r}$, the inverse of $\delta_{C,r}$ is $\delta_{C,1/r}$.
- (2) HW.
- (3) $\delta_{C,r}(C) = (1-r)C + rC = C$. If r = 1, then $\delta_{C,r} = \text{Id so every point is a fixed point. Suppose } r \neq 1$ and $X \neq C$, then

$$\delta_{C,r}(X) - X = (1 - r)(C - X) \neq O.$$

- (4) HW.
- (5) It suffices to find *r* such that $\delta_{C,r}(A) = B$. Since *A*, *B*, *C* are collinear, in particular we have $B \in \ell_{AC}$. Thus, there exists $r \in \mathbb{R}$ such that B = (1 - r)C + rA. Then,

$$\delta_{C,r}(A) = (1-r)C + rA = B$$

as desired.

Theorem 1.14. Let A, B, C form a triangle and A', B', C' be the midpoints of $\overline{BC}, \overline{CA}, \overline{AB}$ respectively. Let Q be any point in \mathbb{R}^2 . Let ℓ_1 be the line through A', parallel to ℓ_{AQ}, ℓ_2 the line through B', parallel to ℓ_{BQ} , and ℓ_3 the line through C', parallel to ℓ_{CQ} .

- (1) The three lines are concourrent in a point P, and
- (2) the centroid G lies on ℓ_{PQ} and

$$\frac{G-P}{G-Q} = -\frac{1}{2}$$

Proof. Let *G* be the centroid of $\triangle ABC$. Consider a map $\alpha = \delta_{G,-1/2}$. One can see that

$$\alpha(A) = \left(1 - \left(-\frac{1}{2}\right)\right)G - \frac{1}{2}A = \frac{1}{2}(B + C) = A'.$$

Similarly, we have $\alpha(B) = B'$ and $\alpha(C) = C'$. Let $P = \alpha(Q)$. Since α maps a line to a parallel line, we know that $\alpha(\ell_{AQ}) = \ell_1 = \ell_{A'P}$, $\alpha(\ell_{BQ}) = \ell_2 = \ell_{B'P}$, and $\alpha(\ell_{CQ}) = \ell_3 = \ell_{C'P}$. In particular, we have $P \in \ell_1 \cap \ell_2 \cap \ell_3$.

Since $\alpha(Q) = P$, we have

$$P = \frac{3}{2}G - \frac{1}{2}Q,$$

$$G - P = -\frac{1}{2}G + \frac{1}{2}Q = -\frac{1}{2}(G - Q).$$

2. CENTRAL REFLECTIONS

Definition 2.1. The central reflection in C is the bijection $\sigma_C = \delta_{C,-1}$, that is,

$$\sigma_C(X) = 2C - X.$$

Note that *C* is the midpoint of *X* and $\sigma_C(X)$. A special case is when C = O, $\sigma_O(X) = -X$.

Proposition 2.2. Let $A, B, C \in \mathbb{R}^2$.

- (1) $\sigma_C^2 = \sigma_C \circ \sigma_C = \text{Id.}$
- (2) *C* is the unique fixed point of σ_C .
- (3) The composition of two central reflections is a translation.
- (4) The composition $\sigma_C \sigma_B \sigma_A$ is the central reflection σ_D where D is the fourth vertex of the parallelogram *ABCD*.

Proof. (1) For $X \in \mathbb{R}^2$, $\sigma_C^2(X) = \sigma_C(2C - X) = 2C - (2C - X) = X$. (2) One sees $\sigma_C(C) = 2C - C = C$. If $X \neq C$, then

$$\sigma_C(X) - X = 2C - X - X = 2(C - X) \neq O.$$

(3) For $A, B, X \in \mathbb{R}^2$, we have

$$\sigma_A \sigma_B(X) = \sigma_A (2B - X) = 2A - (2B - X) = 2(A - B) + X = \tau_{2(A - B)}(X)$$

(4) Let D = C - B + A, then A, B, C, D defines a parallelogram and

$$\sigma_C \sigma_B \sigma_A(X) = \sigma_C (2(B-A) + X) = 2(C-B+A) - X = \sigma_D(X).$$

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu