MATH 403 LECTURE NOTE
 WEEK 6

DAESUNG KIM

1. Translations and Central dilatations (SEC 2.1-2)

Consider an assignment α from the set of points of the plane to itself. We call α a map or a correspondence. If α assigns a point X to Y, we use the notation $\alpha(X)=Y$. We say two maps α and β are equal if $\alpha(X)=$ $\beta(X)$ for all $X \in \mathbb{R}^{2}$.
Definition 1.1. (1) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called one-to-one if $\alpha(X)=\alpha\left(X^{\prime}\right)$ implies $X=X^{\prime}$.
(2) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called onto if for every $Y \in \mathbb{R}^{2}$, there exists a point X such that $\alpha(X)=Y$.
(3) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called bijection (or permutation, or transformation) if it is one-to-one and onto.

Definition 1.2 (Composition). Let α, β be two maps from \mathbb{R}^{2} to \mathbb{R}^{2}. The composition $\alpha \beta=\alpha \circ \beta$ is the map from \mathbb{R}^{2} to itself, defined by

$$
\alpha \beta(X)=\alpha \circ \beta(X)=\alpha(\beta(X)), \quad X \in \mathbb{R}^{2}
$$

Definition 1.3 (Inverse). Let α be a bijection map from \mathbb{R}^{2} to itself. Then, the inverse map $\alpha^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the map satisfies $\alpha \alpha^{-1}=\alpha^{-1} \alpha=\iota=\mathrm{Id}$.
Remark 1.4. Note that if $\alpha \circ \beta$ is one-to-one, then β is one-to-one. If $\alpha \circ \beta$ is onto, then α is onto.
Definition 1.5 (Image of maps). Let α be a map from \mathbb{R}^{2} to itself and S be a subset of \mathbb{R}^{2}. The image of S under α is defined by

$$
\alpha(S)=\{\alpha(X): X \in S\}
$$

Definition 1.6 (Translations). Let $A \in \mathbb{R}^{2}$. The translation by A, denoted by $\tau_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is defined by

$$
\tau_{A}(X)=X+A, \quad X \in \mathbb{R}^{2}
$$

Proposition 1.7. Let $A, B \in \mathbb{R}^{2}$.
(1) The translation τ_{A} is one-to-one and onto.
(2) $\tau_{A} \tau_{B}=\tau_{A+B}$.
(3) $\tau_{A}^{-1}=\tau_{-A}$.
(4) τ_{A} maps a line ℓ to a line $\tau_{A}(\ell)$, and $\tau_{A}(\ell) / / \ell$.
(5) For fixed $B, C \in \mathbb{R}^{2}$, there exists a unique A such that $\tau_{A}(B)=C$.

Definition 1.8. A fixed point of a map α is a point $X \in \mathbb{R}^{2}$ such that $\alpha(X)=X$.
Definition 1.9 (Central dilatations). Let r be a nonzero number. The central dilatation with center O and dilatation factor r is the map $\delta_{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\delta_{r}(X)=r X, \quad X \in \mathbb{R}^{2}
$$

Proposition 1.10. Let $r, s \in \mathbb{R} \backslash\{0\}$ and $A \in \mathbb{R}^{2}$.
(1) The map δ_{r} is one-to-one and onto.
(2) $\delta_{r} \circ \delta_{s}=\delta_{r s}$.
(3) $\left(\delta_{r}\right)^{-1}=\delta_{1 / r}$.
(4) $\delta_{r} \circ \tau_{A}=\tau_{r A} \circ \delta_{r}$. In particular, $\tau_{r A}=\delta_{r} \circ \tau_{A} \circ\left(\delta_{r}\right)^{-1}$.

Definition 1.11. Let $\mu: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection, and $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a map. The conjugate $\bar{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of α by μ is defined by

$$
\bar{\alpha}=\mu \circ \alpha \circ \mu^{-1} .
$$

Thus, $\tau_{r A}$ is the conjugate of the translation τ_{A} by the central dilatation δ_{r}.
Definition 1.12. Let $C \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$ with $r \neq 0$. The dilatation with center C and dilatation factor r is the map $\delta_{C, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\delta_{C, r}(X)=C+r(X-C)=(1-r) C+r X, \quad X \in \mathbb{R}^{2} .
$$

Note that $\delta_{C, r}$ is a bijection (exercise) and $\delta_{O, r}=\delta_{r}$.
Proposition 1.13. Let $A, C \in \mathbb{R}^{2}$ and $r, s \in \mathbb{R} \backslash\{0\}$.
(1) $\delta_{C, r} \circ \delta_{C, s}=\delta_{C, r s}, \delta_{C, 1}=\operatorname{Id}$, and $\left(\delta_{C, r}\right)^{-1}=\delta_{C, 1 / r}$.
(2) The map $\delta_{A+C, r}$ is the conjugate of $\delta_{A, r}$ by τ_{C}. That is, $\delta_{A+C, r}=\tau_{C} \circ \delta_{A, r} \circ\left(\tau_{C}\right)^{-1}$.
(3) C is the fixed point of $\delta_{C, r}$, that is, $\delta_{C, r}(C)=C$. The point C is the only fixed point if and only if $r \neq 1$.
(4) $\delta_{C, r}$ maps a line to a parallel line.
(5) If A, B, C are distinct and collinear, then there exists a unique central dilatation $\delta_{C, r}$ with $\delta_{C, r}(A)=B$.

