MATH 403 FALL 2021: HOMEWORK 9 SOLUTION

INSTRUCTOR: DAESUNG KIM DUE DATE: NOV 12, 2021

1. Exercise 3.14 (Hint: Use the orthogonal projection of *Y* to *X*.)

Solution: Let Z=X/|X| and W=Y/|Y|, then $|\triangle OXY| = \frac{1}{2}|X||Y-\operatorname{Proj}_XY|$ $= \frac{1}{2}|X|\left|Y-\frac{X\cdot Y}{|X|^2}X\right|$ $= \frac{1}{2}|X||Y|\left|\frac{Y}{|Y|}-\frac{X\cdot Y}{|X||Y|}\frac{X}{|X|}\right|$

 $= \frac{1}{2}|X||Y||W - (Z \cdot W)Z|.$

Since $|W - (Z \cdot W)Z|^2 = 1 - (Z \cdot W)^2$, we have

$$\begin{split} |\triangle OXY| &= \frac{1}{2}|X||Y|\,|W - (Z\cdot W)Z| \\ &= \frac{1}{2}|X||Y|\sqrt{1 - (Z\cdot W)^2} \\ &= \frac{1}{2}\sqrt{|X|^2|Y|^2 - (X\cdot Y)^2}. \end{split}$$

2. Exercise 3.16

Solution: Direct computation yields

$$\sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$$

$$= \frac{1}{4}\sqrt{((a+b)^2 - c^2)(c^2 - (a-b)^2)}$$

$$= \frac{1}{4}\sqrt{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}$$

$$= \frac{1}{4}\sqrt{4a^2b^2 - (a^2+b^2-c^2)^2}$$

$$= \frac{1}{2}ab\sqrt{1 - \left(\frac{a^2+b^2-c^2}{2ab}\right)^2}.$$

Applying

$$c^{2} = |X - Y|^{2} = |X|^{2} + |Y|^{2} - 2|X||Y|\cos\theta = a^{2} + b^{2} - 2ab\cos\theta,$$

we get

$$\sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ab\sqrt{1 - \left(\frac{a^2 + b^2 - c^2}{2ab}\right)^2}$$

$$= \frac{1}{2}ab\sqrt{1 - \cos^2 \theta}$$

$$= \frac{1}{2}|X||Y||\sin \theta|.$$

3. Exercise 3.17

Solution:

$$X \cdot N = x_1 n_1 + x_2 n_2 = n_1 p_1 + n_2 p_2 = N \cdot P,$$

 $n_1(x_1 - p_1) + n_2(x_2 - p_2) = 0.$

4. Exercise 3.18

Solution: If N is perpendicular to N' and $N, N' \neq O$, then ℓ is perpendicular to ℓ' . Let $\ell = \ell_{AB}$ and $\ell' = \ell_{CD}$, then $N \cdot (A - B) = N' \cdot (C - D) = 0$. Let X = A - B and Y = C - D. Suppose N, N', O are collinear, then N = rN' for some $r \in \mathbb{R}$. Then, $N \cdot N = rN \cdot N' = 0$, which contradicts to the assumption. Thus, there exist a, b such that X = aN + bN'. Since $X \cdot N = 0$ and $N \neq O$, we have a = 0. Then, $X \cdot Y = bN' \cdot Y = 0$ as desired.

5. For $X = (x_1, x_2)$ and $Y = (y_1, y_2)$, we define

$$d_{\infty}(X,Y) := \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$

Show that $d_1(\cdot, \cdot)$ satisfies the following:

- (a) $d_{\infty}(X,Y) = d_{\infty}(Y,X)$ for any $X,Y \in \mathbb{R}^2$.
- (b) $d_{\infty}(X,Y) \ge 0$ for any $X,Y \in \mathbb{R}^2$ and $d_{\infty}(X,Y)$ equals to zero if and only if X=Y.
- (c) $d_{\infty}(X, Z) \leq d_{\infty}(X, Y) + d_{\infty}(Y, Z)$ for any $X, Y, Z \in \mathbb{R}^2$.

Solution:

- (a) $d_{\infty}(X,Y) = \max\{|x_1 y_1|, |x_2 y_2|\} = \max\{|y_1 x_1|, |y_2 x_2|\} = d_{\infty}(Y,X).$
- (b) $d_{\infty}(X,Y) \ge 0$ is obvious. Suppose $d_{\infty}(X,Y) = 0$, then $|x_1 y_1| = |x_2 y_2| = 0$, which implies X = Y.
- (c) Suppose that $d_{\infty}(X,Z) = |x_1 z_1|$ without loss of generality. Then, we have

$$d_{\infty}(X,Z) = |x_1 - z_1| \le |x_1 - y_1| + |y_1 - z_1| \le d_{\infty}(X,Y) + d_{\infty}(Y,Z).$$

6. (Continued) Draw the set $\{X: d_{\infty}(X, D) = 2\}$ for D = (2, 3) in the plane.

Solution: If *X* satisfies $d_{\infty}(X, D) = 2$, then

$$|x_1 - 2| = 2$$
, $|x_2 - 3| \le 2$, or $|x_1 - 2| \le 2$, $|x_2 - 3| = 2$.

Thus,

$$\begin{cases} x_1 = 4, 1 \le x_2 \le 5, \\ x_1 = 0, 1 \le x_2 \le 5, \\ x_2 = 5, 0 \le x_1 \le 4, \\ x_2 = 1, 0 \le x_1 \le 4. \end{cases}$$