Proof.
(1) For $X \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\delta_{C, r} \circ \delta_{C, s}(X) & =\delta_{C, r}((1-s) C+s X)=(1-r) C+r((1-s) C+s X) \\
& =(1-r s) C+r s X=\delta_{C, r s}(X)
\end{aligned}
$$

and

$$
\delta_{C, 1}(X)=(1-1) C+1 X=X
$$

Since $\delta_{C, r} \circ \delta_{C, 1 / r}=\mathrm{Id}=\delta_{C, 1 / r} \circ \gamma_{C, r}$, the inverse of $\delta_{C, r}$ is $\delta_{C, 1 / r}$.
(2) HW.
(3) $\delta_{C, r}(C)=(1-r) C+r C=C$. If $r=1$, then $\delta_{C, r}=$ Id so every point is a fixed point. Suppose $r \neq 1$ and $X \neq C$, then

$$
\delta_{C, r}(X)-X=(1-r)(C-X) \neq O .
$$

(4) HW.
(5) It suffices to find r such that $\delta_{C, r}(A)=B$. Since A, B, C are collinear, in particular we have $B \in \ell_{A C}$. Thus, there exists $r \in \mathbb{R}$ such that $B=(1-r) C+r A$. Then,

$$
\delta_{C, r}(A)=(1-r) C+r A=B
$$

as desired.

Theorem 1.14. Let A, B, C form a triangle and $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of $\overline{B C}, \overline{C A}, \overline{A B}$ respectively. Let Q be any point in \mathbb{R}^{2}. Let ℓ_{1} be the line through A^{\prime}, parallel to $\ell_{A Q}, \ell_{2}$ the line through B^{\prime}, parallel to $\ell_{B Q}$, and ℓ_{3} the line through C^{\prime}, parallel to $\ell_{C Q}$.
(1) The three lines are concourrent in a point P, and
(2) the centroid G lies on $\ell_{P Q}$ and

$$
\frac{G-P}{G-Q}=-\frac{1}{2}
$$

Proof. Let G be the centroid of $\triangle A B C$. Consider a map $\alpha=\delta_{G,-1 / 2}$. One can see that

$$
\alpha(A)=\left(1-\left(-\frac{1}{2}\right)\right) G-\frac{1}{2} A=\frac{1}{2}(B+C)=A^{\prime}
$$

Similarly, we have $\alpha(B)=B^{\prime}$ and $\alpha(C)=C^{\prime}$. Let $P=\alpha(Q)$. Since α maps a line to a parallel line, we know that $\alpha\left(\ell_{A Q}\right)=\ell_{1}=\ell_{A^{\prime} P}, \alpha\left(\ell_{B Q}\right)=\ell_{2}=\ell_{B^{\prime} P}$, and $\alpha\left(\ell_{C Q}\right)=\ell_{3}=\ell_{C^{\prime} P}$. In particular, we have $P \in \ell_{1} \cap \ell_{2} \cap \ell_{3}$.

Since $\alpha(Q)=P$, we have

$$
\begin{aligned}
P & =\frac{3}{2} G-\frac{1}{2} Q \\
G-P & =-\frac{1}{2} G+\frac{1}{2} Q=-\frac{1}{2}(G-Q) .
\end{aligned}
$$

2. Central Reflections

Definition 2.1. The central reflection in C is the bijection $\sigma_{C}=\delta_{C,-1}$, that is,

$$
\sigma_{C}(X)=2 C-X
$$

Note that C is the midpoint of X and $\sigma_{C}(X)$. A special case is when $C=O, \sigma_{O}(X)=-X$.
Proposition 2.2. Let $A, B, C \in \mathbb{R}^{2}$.
(1) $\sigma_{C}^{2}=\sigma_{C} \circ \sigma_{C}=\mathrm{Id}$.
(2) C is the unique fixed point of σ_{C}.
(3) The composition of two central reflections is a translation.
(4) The composition $\sigma_{C} \sigma_{B} \sigma_{A}$ is the central reflection σ_{D} where D is the fourth vertex of the parallelogram $A B C D$.

Proof. (1) For $X \in \mathbb{R}^{2}, \sigma_{C}^{2}(X)=\sigma_{C}(2 C-X)=2 C-(2 C-X)=X$.
(2) One sees $\sigma_{C}(C)=2 C-C=C$. If $X \neq C$, then

$$
\sigma_{C}(X)-X=2 C-X-X=2(C-X) \neq O
$$

(3) For $A, B, X \in \mathbb{R}^{2}$, we have

$$
\sigma_{A} \sigma_{B}(X)=\sigma_{A}(2 B-X)=2 A-(2 B-X)=2(A-B)+X=\tau_{2(A-B)}(X)
$$

(4) Let $D=C-B+A$, then A, B, C, D defines a parallelogram and

$$
\sigma_{C} \sigma_{B} \sigma_{A}(X)=\sigma_{C}(2(B-A)+X)=2(C-B+A)-X=\sigma_{D}(X)
$$

REFERENCES

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

